1
|
Meng J, Feng J, Xiao L, Hu N, Lan X, Wang S. Oral vaccination with inhibin DNA vaccine for promoting spermatogenesis in rats. Anim Reprod 2024; 21:e20230079. [PMID: 39371539 PMCID: PMC11452157 DOI: 10.1590/1984-3143-ar2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/28/2024] [Indexed: 10/08/2024] Open
Abstract
The objective of the present study was to evaluate the effects of a novel Inhibin (INH) DNA vaccine (C500/pVAX-asd-IS) on the immune response, reproductive hormone levels, and spermatogenesis of rats. Forty healthy male rats were divided into four groups, and respectively immunized (thrice, 14 d apart) with 1×108, 1×109, and 1×1010 CFU of the recombinant inhibin vaccine (group C500/pVAX-asd-IS-L, C500/pVAX-asd-IS-M, and C500/pVAX-asd-IS-H) or 1×1010 CFU C500. P/N values increased after vaccination and differed (p <0.05) at 7 d, and sharply increased at 14 d following the booster vaccination (p <0.01); The weight and volume of testes in C500/pVAX-asd-IS groups were increased (p < 0.05) at decapitation, respectively; Histological evaluation showed that the number of spermatogenic cells in the lumen was increased, and the cytoplasmic remnants of sperms were allergy increased significantly compared with the control group. Oral vaccination with INH DNA reduced (P < 0.05) serum concentrations of INH B, enhanced serum concentrations of testosterone (T) and FSH. Furthermore, mRNA expressions of VIM and SMAD4 in the testes were increased in C500/pVAX-asd-IS-M and C500/pVAX-asd-IS-H groups (p < 0.05 or p < 0.01). The mRNA amount of INHβ-B in C500/pVAX-asd-IS-M group was greater than control group (p < 0.05).These results suggested that neutralization of endogenous INH through oral vaccination with INH DNA delivered by C500 strain successfully elicited a humoral immune response. INH gene immunization may have a positive effect on spermatogenesis and reproductive efficiency in male rats.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Jianhao Feng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lilin Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Nan Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024:eesp00042023. [PMID: 39023252 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Meng J, Li Q, Xiao L, Liu W, Gao Z, Gong L, Lan X, Wang S. Immunization against inhibin DNA vaccine as an alternative therapeutic for improving follicle development and reproductive performance in beef cattle. Front Endocrinol (Lausanne) 2024; 14:1275022. [PMID: 38449672 PMCID: PMC10916279 DOI: 10.3389/fendo.2023.1275022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/04/2023] [Indexed: 03/08/2024] Open
Abstract
The objective of the present study was to investigate the potential role of immunization against INH on follicular development, serum reproductive hormone (FSH, E2, and P4) concentrations, and reproductive performance in beef cattle. A total of 196 non-lactating female beef cattle (4-5 years old) with identical calving records (3 records) were immunized with 0.5, 1.0, 1.5, or 2.0 mg [(T1, n = 58), (T2, n = 46), (T3, n = 42) and (T4, n = 36), respectively] of the pcISI plasmid. The control (C) group (n = 14) was immunized with 1.0 mL 0.9% saline. At 21d after primary immunization, all beef cattle were boosted with half of the primary immunization dose. On day 10 after primary immunization, the beef cattle immunized with INH DNA vaccine evidently induced anti-INH antibody except for the T1 group. The T3 group had the greatest P/N value peak among all the groups. The anti-INH antibody positive rates in T2, T3 and T4 groups were significantly higher than that in C and T1 groups. RIA results indicated that serum FSH concentration in T2 group increased markedly on day 45 after booster immunization; the E2 amount in T3 group was significantly increased on day 10 after primary immunization, and the levels of E2 also improved in T2 and T3 groups after booster immunization; the P4 concentration in T2 group was significantly improved on day 21 after primary immunization. Ultrasonography results revealed that the follicles with different diameter sizes were increased, meanwhile, the diameter and growth speed of ovulatory follicle were significantly increased. Furthermore, the rates of estrous, ovulation, conception, and twinning rate were also significantly enhanced. These findings clearly illustrated that INH DNA vaccine was capable of promoting the follicle development, thereby improving the behavioral of estrous and ovulation, eventually leading to an augment in the conception rates and twinning rate of beef cattle.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Qiuye Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lilin Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Weichen Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhengjie Gao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lin Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Liu G, Li C, Liao S, Guo A, Wu B, Chen H. C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli. Front Microbiol 2023; 14:1210358. [PMID: 37779705 PMCID: PMC10536267 DOI: 10.3389/fmicb.2023.1210358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli.
Collapse
Affiliation(s)
- Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Chunqi Li
- College of Animal Science, Yangtze University, Jingzhou, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Shengrong Liao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Chen C, Zhao X, An Z, Ahmad MJ, Niu K, Zhang X, Nie P, Tang J, Liang A, Yang L. Nasal immunization with AMH-INH-RFRP DNA vaccine for improving follicle development and fertility in buffaloes. Front Endocrinol (Lausanne) 2023; 14:1076404. [PMID: 36891049 PMCID: PMC9986533 DOI: 10.3389/fendo.2023.1076404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Inhibin DNA vaccine has already been proven to improve the fertility of animals. This study aimed to investigate the effects of a novel Anti-Müllerian hormone (AMH)-Inhibin (INH)-RF-amide-related peptides (RFRP) DNA vaccine on immune response and reproductive performance in buffalo. Methods A total of 84 buffaloes were randomly divided into four groups and nasally immunized twice a day with 10 ml of either AMH-INH-RFRP DNA vaccines (3 × 1010 CFU/ml in group T1, 3 × 109 CFU/ml in group T2, and 3 × 108 CFU/ml in group T3) or PBS (as a control) for 3 days, respectively. All animals received a booster dose at an interval of 14 days. Results ELISA assay revealed that primary and booster immunization significantly increased the anti-AMH, anti-INH, and anti-RFRP antibody titers in the T2 group compared with that in the T3 group. After the primary immunization, the antibody positive rate was significantly higher in the T2 group than that in the T3 group. In addition, ELISA results indicated that concentrations of E2, IFN-γ, and IL-4 were significantly higher in the antibody-positive (P) group compared to the antibody-negative (N) group. In contrast, there was no significant difference in the concentrations of P4 between the P and N groups. Ultrasonography results revealed a highly significant increase of 2.02 mm in the diameter of ovulatory follicles in the P group compared to the N group. In parallel, growth speed of dominant follicles was significantly higher in the P group than that in the N group (1.33 ± 1.30 vs 1.13 ± 0.12). Furthermore, compared to N group, the rates of oestrus, ovulation, and conception were also significantly higher in the P group. Conclusion The novel AMH-INH-RFRP DNA vaccine improves the proportion of oestrus, ovulation, and conception in buffalo by promoting the production of E2 and the growth of follicles.
Collapse
Affiliation(s)
- Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuhong Zhao
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhigao An
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Zhang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pei Nie
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaomei Tang
- College of Veterinary Medicine, Northwest Agricultural and Forestry University, Yangling, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
6
|
Analyzing the Transcriptome Profile of Human Cumulus Cells Related to Embryo Quality via RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9846274. [PMID: 30155486 PMCID: PMC6093008 DOI: 10.1155/2018/9846274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/24/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Selecting excellent oocytes is required to improve the outcomes of in vitro fertilization (IVF). Cumulus cells (CCs) are an integral part of the oocyte maturation process. Therefore, we sought to identify differentially expressed genes in CCs to assess oocyte quality and embryo development potential. We divided the participants' embryos into the high-quality embryo group and low-quality embryo group by the information including age, body mass index, and the levels of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone. We analyzed a total of 7 CC samples after the quality control in RNA sequencing. We found that 2499 genes were unregulated and 5739 genes were downregulated in high-quality embryo group compared to the low-quality embryo group (Padj < 0.05). Interestingly, MSTN, CTGF, NDUFA1, VCAN, SCD5, and STAR were significantly associated with the quality of embryo. In accordance with the results of RNA sequencing, the association of the expression levels of MSTN, CTGF, NDUFA1, VCAN, SCD5, and STAR with the embryo quality was verified by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) in 50 CC samples. Despite the small sample size and lack of validation in animal models, our study supports the fact that differential gene expression profile of human CCs, including MSTN, CTGF, NDUFA1, VCAN, SCD5, and STAR, can serve as potential indicator for embryo quality.
Collapse
|
7
|
Han YG, Liu GQ, Jiang XP, Xiang XL, Huang YF, Nie B, Zhao JY, Nabeel I, Tesema B. Reversibility and safety of KISS1 metastasis suppressor gene vaccine in immunocastration of ram lambs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:835-841. [PMID: 29268573 PMCID: PMC5933981 DOI: 10.5713/ajas.17.0629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 01/27/2023]
Abstract
Objective The aim of this study was to investigate the reversibility and safety of KISS1 metastasis suppressor (KISS1) gene vaccine in immunocastration. Methods Six eight-week old ram lambs were randomly divided into vaccinated and control groups. The vaccine (1 mg/ram lamb) was injected at weeks 0, 3, and 6 of the study. Blood samples were collected from the jugular vein before primary immunization and at weeks 2, 4, 6, 10, 14, 22, and 30 after primary immunization. All ram lambs were slaughtered at 38 weeks of age, and samples were collected. Results The specific anti-KISS1 antibody titers in vaccinated animals were significantly higher and the serum testosterone level was significantly lower than those in the control groups from week 4 to 14 after primary immunization (p<0.05). No significant difference was observed at weeks 22 and 30 after the primary immunization. Similar results were also found for scrotal circumference, testicular weight, length, breadth, and spermatogenesis in seminiferous tubules in week 30 after primary immunization. KS (KISS1-hepatitis B surface antigen S) fusion fragment of KISS1 gene vaccine was not detected in host cell genomic DNA of 9 tissues of the vaccinated ram lambs by polymerase chain reaction. Conclusion The effects of KISS1 gene vaccine in immunocastration were reversible and no integration events were recorded.
Collapse
Affiliation(s)
- Yan-Guo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gui-Qiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun-Ping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing-Long Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bin Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Yu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ijaz Nabeel
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Birhanu Tesema
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Chen WZ, Li YM, Yu X, Li Y, Li WK, Wang QL, Liang AX, Li X, Yang LG, Han L. The efficacy, biodistribution and safety of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis. Microb Biotechnol 2017; 11:248-256. [PMID: 29205848 PMCID: PMC5743813 DOI: 10.1111/1751-7915.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/17/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
DNA vaccines, the third‐generation vaccines, were extensively studied. The attenuated Salmonella choleraesuis (S. choleraesuis) was widely focused as a carrier to deliver DNA vaccines in the chromosome–plasmid balanced‐lethal system. The efficacy of inhibin DNA vaccine delivered by attenuated S. choleraesuis was proved in mice and cows in our previous studies. In this study, the efficacy of inhibin DNA vaccine was confirmed in rhesus monkeys. To further study the biodistribution and safety, the mice were immunized under laboratory conditions. The results of the rhesus monkeys showed the plasma IgA and IgG titres against inhibin were elevated, and the oestradiol (E2) and progesterone (P4) levels were increased with immunizing inhibin DNA vaccine. The biodistribution and safety assessment displayed the body weight, pathological change and haematology indexes where there is no significant difference between vaccinated mice and control. And the genomics analysis showed there was no integration of the inhibin gene into the mouse genome 2 months after immunization. This study indicated the inhibin DNA vaccine delivered by attenuated S. choleraesuis was safe. And this vaccine was a potential means to improve their reproductive traits in primates and other animals.
Collapse
Affiliation(s)
- Wei-Zhen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying-Mei Li
- Tianjin Helaiente biological science and Technology Co., Ltd, Tianjin, 301709, China
| | - Xue Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Ke Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Ling Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Guo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Mucosal IgA and IFN-γ + CD8 T cell immunity are important in the efficacy of live Salmonella enteria serovar Choleraesuis vaccines. Sci Rep 2017; 7:46408. [PMID: 28406162 PMCID: PMC5390296 DOI: 10.1038/srep46408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/17/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonellosis, a disease caused by non-typhoidal Salmonella strains which can be transmitted from swine to humans, is one of the leading public health problems around the world. Paratyphoid of swine is controlled by vaccinating swine with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) live vaccine strain C500 in China. Although the vaccine has good prophylactic efficacy, the mechanism of immunogenicity is unclear. Using a C500-derived paratyphoid thermo-stable live vaccine (PTSL vaccine), we demonstrated that the PTSL vaccine induces strong primary and memory immune responses in piglets. Mucosal IgA and IFN-γ+/CD8+ T cells induced by the PTSL vaccine play key roles in the protection of the host from Salmonella infection. Our findings have important implications on the development of new and improved vaccines against salmonellosis and using live-attenuated Salmonella as vaccine carriers.
Collapse
|
10
|
Liu Q, Rehman ZU, Liu JJ, Han L, Liu XR, Yang LG. Nasal immunization with inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis for improving ovarian responses and fertility in cross-bred buffaloes. Reprod Domest Anim 2016; 52:189-194. [PMID: 27862394 DOI: 10.1111/rda.12876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/24/2016] [Indexed: 01/19/2023]
Abstract
This study was conducted to determine the effect of immunization with inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis on ovarian responses and fertility in cross-bred buffaloes. A total of 134 cross-bred buffaloes were divided into four groups: groups T1 (n = 34), T2 (n = 35) and T3 (n = 31) were nasal immunized twice a day with 10 ml of 1 × 1010 CFU/ml of the C501 (pVAX-asd-IS) vaccine for 5, 3 and 1 day, respectively. Group C (n = 34) was nasal immunized with 10 ml PBS for 5 days. All animals were immunized twice with an interval of 14 days and administered with 200 μg of a GnRH analogue on day 28, 0.5 mg PGF2α on day 35 and 200 μg of the same GnRH analogue on day 37. TAI was performed at 18 and 24 hr after the second GnRH treatment. Fourteen days after primary immunization, C501 (pVAX-asd-IS) elicited significant immune responses, and anti-inhibin IgG antibody titres in group T1 were significantly higher (p < .01) than groups T3 and C. After the second GnRH treatment, the growth speed of the dominant follicles in group T1 was significantly faster (p < .05) than groups T3 and C. The number and diameter of large follicles (≥10 mm) as well as ovulatory follicles in group T1 were the greatest in all groups, resulting in a greater conception rate in buffaloes with positive anti-inhibin antibodies. These results demonstrate that immunization with the C501 (pVAX-asd-IS) vaccine, coupled with the Ovsynch protocol, could be used as an alternative approach to improve reproductive performance in cross-bred buffaloes.
Collapse
Affiliation(s)
- Q Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Z U Rehman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China.,Department of Animal Health, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - J J Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - L Han
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - X R Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - L G Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
11
|
The efficacy of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis on follicular development and ovulation responses in crossbred buffaloes. Anim Reprod Sci 2016; 172:76-82. [PMID: 27449408 DOI: 10.1016/j.anireprosci.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/03/2016] [Accepted: 07/12/2016] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the efficacy of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis on follicular development and ovulation responses in crossbred buffaloes. A total of 158 crossbred buffaloes divided into four groups and were intramuscularly injected with 1×10(10) (T1, n=41), 1×10(9) (T2, n=37), 1×10(8) (T3, n=37) or 0 (C, n=43) CFU/ml bacteria delivered inhibin vaccine in 10ml PBS on day 0 and 14, respectively. All animals were administered with 1000 IU PMSG on day 28, 0.5mg PGF2α on day 30 and 200μg GnRH on day 32. The results showed buffaloes immunized with the bacteria delivered inhibin vaccine had significantly higher titers of anti-inhibin IgG antibody than control group (P<0.01). The number and diameter of large follicles (≥10mm) as well as ovulatory follicles in group T1 was significantly greater than group C (P<0.05). The growth speed of dominant follicles in group T1 was significantly faster than groups T3 and C (P<0.05), resulting in a greater conception rate in buffaloes with positive antibodies. These results demonstrate that immunization with the bacterial delivered inhibin vaccine, coupled with the estrus synchronization protocol, could be used as an alternative approach to improve fertility in crossbred buffaloes.
Collapse
|
12
|
Effect of inhibin gene immunization on antibody production and reproductive performance in Partridge Shank hens. Theriogenology 2016; 85:1037-44. [DOI: 10.1016/j.theriogenology.2015.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 01/02/2023]
|
13
|
Dan X, Liu X, Han Y, Liu Q, Yang L. Effect of the novel DNA vaccine fusing inhibin α (1-32) and the RF-amide related peptide-3 genes on immune response, hormone levels and fertility in Tan sheep. Anim Reprod Sci 2016; 164:105-10. [DOI: 10.1016/j.anireprosci.2015.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/29/2015] [Accepted: 11/15/2015] [Indexed: 11/24/2022]
|
14
|
Yan L, Li H, Shi Z. Immunization against inhibin improves in vivo and in vitro embryo production. Anim Reprod Sci 2015; 163:1-9. [DOI: 10.1016/j.anireprosci.2015.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 01/01/2023]
|
15
|
Dan X, Han L, Riaz H, Luo X, Liu X, Chong Z, Yang L. Construction and evaluation of the novel DNA vaccine harboring the inhibin α (1-32) and the RF-amide related peptide-3 genes for improving fertility in mice. Exp Anim 2015; 65:17-25. [PMID: 26437787 PMCID: PMC4783647 DOI: 10.1538/expanim.15-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To further improve fertility of animals, a novel gene RFRP-3 (RF-amide
related peptide-3, RFRP-3) was used to construct DNA vaccines with INH
α (1–32) (inhibin, INH) fragment for the first time.
The aim of this study was to evaluate the effects of novel DNA vaccines on fertility in
mice. Synthesized SINH and SRFRP (INH and RFRP genes
were separately ligated to the C-terminus of the small envelope protein of the hepatitis B
virus (HBV-S) gene) fragments were inserted into multiple cloning site of pIRES vector to
develop p-SINH/SRFRP. The synthesized tissue plasminogen activator (TPA) signal sequence
was then inserted into the p-SINH/SRFRP to construct p-TPA-SINH/TPA-SFRFP. Meanwhile,
p-SINH was prepared and considered as positive control. Forty Kunming mice were equally
divided into four groups and respectively immunized by electroporation with p-SINH,
p-SINH/SRFRP and p-TPA-SINH/TPA-SRFRP vaccine (three times at 2 weeks interval) and saline
as control. Results showed that the average antibodies (P/N value) of anti-INH and
anti-RFRP in mice inoculated with p-TPA-SINH/TPA-SFRFP were significantly higher
(P<0.05) than those inoculated with p-SINH/SRFRP and the positive
rates were 100% (anti-INH) and 90% (anti-RFRP) respectively, at 2 weeks after the third
immunization. Litter size of mice immunized with the three recombinant plasmids was higher
(P<0.05) than that of the control, and litter size of mice immunized
with p-TPA-SINH/TPA-SRFRP significantly increased (P<0.05) compared
with p-SINH. These results suggested that the p-TPA-SINH/TPA-SRFRP harboring
INH and RFRP genes was successfully constructed and
had good immunogenicity, and might effectively increase litter size.
Collapse
Affiliation(s)
- Xingang Dan
- Key Lab of Education Ministry of China in Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | | | | | | | | | | |
Collapse
|