1
|
Jin X, Wu P, Li P, Xiong C, Gui M, Huang W. Transcriptome analysis reveals insight into the protective effect of N-acetylcysteine against cadmium toxicity in Ganoderma lucidum (Polyporales: Polyporaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58436-58449. [PMID: 36991205 DOI: 10.1007/s11356-023-26635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Ganoderma lucidum is widely cultivated and used as traditional medicine in China and other Asian countries. As a member of macrofungi, Ganoderma lucidum is also prone to bioaccumulation of cadmium and other heavy metals in a polluted environment, which affects the growth and production of Ganoderma lucidum, as well as human health. N-Acetyl-L-cysteine (NAC) is considered a general antioxidant and free radical scavenger that is involved in the regulation of various stress responses in plants and animals. However, whether NAC could regulate cadmium stress responses in macrofungi, particularly edible fungi, is still unknown. In this work, we found that the exogenous NAC could alleviate Cd-induced growth inhibition and reduce the cadmium accumulation in Ganoderma lucidum. The application of the NAC cloud also inhibit cadmium-induced H2O2 production in the mycelia. By using transcriptome analysis, 2920 and 1046 differentially expressed unigenes were identified in "Cd100 vs CK" and "NAC_Cd100 vs Cd100," respectively. These differential unigenes were classified into a set of functional categories and pathways, which indicated that various biological pathways may play critical roles in the protective effect of NAC against Cd‑induced toxicity in Ganoderma lucidum. Furthermore, it suggested that the ATP-binding cassette transporter, ZIP transporter, heat shock protein, glutathione transferases, and Cytochrome P450 genes contributed to the increased tolerance to cadmium stress after NAC application in Ganoderma lucidum. These results provide new insight into the physiological and molecular response of Ganoderma lucidum to cadmium stress and the protective role of NAC against cadmium toxicity.
Collapse
Affiliation(s)
- Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610061, Chengdu, China.
| |
Collapse
|
2
|
Calabrese EJ, Agathokleous E. Nitric oxide, hormesis and plant biology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161299. [PMID: 36596420 DOI: 10.1016/j.scitotenv.2022.161299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The present paper provides the first integrative assessment of the occurrence of nitric oxide (NO) induced hormetic effects in plant biology. Hormetic dose responses were commonly reported for NO donors on numerous plant species of agricultural and other commercial value. The NO donors were also shown to protect plants from a wide range of chemical (i.e., multiple toxic metals) and physical stressors (i.e., heat, drought) in preconditioning (aka priming) experimental protocols showing hormetic dose responses. Practical approaches for the use of NO donors to enhance plant growth using optimized dose response frameworks were also assessed. Considerable mechanistic findings indicate that NO donors have the capacity to enhance a broad range of adaptive responses, including highly integrated antioxidant activities. The integration of the hormesis concept with NO donors is likely to become a valuable practical general strategy to enhance plant productivity across a wide range of valuable plant species facing environmental pollution and climate changes.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States of America.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
3
|
Zhao C, Bao Z, Feng H, Chen L, Li Q. Nitric oxide enhances resistance of Pleurotus eryngii to cadmium stress by alleviating oxidative damage and regulating of short-chain dehydrogenase/reductase family. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53036-53049. [PMID: 35278180 DOI: 10.1007/s11356-022-19613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The function and mechanism of nitric oxide (NO) in regulating Pleurotus eryngii biological response to cadmium (Cd) stress was evaluated by using anti-oxidation and short-chain dehydrogenase/reductase (SDR) family analysis. The fresh biomass of P. eryngii mycelia sharply decreased after treatment with 50 µM Cd; the lipid peroxidation and H2O2 accumulation in P. eryngii were found responsible for it. Proper exogenous supply of NO (150 µM SNP) alleviated the oxidative damage induced by Cd stress in P. eryngii, which reduced the accumulation of thiobarbituric acid reactive substances (TBARS) and H2O2. The activities of antioxidant enzymes (superoxide dismutase, peroxidase) were significantly increased to deal with Cd stress when treated with SNP (150 µM), and the content of proline was also closely related to NO-mediated reduction of Cd toxicity. Moreover, SDR family members were widely involved in the response to Cd stress, especially PleSCH70 gene was observed for the first time in participating in NO-mediated enhancement of Cd tolerance in P. eryngii. Taken together, this study provides new insights in understanding the tolerance mechanisms of P. eryngii to heavy metal and lays a foundation for molecular breeding of P. eryngii to improve its tolerance to environmental stress.
Collapse
Affiliation(s)
- Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Lanchai Chen
- Key Laboratory of Food Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Shi L, Zhao X, Zhong K, Jia Q, Shen Z, Zou J, Chen Y. Physiological mechanism of the response to Cr(VI) in the aerobic denitrifying ectomycorrhizal fungus Pisolithus sp.1. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128318. [PMID: 35086038 DOI: 10.1016/j.jhazmat.2022.128318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Pisolithus sp. 1 (P sp. 1) is an ectomycorrhizal fungus (EMF) with a strong Cr(VI) tolerance and reduction ability. The noninvasive microttest technique (NMT), real-time quantitative PCR (qRT-PCR), and the three-dimensional excitation-emission matrix (3D-EEM) were used to deeply explore the physiological mechanism of the P sp. 1 response to Cr(VI) and investigate the relationship between Cr(VI) reduction and denitrification in P sp. Cr(VI) induced the strongest elevations in nitrate reductase (NR) activity and NO production in the mycelia after treatment with Cr(VI) for 48 h under aerobic conditions. The NR inhibitor tungstate significantly inhibited Cr(VI) reduction, proton efflux and the expression of the NR gene (niaD) and NiR gene (niiA). In addition, NO was generated via NR-regulated denitrification. Combined treatments with Cr(VI) and the NO scavenger carboxy-PTIO (cPTIO) significantly increased O2-, H2O2 and MDA contents and reduced SDH, CAT, GSH, GR and GSNOR activity. Therefore, the NR-driven aerobic denitrifying process requires protons, and the generated NO reduces the oxidative stress effect of Cr(VI) on mycelia by reducing ROS accumulation and lipid peroxidation, enhancing mycelial and CAT activity, and promoting GSH recycling and regeneration. Psp.1 can also secrete humic acid-like and protein-like substances to combine with Cr(III) in a culture system.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kecheng Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiyuan Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China; The Collaborated Lab. of Plant Molecular Ecology Between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
The Importance of Nitric Oxide as the Molecular Basis of the Hydrogen Gas Fumigation-Induced Alleviation of Cd Stress on Ganoderma lucidum. J Fungi (Basel) 2021; 8:jof8010010. [PMID: 35049950 PMCID: PMC8780922 DOI: 10.3390/jof8010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Whether or not hydrogen gas (H2) can reduce cadmium (Cd) toxicity in Ganoderma lucidum has remained largely unknown. Here, we report that Cd-induced growth inhibition in G. lucidum was significantly alleviated by H2 fumigation or hydrogen-rich water (HRW), evaluated by lower oxidative damage and Cd accumulation. Moreover, the amelioration effects of H2 fumigation were better than of HRW in an optimum concentration of H2 under our experimental conditions. Further results showed that H2-alleviated growth inhibition in G. lucidum was accompanied by increased nitric oxide (NO) level and nitrate reductase (NR) activity under Cd stress. On the other hand, the mitigation effects were reversed after removing endogenous NO with its scavenger cPTIO or inhibiting H2-induced NR activity with sodium tungstate. The role of NO in H2-alleviated growth inhibition under Cd stress was proved to be achieved through a restoration of redox balance, an increase in cysteine and proline contents, and a reduction in Cd accumulation. In summary, these results clearly revealed that NR-dependent NO might be involved in the H2-alleviated Cd toxicity in G. lucidum through rebuilding redox homeostasis, increasing cysteine and proline levels, and reducing Cd accumulation. These findings may open a new window for H2 application in Cd-stressed economically important fungi.
Collapse
|
6
|
|
7
|
Xu L, Guo L, Yu H. Label-Free Comparative Proteomics Analysis Revealed Heat Stress Responsive Mechanism in Hypsizygus marmoreus. Front Microbiol 2021; 11:541967. [PMID: 33469447 PMCID: PMC7813762 DOI: 10.3389/fmicb.2020.541967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Heat stress is an important adverse environmental stress that influences the growth and development of Hypsizygus marmoreus (white var.). However, the molecular basis of heat stress response in H. marmoreus remains poorly understood. In this study, label-free comparative proteomic technique was applied to investigate global protein expression profile of H. marmoreus mycelia under heat stress. Confocal laser scanning microscope observation revealed that mycelia underwent autolysis and apoptosis under heat stress. Autolysis was mediated by upregulating the expression of cell wall degradation enzymes and inhibiting cell wall synthesis enzymes, and apoptosis might be induced by ROS and activation of caspases. TBARS analysis indicated that ROS was accumulated in H. marmoreus mycelia under heat stress. H. marmoreus induced antioxidant defense system by upregulating the expression of catalases, superoxide dismutases and peroxidases to prevent oxidative damage. MAPK cascade was found to be involved in heat stress signal transduction. The stress signal induced a ubiquitous defense response: inducible expression of different kinds of heat shock proteins. Trehalose synthesis enzymes were also upregulated, suggesting the accumulation of stress protector trehalose under heat stress. Besides, upregulated proteasome was identified, which could prevented the accumulation of non-functional misfolding proteins. To satisfy ATP depletion in heat response cellular processes, such as ROS scavenging, and protein folding and synthesis, enzymes involved in energy production (carbon metabolism and ATP synthesis) system were upregulated under heat stress. Taken together, these findings improve our understanding of the molecular mechanisms underlying the response of heat stress in H. marmoreus.
Collapse
Affiliation(s)
- Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Yu H, Li Q, Shen X, Zhang L, Liu J, Tan Q, Li Y, Lv B, Shang X. Transcriptomic Analysis of Two Lentinula edodes Genotypes With Different Cadmium Accumulation Ability. Front Microbiol 2020; 11:558104. [PMID: 33042065 PMCID: PMC7526509 DOI: 10.3389/fmicb.2020.558104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023] Open
Abstract
Lentinula edodes, also known as Xiang'gu, is commonly eaten in cultures around the world. However, L. edodes is particularly susceptible to enrichment with heavy metals, particularly cadmium (Cd), which is toxic to human health. Understanding the molecular mechanism and mining key genes involved in Cd enrichment will facilitate genetic modification of L. edodes strains. Two L. edodes genotypes, Le4625 (with higher Cd enrichment capability) and Le4606 (with lower Cd enrichment capability) were used in this study. The Cd concentrations in the mycelia of the tested genotypes differed significantly after Cd (0.1 mg/L) exposure; and the Cd content in Le4625 (1.390 ± 0.098 mg/kg) was approximately three-fold that in Le4606 (0.440 ± 0.038 mg/kg) after 7 h of Cd exposure. A total of 24,592 transcripts were assessed by RNA-Seq to explore variance in Cd accumulation. Firstly, differentially expressed genes (DEGs) were analyzed separately following Cd exposure. In comparison with Ld4625, Ld4606 showed a greater number of Cd-induced changes in transcription. In Ld4606, DEGs following Cd exposure were associated with transmembrane transport, glutathione transfer and cytochrome P450, indicating that these genes could be involved in Cd resistance in L. edodes. Next, Le4606 and Le4625 were exposed to Cd, after which DEGs were identified to explore genetic factors affecting Cd accumulation. After Cd exposure, DEGs between Le4606 and Le4625 encoded proteins involved in multiple biological pathways, including transporters on the membrane, cell wall modification, oxidative stress response, translation, degradation, and signaling pathways. Cadmium enrichment in cells may activate MAPK signaling and the anti-oxidative stress response, which can subsequently alter signal transduction and the intracellular oxidation/reduction balance. Furthermore, several possible candidate genes involved in the Cd accumulation were identified, including the major facilitator superfamily genes, heat shock proteins, and laccase 11, a multicopper oxidase. This comparison of the transcriptomes of two L. edodes strains with different capacities for Cd accumulation provides valuable insight into the cultivation of mushrooms with less Cd enrichment and also serves as a reference for the construction of engineered strains for environmental pollution control.
Collapse
Affiliation(s)
- Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Qiaozhen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Xiufen Shen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Jianyu Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Yu Li
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Beibei Lv
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai, China
| |
Collapse
|
9
|
Ding X, Liu K, Lu Y, Gong G. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions. Appl Microbiol Biotechnol 2019; 103:3829-3846. [PMID: 30859256 DOI: 10.1007/s00253-019-09705-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Halophilic fungi in hypersaline habitats require multiple cellular responses for high-salinity adaptation. However, the exact mechanisms behind these adaptation processes remain to be slightly known. The current study is aimed at elucidating the morphological, transcriptomic, and metabolomic changes of the halophilic fungus Aspergillus montevidensis ZYD4 under hypersaline conditions. Under these conditions, the fungus promoted conidia formation and suppressed cleistothecium development. Furthermore, the fungus differentially expressed genes (P < 0.0001) that controlled ion transport, amino acid transport and metabolism, soluble sugar accumulation, fatty acid β-oxidation, saturated fatty acid synthesis, electron transfer, and oxidative stress tolerance. Additionally, the hypersalinized mycelia widely accumulated metabolites, including amino acids, soluble sugars, saturated fatty acids, and other carbon- and nitrogen-containing compounds. The addition of metabolites-such as neohesperidin, biuret, aspartic acid, alanine, proline, and ornithine-significantly promoted the growth (P ≤ 0.05) and the morphological adaptations of A. montevidensis ZYD4 grown in hypersaline environments. Our study demonstrated that morphological shifts, ion equilibrium, carbon and nitrogen metabolism for solute accumulation, and energy production are vital to halophilic fungi so that they can build tolerance to high-salinity environments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. .,School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China.
| | - Yuxin Lu
- School of Biological Science and Engineering
- Shaanxi University of Technology, Hanzhong City, 723001, Shaanxi, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
10
|
Li Q, Huang W, Xiong C, Zhao J. Transcriptome analysis reveals the role of nitric oxide in Pleurotus eryngii responses to Cd 2+ stress. CHEMOSPHERE 2018; 201:294-302. [PMID: 29525657 DOI: 10.1016/j.chemosphere.2018.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/12/2018] [Accepted: 03/03/2018] [Indexed: 05/19/2023]
Abstract
Pleurotus eryngii is widely cultivated in China. However, our understanding of its transcriptional response to heavy metal stress and the underlying mechanism of nitric oxide (NO) in enhancing its tolerance to heavy metals is limited. In the present study, RNA-seq was used to generate large transcript sequences from P. eryngii exposed to cadmium chloride (CdCl2) and exogenous NO. A total of 45,833 unigenes were assembled from the P. eryngii transcriptome, of which 32,333 (70.54%) unigenes matched known proteins in the nr database. Transcriptional analysis revealed that putative genes encoding heat shock proteins (HSPs) and genes participating in glycerolipid metabolism and steroid biosynthesis were significantly up-regulated in P. eryngii exposed to 50 μM Cd (P < 0.05). P. eryngii mycelia exposed to extremely high levels of heavy metals showed an increase in biomass when exogenous NO was added to the culture. The collaboration of putative oxidoreductase, dehydrogenase, reductase, transferase genes and transcription factors such as "GTPase activator activity", "transcription factor complex", "ATP binding", "GTP binding", and "enzyme activator activity", which were significantly up-regulated in samples induced by exogenous NO, contributed to the enhancement of P. eryngii tolerance to extremely high levels of heavy metals. The study provides a new insight into the transcriptional response of P. eryngii to extremely high levels of heavy metals and the mechanism of NO in enhancing heavy metal tolerance.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, PR China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
11
|
Gu L, Zheng Y, Lian D, Zhong X, Liu X. Production of triterpenoids from Ganoderma lucidum : Elicitation strategy and signal transduction. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Chen C, Li Q, Wang Q, Lu D, Zhang H, Wang J, Fu R. Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress. Sci Rep 2017; 7:15694. [PMID: 29146915 PMCID: PMC5691203 DOI: 10.1038/s41598-017-15340-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma. Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), "probable stress-induced proteins", and unigenes involved in "D-amino-acid oxidase activity" and "oxidoreductase activity" were significantly up-regulated in G. oregonense subjected to HS (P < 0.05). The significantly up-regulated HSPs, "monooxygenases", "alcohol dehydrogenase", and "FAD/NAD(P)-binding domain-containing proteins" (P < 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense. These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Daihua Lu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Hong Zhang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China. .,Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, China.
| | - Jian Wang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Rongtao Fu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| |
Collapse
|
13
|
Gu L, Zhong X, Lian D, Zheng Y, Wang H, Liu X. Triterpenoid biosynthesis and the transcriptional response elicited by nitric oxide in submerged fermenting Ganoderma lucidum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|