1
|
Wang P, Du X, Zhao Y, Wang W, Cai T, Tang K, Wang X. Combining CRISPR/Cas9 and natural excision for the precise and complete removal of mobile genetic elements in bacteria. Appl Environ Microbiol 2024; 90:e0009524. [PMID: 38497640 PMCID: PMC11022536 DOI: 10.1128/aem.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, China
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Du
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhao
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Tongxuan Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Xiao Y, Zhang Y, Xie F, Olsen RH, Shi L, Li L. Inhibition of Plasmid Conjugation in Escherichia coli by Targeting rbsB Gene Using CRISPRi System. Int J Mol Sci 2023; 24:10585. [PMID: 37445761 DOI: 10.3390/ijms241310585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic-resistant genes (ARGs) among human pathogens. The spread of ARGs can be halted or diminished by interfering with the conjugation process. In this study, we explored the possibility of using an rbsB gene as a single target to inhibit plasmid-mediated horizontal gene transfer in Escherichia coli by CRISPR interference (CRISPRi) system. Three single-guide RNAs (sgRNAs) were designed to target the rbsB gene. The transcriptional levels of the rbsB gene, the conjugation-related genes, and the conjugation efficiency in the CRISPRi strain were tested. We further explored the effect of the repressed expression of the rbsB gene on the quorum sensing (QS) system and biofilm formation. The results showed that the constructed CRISPRi system was effective in repressing the transcriptional level of the rbsB gene at a rate of 66.4%. The repressed expression of the rbsB gene resulted in the reduced conjugation rate of RP4 plasmid by 88.7%, which significantly inhibited the expression of the conjugation-related genes (trbBp, trfAp, traF and traJ) and increased the global regulator genes (korA, korB and trbA). The repressed rbsB gene expression reduced the depletion of autoinducer 2 signals (AI-2) by 12.8% and biofilm formation by a rate of 68.2%. The results of this study indicated the rbsB gene could be used as a universal target for the inhibition of conjugation. The constructed conjugative CRISPRi system has the potential to be used in ARG high-risk areas.
Collapse
Affiliation(s)
- Yawen Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Fengjun Xie
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Sun BY, Wang FQ, Zhao J, Tao XY, Liu M, Wei DZ. Engineering Escherichia coli for l-homoserine production. J Basic Microbiol 2023; 63:168-178. [PMID: 36284486 DOI: 10.1002/jobm.202200488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 02/03/2023]
Abstract
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, Xiong W, Zeng Z. Reversal of mcr-1-Mediated Colistin Resistance in Escherichia coli by CRISPR-Cas9 System. Infect Drug Resist 2020; 13:1171-1178. [PMID: 32368108 PMCID: PMC7184118 DOI: 10.2147/idr.s244885] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose The plasmid-borne mobilized colistin resistance gene (mcr-1) was discovered in 2015. Subsequently, the rapid horizontal transfer of mcr-1 gene to diverse bacterial species poses a serious threat to public health, which urgently needs the introduction of novel antimicrobial strategies. Therefore, the purpose of this study is to sensitize bacteria to colistin and reduce the propagation of mcr-1 gene by curing mcr-1-harboring plasmid in Escherichia coli (E. coli) using the CRISPR-Cas9 system. Methods Two sgRNAs specific to mcr-1 gene were designed and cloned into plasmid pCas9. The recombinant plasmid pCas9-mcr was transformed into E. coli carrying pUC19-mcr-1 or pHNSHP45, separately. The elimination efficiency in strains was evaluated by PCR and quantitative real-time PCR (qPCR). The antimicrobial susceptibility test was performed using the broth microdilution method. Results In this study, we constructed the high copy number plasmid pUC19-mcr-1 and recombinant plasmid pCas9-m1 or pCas9-m2, which contain 20 nt or 30 nt sgRNA sequences targeted to mcr-1, respectively. PCR and qPCR results showed that mcr-1-harboring plasmids could be efficiently eliminated, and there was no significant correlation between sgRNA lengths and curing efficiency. However, when comparing restructured high copy number plasmid (pUC19-mcr-1) to natural resistance plasmid (pHNSHP45) in eliminating efficiency, we found that the content of plasmid backbone had an influence on efficiency. Furthermore, the conjugation assays verified that the engineered CRISPR-Cas9 system in bacteria or in bacteria genome can protect the recipient from plasmid-borne mcr-1 transfer via conjugation. Additionally, sequence analysis showed that three different types of defects in CRISPR-Cas9 system lead to escape mutants. Conclusion We presented a method that only one plasmid-mediated CRISPR-Cas9 system can be used to efficiently resensitize E. coli to colistin. Moreover, this system provided a great potentiality to counteract the propagation of mcr-1 among bacterial pathogens.
Collapse
Affiliation(s)
- Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shiyun Cui
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhenbao Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ruonan Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
5
|
Wang P, He D, Li B, Guo Y, Wang W, Luo X, Zhao X, Wang X. Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J Antimicrob Chemother 2019; 74:2559-2565. [PMID: 31203365 DOI: 10.1093/jac/dkz246] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To eliminate mcr-1-harbouring plasmids and MDR plasmids in clinical Escherichia coli isolates. METHODS Plasmid pMBLcas9 expressing Cas9 was constructed and used to clone target single-guide RNAs (sgRNAs) for plasmid curing. The recombinant plasmid pMBLcas9-sgRNA was transferred by conjugation into two clinical E. coli isolates. The curing efficiency of different sgRNAs targeting conserved genes was tested. The elimination of targeted plasmids and the generation of transposase-mediated recombination of p14EC033a variants were characterized by PCR and DNA sequencing. RESULTS In this study, four native plasmids in isolate 14EC033 and two native plasmids in isolate 14EC007 were successfully eliminated in a step-by-step manner using pMBLcas9. Moreover, two native plasmids in 14EC007 were simultaneously eliminated by tandemly cloning multiple sgRNAs in pMBLcas9, sensitizing 14EC007 to polymyxin and carbenicillin. In 14EC033 with two mcr-1-harbouring plasmids, IncI2 plasmid p14EC033a and IncX4 plasmid p14EC033b, a single mcr-1 sgRNA mediated the loss of p14EC033b and generated a mutant p14EC033a in which the mcr-1 gene was deleted. An insertion element, IS5, located upstream of mcr-1 in p14EC033a was responsible for transposase-mediated recombination, resulting in mcr-1 gene deletion instead of plasmid curing. CONCLUSIONS CRISPR/Cas9 can be used to efficiently sensitize clinical isolates to antibiotics in vitro. For isolates with multiple plasmids, the CRISPR/Cas9 approach can either remove each plasmid in a stepwise manner or simultaneously remove multiple plasmids in one step. Moreover, this approach can be used to delete multiple gene copies by using only one sgRNA. However, caution must be exercised to avoid unwanted recombination events during genetic manipulation.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Dongmei He
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongjian Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xuanyu Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wang P, Zhu Y, Shang H, Deng Y, Sun M. A minireplicon of plasmid pBMB26 represents a new typical replicon in the megaplasmids of Bacillus cereus group. J Basic Microbiol 2017; 58:263-272. [PMID: 29243837 DOI: 10.1002/jobm.201700525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/19/2017] [Indexed: 11/11/2022]
Abstract
A new minireplicon (rep26 minireplicon) from pBMB26, the 188 kb indigenous plasmid related to spore-crystal association (SCA) phenotype in Bacillus thuringiensis strain YBT-020, was characterized. A 12 kb EcoRI fragment, which encoded 10 putative open reading frames (ORFs), was capable of supporting replication when cloned in a replication probe vector. Deletion and frame shift mutation analysis showed that a 4.1 kb region encompassing two putative ORFs (orf21 and orf22) was essential for the plasmid replication in B. thuringiensis. Gene orf21 encoding a 49.8 kDa protein (named Rep26) with a helix-turn-helix motif showed no homology with known replication proteins and gene orf22 encoding a protein of 82.6 kDa showed homology to bacterial PcrA helicase. The replication origin of rep26 minireplicon was proved to be located in the coding region of orf21. Plasmid stability experiments indicated that the recombinant plasmid containing rep26 minireplicon has excellent segregational stability. BLASTP analysis revealed that amino acid sequences of ORF21 and ORF22 were well conserved among Bacillus cereus group strains. The rep26 minireplicon was widely distributed and could be defined as a new typical replicon in the megaplasmids of B. cereus group.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hui Shang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|