Guo QQ, Li YZ, Shi HB, Yi AY, Xu XL, Wang HH, Deng X, Wu ZB, Cui ZN. Novel mandelic acid derivatives suppress virulence of Ralstonia solanacearum via type III secretion system.
PEST MANAGEMENT SCIENCE 2023;
79:4626-4634. [PMID:
37442803 DOI:
10.1002/ps.7664]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND
Bacterial wilt induced by Ralstonia solanacearum is regarded as one of the most devastating diseases. However, excessive and repeated use of the same bactericides has resulted in development of bacterial resistance. Targeting bacterial virulence factors, such as type III secretion system (T3SS), without inhibiting bacterial growth is a possible assay to discover new antimicrobial agents.
RESULTS
In this work, identifying new T3SS inhibitors, a series of mandelic acid derivatives with 2-mercapto-1,3,4-thiazole moiety was synthesized. One of them, F-24, inhibited the transcription of hrpY gene significantly. The presence of this compound obviously attenuated hypersensitive response (HR) without inhibiting bacterial growth of R. solanacearum. The transcription levels of those typical T3SS genes were reduced to various degrees. The test of the ability of F-24 in protecting plants demonstrated that F-24 protected tomato plants against bacterial wilt without restricting the multiplication of R. solanacearum. The mechanism of this T3SS inhibition is through the PhcR-PhcA-PrhG-HrpB pathway.
CONCULSION
The screened F-24 could inhibit R. solanacearum T3SS and showed better inhibitory activity than previously reported inhibitors without affecting the growth of the strain, and F-24 is a compound with good potential in the control of R. solanacearum. © 2023 Society of Chemical Industry.
Collapse