Sun Y, Li X, Liu G. Enhanced pollutants removal and high-value cell inclusions accumulation with Fe
2+ in heavy oil refinery treatment system using Rhodopseudomonas and Pseudomonas.
CHEMOSPHERE 2022;
294:133520. [PMID:
35032517 DOI:
10.1016/j.chemosphere.2022.133520]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Metal ions has been widely used as a method of improving pollutant removal efficiency in wastewater biological treatment system. In order to enhance pollutants removal and high-value cell inclusions accumulation in heavy oil refinery wastewater treatment systems using PSB, different reactors were built feeding with different Fe2+ concentrations respectively, and run with enriching Rhodopseudomonas and Pseudomonas in the reactors. Solute chemical oxygen demand (SCOD), ammonia (NH4+-N), nitrate nitrogen (NO3--N), nitrous nitrogen (NO2--N), Fe2+, and related cell inclusions were all detected, moreover, microbial community structure and the quantity of Rhodopseudomonas and Pseudomonas were also detected. The results showed that at the optimal dosage of Fe2+ with 20 mg/L, the corresponding removal ratios of solute chemical oxygen demand and ammonia were 73.51% and 92.26%, respectively. The yields of carotenoid, bacteriochlorophyll, and coenzyme Q10 were 11.18, 6.75, and 9.84 mg/g-DCW respectively. Furthermore, with 20 mg/L Fe2+ dosage, the relative abundance and gene number of Rhodopseudomonas were the highest in the system, which were 91.57% and 1.843 × 106 gene copies/μL, while Fe2+ had no obvious effect on the growth of Pseudomonas. The results showed that adding Fe2+ has improved the removal of pollutants and accumulation of high-value cells inclusions, also provided theoretical guidance for the treatment of heavy oil refinery wastewater using PSB.
Collapse