1
|
Wang L, Ma QY, Kong FD, Xie QY, Zhou LM, Dai H, Kalscheuer R, Wu YG, Zhao YX. Chemical Constituents and Nematocidal Activity of the Fruiting Body of Ramaria stricta. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Kumar R, Katwal S, Sharma B, Sharma A, Puri S, Kamboj N, Kanwar SS. Purification, characterization and cytotoxic properties of a bacterial RNase. Int J Biol Macromol 2020; 166:665-676. [PMID: 33137384 DOI: 10.1016/j.ijbiomac.2020.10.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
An RNase produced by Bacillus safensis RB-5 was purified up to 22.32-fold by successive techniques of salting out, DEAE-anion exchange and gel permeation (Sephadex G-100) chromatography techniques with a yield of 2.27%. The purified RNase possessed a single band in SDS-PAGE (Mr ~ 60 kDa). The purified RNase showed optimal activity at temperature of 37 °C and pH 7.5 in the presence of substrate (Yeast RNA) and Mg2+ ions. The RNase activity was strongly inhibited by Hg2+ and mildly by Fe2+, Ba2+ and Zn2+ ions. Its half-life was found to be 8 h at 37 °C. The RNase kinetics study showed Km and Vmax value of 0.3 mM and 9.2 μmol/mg/min, respectively. The purified RNase also showed cytotoxic and antiproliferative activities towards a few transformed cell lines. The purified RNase (IC50 0.035 U/mL) effectively inhibited RD and Hep-2C cells proliferation & migration, while sparing HEK 293 cells. The purified RNase was cytotoxic as well as effective degrader of the RNA of transformed RD cells at low concentration. Moreover, the purified RNase of B. safensis RB-5 was found to possess a little hemolytic activity towards human RBCs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sunita Katwal
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Bhupender Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sanjeev Puri
- Stem Cells & Tissue Engineering Division, University Institute of Engineering & Technology, Punjab University, Chandigarh 160 014, India
| | - Nidhi Kamboj
- Stem Cells & Tissue Engineering Division, University Institute of Engineering & Technology, Punjab University, Chandigarh 160 014, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India.
| |
Collapse
|
3
|
Kumar R, Singh Kanwar S. Five-factor-at-a-time (FFAT) approach for optimal production of an extracellular RNase from Bacillus safensis RB-5. Prep Biochem Biotechnol 2019; 49:916-926. [DOI: 10.1080/10826068.2019.1643734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | |
Collapse
|
4
|
A critical review on the health promoting effects of mushrooms nutraceuticals. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Purification and characterization of a novel ubiquitin-like antitumour protein with hemagglutinating and deoxyribonuclease activities from the edible mushroom Ramaria botrytis. AMB Express 2017; 7:47. [PMID: 28229436 PMCID: PMC5321645 DOI: 10.1186/s13568-017-0346-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/14/2017] [Indexed: 11/10/2022] Open
Abstract
A novel ubiquitin-like antitumour protein (RBUP) was isolated from fruiting bodies of the edible mushroom Ramaria botrytis. The protein was isolated with a purification protocol involving ion exchange chromatography on DEAE-Sepharose fast flow and gel filtration on Sephadex G-75. SDS-PAGE, Native-PAGE and ultracentrifugation analysis disclosed that RBUP was a monomeric protein with a molecular weight of 18.5 kDa. ESI-MS/MS demonstrated that it shared 69% amino acid sequence similarity with Coprinellus congregates ubiquitin (gi|136667). The protein exhibiting strong anticancer activity towards A549 cells. Analysis by employing AO/EB staining and Annexin V-FITC/PI detection indicated that the cytotoxic effect of RBUP was mediated through induction of apoptosis. Furthermore, RBUP displayed hemagglutinating and deoxyribonuclease activities. A temperature of 40 °C and pH of 7.0 were required for optimal DNase activity. Therefore, it was estimated that RBUP exerted its antitumour effect by inducing apoptosis, and its hemagglutinating and DNase activities were also thought to participate in this effect. These results demonstrated that RBUP was a multifunctional protein with potential medicinal applications.
Collapse
|
6
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
7
|
Dan X, Liu W, Wong JH, Ng TB. A Ribonuclease Isolated from Wild Ganoderma Lucidum Suppressed Autophagy and Triggered Apoptosis in Colorectal Cancer Cells. Front Pharmacol 2016; 7:217. [PMID: 27504094 PMCID: PMC4958627 DOI: 10.3389/fphar.2016.00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
Abstract
The mushroom Ganoderma lucidum (G. lucidum) has been consumed in China as a medicine for promoting health and longevity for thousands of years. Due to its paramount and multiple pharmaceutical effects, G. lucidum has received considerable attention from researchers and its chemical constituents as well as their respective functions were gradually unveiled by using modern research methods. Herein, we reported the isolation of a protein (Ganoderma lucidum ribonuclease, GLR) with anti-colorectal cancer activities from G. lucidum. This protein is a 17.4-kDa RNA degrading enzyme (ribonuclease) and was purified by using liquid chromatography procedures. GLR manifested potent anti-proliferative and anti-colony formation activities on HT29 and HCT116 colorectal cancer cells by inducing cell cycle arrest in G1 phase through the regulation of cyclin D1 and P53 expression. GLR was demonstrated to induce cell apoptosis in HCT116 cells by activating unfolded protein response and caspase-9 regulated pathways. Besides, the ability to undergo autophagy which is a stress adaption mechanism to cope with metabolic crisis was significantly suppressed by GLR treatment in HCT116 cells. The activation of apoptosis in GLR-treated HT29 cells was, however, independent of caspase-9 and the suppression of autophagy was also relatively minor. Thus the apoptosis of HT29 cells triggered by GLR was much milder than that in HCT116 cells. Our findings show that the RNase from G. lucidum may be one of the bioactive components that contribute to the anti-colorectal cancer activity of G. lucidum.
Collapse
Affiliation(s)
- Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong Hong Kong, China
| | - Wenlong Liu
- Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences Shenzhen, China
| | - Jack H Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong Hong Kong, China
| | - Tzi B Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
8
|
Isolation of a Ribonuclease with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Japanese Large Brown Buckwheat Seeds. Appl Biochem Biotechnol 2014; 175:2456-67. [DOI: 10.1007/s12010-014-1438-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
|