1
|
Monecke S, Burgold-Voigt S, Feßler AT, Krapf M, Loncaric I, Liebler-Tenorio EM, Braun SD, Diezel C, Müller E, Reinicke M, Reissig A, Cabal Rosel A, Ruppitsch W, Hotzel H, Hanke D, Cuny C, Witte W, Schwarz S, Ehricht R. Characterisation of Staphylococcus aureus Strains and Their Prophages That Carry Horse-Specific Leukocidin Genes lukP/Q. Toxins (Basel) 2025; 17:20. [PMID: 39852974 PMCID: PMC11769447 DOI: 10.3390/toxins17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Leukocidins of Staphylococcus (S.) aureus are bicomponent toxins that form polymeric pores in host leukocyte membranes, leading to cell death and/or triggering apoptosis. Some of these toxin genes are located on prophages and are associated with specific hosts. The genes lukP/Q have been described from equine S. aureus isolates. We examined the genomes, including the lukP/Q prophages, of S. aureus strains belonging to clonal complexes CC1, CC350, CC816, and CC8115. In addition to sequencing, phages were characterised by mitomycin C induction and transmission electron microscopy (TEM). All lukP/Q prophages integrated into the lip2=geh gene, and all included also the gene scn-eq encoding an equine staphylococcal complement inhibitor. The lukP/Q prophages clustered, based on gene content and allelic variants, into three groups. One was found in CC1 and CC97 sequences; one was present mainly in CC350 but also in other lineages (CC1, CC97, CC133, CC398); and a third one was exclusively observed in CC816 and CC8115. Prophages of the latter group additionally included a rare enterotoxin A allele (sea320E). Moreover, a prophage from a CC522 goat isolate was found to harbour lukP. Its lukF component could be regarded as chimaera comprising parts of lukQ and of lukF-P83. A putative kinase gene of 1095 basepairs was found to be associated with equine strains of S. aureus. It was also localised on prophages. However, these prophages were different from the ones that carried lukP/Q, and three different integration sites of kinase-carrying phages were identified. These observations confirmed the presence of prophage-located important virulence-associated genes in equine S. aureus and that certain prophages might determine the host specificity of the staphylococcal strains they reside in.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics and Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Elisabeth M. Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (Federal Research Institute for Animal Health), 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, 1090 Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, 1090 Vienna, Austria
- FoodHub—Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for AccurFood Authenticity Certification, University of Donja Gorica, 81000 Podgorica, Montenegro
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute (Federal Research Institute for Animal Health), 07743 Jena, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics and Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics and Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Leibniz Center for Photonics in Infection Research (LPI), Germany and InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
2
|
Chatterjee S, Barman P, Barman C, Majumdar S, Chakraborty R. Multimodal cadmium resistance and its regulatory networking in Pseudomonas aeruginosa strain CD3. Sci Rep 2024; 14:31689. [PMID: 39738119 DOI: 10.1038/s41598-024-80754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl2.H2O) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India. The minimum inhibitory concentrations (MICs) for cadmium and other heavy metals/metalloids were determined with clarity using a modified chemically-defined medium inoculated with variable inoculum density. Formation of biofilm enabled CD3 cells to resist up to 0.75 mM CdCl2.H2O. Survival and growth of CD3 cells in presence of > 1 mM CdCl2.H2O was dependent on efflux mechanism. Efflux mechanism in CD3 was confirmed by atomic absorption spectroscopy. Resistance to cadmium was inducible when grown in presence of ≥ 1.0 mM CdCl2.H2O. Minimum concentration of cadmium or zinc or cobalt salts required for induction of cadmium resistance was determined. Whole-genome-based phylogenetic tools identified CD3 as the closest relative to Pseudomonas aeruginosa DSM50071T. Bioinformatic analyses revealed a complex network of regulations, with BfmR playing a crucial role in the functions of CzcR and CzcS, essential for biofilm formation and receptor signalling pathways. Comparative genomics and mutation landscape analyses of cadmium-resistance genes in P. aeruginosa strains revealed dynamism in evolution of cadmium resistance.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Reproductive Ecology of Angiosperms Laboratory, Department of Botany, University of Gour Banga, P.O. Mokdumpur, Malda, West Bengal, 732103, India
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Partha Barman
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Chandan Barman
- Reproductive Ecology of Angiosperms Laboratory, Department of Botany, University of Gour Banga, P.O. Mokdumpur, Malda, West Bengal, 732103, India
| | - Sukanta Majumdar
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, University of Gour Banga, P.O. Mokdumpur, Malda, West Bengal, 732103, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
3
|
Valenzuela-Ibaceta F, Torres-Olea N, Ramos-Zúñiga J, Dietz-Vargas C, Navarro CA, Pérez-Donoso JM. Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles. J Nanobiotechnology 2024; 22:78. [PMID: 38414055 PMCID: PMC10900627 DOI: 10.1186/s12951-024-02348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bacterial biosynthesis of fluorescent nanoparticles or quantum dots (QDs) has emerged as a unique mechanism for heavy metal tolerance. However, the physiological pathways governing the removal of QDs from bacterial cells remains elusive. This study investigates the role of minicells, previously identified as a means of eliminating damaged proteins and enhancing bacterial resistance to stress. Building on our prior work, which unveiled the formation of minicells during cadmium QDs biosynthesis in Escherichia coli, we hypothesize that minicells serve as a mechanism for the accumulation and detoxification of QDs in bacterial cells. RESULTS Intracellular biosynthesis of CdS QDs was performed in E. coli mutants ΔminC and ΔminCDE, known for their minicell-producing capabilities. Fluorescence microscopy analysis demonstrated that the generated minicells exhibited fluorescence emission, indicative of QD loading. Transmission electron microscopy (TEM) confirmed the presence of nanoparticles in minicells, while energy dispersive spectroscopy (EDS) revealed the coexistence of cadmium and sulfur. Cadmium quantification through flame atomic absorption spectrometry (FAAS) demonstrated that minicells accumulated a higher cadmium content compared to rod cells. Moreover, fluorescence intensity analysis suggested that minicells accumulated a greater quantity of fluorescent nanoparticles, underscoring their efficacy in QD removal. Biosynthesis dynamics in minicell-producing strains indicated that biosynthesized QDs maintained high fluorescence intensity even during prolonged biosynthesis times, suggesting continuous QD clearance in minicells. CONCLUSIONS These findings support a model wherein E. coli utilizes minicells for the accumulation and removal of nanoparticles, highlighting their physiological role in eliminating harmful elements and maintaining cellular fitness. Additionally, this biosynthesis system presents an opportunity for generating minicell-coated nanoparticles with enhanced biocompatibility for diverse applications.
Collapse
Affiliation(s)
- Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Torres-Olea
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Claudio Dietz-Vargas
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
4
|
Zhao M, Li C, Zhang C, Zhao Y, Wang X, Cao B, Xu L, Zhang J, Wang J, Zuo Q, Chen Y, Zou G. Under flooding conditions, controlled-release fertiliser coated microplastics affect the growth and accumulation of cadmium in rice by increasing the fluidity of cadmium and interfering with metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166434. [PMID: 37598965 DOI: 10.1016/j.scitotenv.2023.166434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The combined pollution of microplastics (MPs) and Cd can affect plant growth and development and Cd accumulation, with most studies focusing on dryland soil. However, the effects of polyurethane (PU) controlled-release fertiliser coated MPs (PU MPs), which widely exist in rice systems, coupled with Cd on plant growth and Cd accumulation under flooding conditions are still unknown. Therefore, in the present study, in situ techniques were used to systematically study the effects of PU MPs and Cd coupling on the physiological and biochemical performance, metabolomics characteristics, rhizosphere bacterial community, and Cd bioavailability of rice in different soil types (red soil/cinnamon soil). The results showed that the effects of PU MPs on rice growth and Cd accumulation were concentration-dependent, especially in red soil. High PU concentration (1 %) inhibited rice root growth significantly (44 %). The addition of PU MPs inhibited photosynthetically active radiation, net photosynthesis, and transpiration rate of rice, mainly with low concentration (0.1 %) in red soil and high concentration (1 %) in cinnamon soil. PU MPs can enhance the expression of Cd resistance genes (cadC and copA) in soil, enhance the mobility of Cd, and affect the metabolic pathways of metabolites in the rhizosphere soil (red soil: fatty acid metabolism; cinnamon soil: amino acid degradation, heterobiodegradation, and nucleotide metabolism) to promote Cd absorption in rice. Especially in red soil, Cd accumulation in the root and aboveground parts of rice after the addition of high concentration PU (1 %) was 1.7 times and 1.3 times, respectively, that of the control (p < 0.05). Simultaneously, microorganisms can affect rice growth and Cd bioavailability by affecting functional bacteria related to carbon, iron, sulfur, and manganese. The results of the present study provide novel insights into the potential effects of PU MPs coupled with Cd on plants, rhizosphere bacterial communities, and Cd bioavailability.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Congping Li
- Qujing City Agricultural Environmental Protection Monitoring Station, Yunnan 655000, China
| | - Cheng Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yujie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Cao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiachen Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Zuo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
5
|
Chettri U, Nongkhlaw M, Joshi SR. Molecular Evidence for Occurrence of Heavy Metal and Antibiotic Resistance Genes Among Predominant Metal Tolerant Pseudomonas sp. and Serratia sp. Prevalent in the Teesta River. Curr Microbiol 2023; 80:226. [PMID: 37227565 DOI: 10.1007/s00284-023-03334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Riverine ecosystems polluted by pharmaceutical and metal industries are potential incubators of bacteria with dual resistance to heavy metals and antibiotics. The processes of co-resistance and cross resistance that empower bacteria to negotiate these challenges, strongly endorse dangers of antibiotic resistance generated by metal stress. Therefore, investigation into the molecular evidence of heavy metal and antibiotic resistance genes was the prime focus of this study. The selected Pseudomonas and Serratia species isolates evinced by their minimum inhibitory concentration and multiple antibiotic resistance (MAR) index showed significant heavy metal tolerance and multi-antibiotic resistance capability, respectively. Consequently, isolates with higher tolerance for the most toxic metal cadmium evinced high MAR index value (0.53 for Pseudomonas sp., and 0.46 for Serratia sp.) in the present investigation. Metal tolerance genes belonging to PIB-type and resistance nodulation division family of proteins were evident in these isolates. The antibiotic resistance genes like mexB, mexF and mexY occurred in Pseudomonas isolates while sdeB genes were present in Serratia isolates. Phylogenetic incongruency and GC composition analysis of PIB-type genes suggested that some of these isolates had acquired resistance through horizontal gene transfer (HGT). Therefore, the Teesta River has become a reservoir for resistant gene exchange or movement via selective pressure exerted by metals and antibiotics. The resultant adaptive mechanisms and altered phenotypes are potential tools to track metal tolerant strains with clinically significant antibiotic resistance traits.
Collapse
Affiliation(s)
- Upashna Chettri
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Macmillan Nongkhlaw
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Santa R Joshi
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India.
| |
Collapse
|
6
|
Dissanayake DMDC, Kumari WMNH, Chandrasekharan NV, Wijayarathna CD. Isolation of heavy metal-resistant Staphylococcus epidermidis strain TWSL_22 and evaluation of heavy metal bioremediation potential of recombinant E. coli cloned with isolated cadD. FEMS Microbiol Lett 2023; 370:fnad092. [PMID: 37708035 DOI: 10.1093/femsle/fnad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
A heavy metal-resistant bacterial strain, TWSL_22 was isolated from an industrial effluent sample and tested for heavy metal tolerance and resistance. The strain was molecularly characterized as Staphylococcus epidermidis based on 16S rDNA gene analysis and the sequence was deposited in the NCBI repository (accession number KT184893.1). Metal removal activity (P < .001) of TWSL_22 was 99.99 ± 0.001%, 74.43 ± 2.51%, and 51.16 ± 4.17% for Cd, Pb, and Cu, respectively. Highest MIC was observed for Cd. Antibiotic susceptibility assays revealed the strain TWSL_22 to be resistant to several antibiotics. The strain was screened for possible heavy metal-resistant genes and presence of cadA, copA, and cadD was confirmed by PCR. A DNA fragment containing complete sequence of cadD (618 bp) was isolated and cloned into pET 21a(+), transformed into E. coli BL21 and designated as E. coli/cadDET. E. coli/cadDET showed high metal tolerance capacity and could remove over 82% of heavy metals (Zn2+, Cd2+, Cu2+, and Cr3+) in the industrial effluent.
Collapse
Affiliation(s)
- D M D C Dissanayake
- Biotechnology Laboratory, Department of Chemistry, Faculty of Science, University of Colombo, PO Box 1490, Cumarathunga Munidasa Mawatha, Colombo 00300, Sri Lanka
| | - W M N H Kumari
- Department of Molecular Biology, Durdans Hospitals, No 3 Alfred Road, Colombo 03, Sri Lanka
| | - N V Chandrasekharan
- Sri Lanka Institute of Biotechnology, Thalagala road, Pitipana, Homagama, Sri Lanka
| | - C D Wijayarathna
- Biotechnology Laboratory, Department of Chemistry, Faculty of Science, University of Colombo, PO Box 1490, Cumarathunga Munidasa Mawatha, Colombo 00300, Sri Lanka
| |
Collapse
|
7
|
Argudín MA, Hoefer A, Butaye P. Heavy metal resistance in bacteria from animals. Res Vet Sci 2018; 122:132-147. [PMID: 30502728 DOI: 10.1016/j.rvsc.2018.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Resistance to metals and antimicrobials is a natural phenomenon that existed long before humans started to use these products for veterinary and human medicine. Bacteria carry diverse metal resistance genes, often harboured alongside antimicrobial resistance genes on plasmids or other mobile genetic elements. In this review we summarize the current knowledge about metal resistance genes in bacteria and we discuss their current use in the animal husbandry.
Collapse
Affiliation(s)
- M A Argudín
- National Reference Centre - Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - A Hoefer
- Department of Biomedical Sciences, University, School of Veterinary Medicine, Basseterre, PO Box 334, Saint Kitts and Nevis
| | - P Butaye
- Department of Biomedical Sciences, University, School of Veterinary Medicine, Basseterre, PO Box 334, Saint Kitts and Nevis; Department of Pathology, Bacteriology, and Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium..
| |
Collapse
|
8
|
Wang H, Qian X, Wang K, Su M, Haoyang WW, Jiang X, Brzozowski R, Wang M, Gao X, Li Y, Xu B, Eswara P, Hao XQ, Gong W, Hou JL, Cai J, Li X. Supramolecular Kandinsky circles with high antibacterial activity. Nat Commun 2018; 9:1815. [PMID: 29739936 PMCID: PMC5940903 DOI: 10.1038/s41467-018-04247-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/16/2018] [Indexed: 11/09/2022] Open
Abstract
Nested concentric structures widely exist in nature and designed systems with circles, polygons, polyhedra, and spheres sharing the same center or axis. It still remains challenging to construct discrete nested architecture at (supra)molecular level. Herein, three generations (G2−G4) of giant nested supramolecules, or Kandinsky circles, have been designed and assembled with molecular weight 17,964, 27,713 and 38,352 Da, respectively. In the ligand preparation, consecutive condensation between precursors with primary amines and pyrylium salts is applied to modularize the synthesis. These discrete nested supramolecules are prone to assemble into tubular nanostructures through hierarchical self-assembly. Furthermore, nested supramolecules display high antimicrobial activity against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA), and negligible toxicity to eukaryotic cells, while the corresponding ligands do not show potent antimicrobial activity. Nested structures are common throughout nature and art, yet remain challenging synthetic targets in supramolecular chemistry. Here, the authors design multitopic terpyridine ligands that coordinate into nested concentric hexagons, and show that these discrete supramolecules display potent antimicrobial activity.
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Xiaomin Qian
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Kun Wang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Ma Su
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Wei-Wei Haoyang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiang Gao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|