1
|
Borsodi AK. Taxonomic diversity of extremophilic prokaryotes adapted to special environmental parameters in Hungary: a review. Biol Futur 2024; 75:183-192. [PMID: 38753295 DOI: 10.1007/s42977-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
3
|
Lange-Enyedi NT, Borsodi AK, Németh P, Czuppon G, Kovács I, Leél-Őssy S, Dobosy P, Felföldi T, Demény A, Makk J. Habitat-related variability in the morphological and taxonomic diversity of microbial communities in two Hungarian epigenic karst caves. FEMS Microbiol Ecol 2023; 99:fiad161. [PMID: 38066687 DOI: 10.1093/femsec/fiad161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
The physical and chemical characteristics of the bedrock, along with the geological and hydrological conditions of karst caves may influence the taxonomic and functional diversity of prokaryotes. Most studies so far have focused on microbial communities of caves including only a few samples and have ignored the chemical heterogeneity of different habitat types such as sampling sites, dripping water, carbonate precipitates, cave walls, cave sediment and surface soils connected to the caves. The aim of the present study was to compare the morphology, the composition and physiology of the microbiota in caves with similar environmental parameters (temperature, host rock, elemental and mineral composition of speleothems) but located in different epigenic karst systems. Csodabogyós Cave and Baradla Cave (Hungary) were selected for the analysis of bacterial and archaeal communities using electron microscopy, amplicon sequencing, X-ray diffraction, and mass spectroscopic techniques. The microbial communities belonged to the phyla Pseudomonadota, Acidobacteriota, Nitrospirota and Nitrososphaerota, and they showed site-specific variation in composition and diversity. The results indicate that morphological and physiological adaptations provide survival for microorganisms according to the environment. In epigenic karst caves, prokaryotes are prone to increase their adsorption surface, cooperate in biofilms, and implement chemolithoautotrophic growth with different electron-donors and acceptors available in the microhabitats.
Collapse
Affiliation(s)
- Nóra Tünde Lange-Enyedi
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary
| | - Péter Németh
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
- Research Institute of Biomolecular and Chemical Engineering, Nanolab, University of Pannonia, Egyetem út 10, H-8200 Veszprém, Hungary
| | - György Czuppon
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
| | - Ivett Kovács
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
| | - Szabolcs Leél-Őssy
- Department of Physical and Applied Geology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary
| | - Attila Demény
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
5
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Chen Y, Qiu K, Zhong Z, Zhou T. Influence of Environmental Factors on the Variability of Archaeal Communities in a Karst Wetland. Front Microbiol 2021; 12:675665. [PMID: 34539596 PMCID: PMC8448418 DOI: 10.3389/fmicb.2021.675665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Archaea are ubiquitous and play an important role in elemental cycles in Earth’s biosphere; but little is known about their diversity, distribution, abundance, and impact in karst environments. The present study investigated the effect of environmental factors on the variability of archaeal communities in the sediment of the Huixian karst wetland, the largest karst wetland in South China. Sediment cores were obtained from four sampling sites with different water depths and macrophyte inhabitants in both the winter of 2016 and the summer of 2018. The community analysis was based on PacBio sequencing and quantitative PCR of the archaeal 16S rRNA gene. The results showed that Euryarchaeota (57.4%) and Bathyarchaeota (38.7%) were dominant in all the samples. Methanogenic Methanosarcinales (25.1%) and Methanomicrobiales (13.7%), and methanotrophic archaea ANME-2d (9.0%) were the dominant Euryarchaeota; MCG-11 (16.5%), MCG-6 (9.1%), and MCG-5b (5.5%) were the dominant Bathyarchaeota. The community composition remained stable between summer and winter, and the vertical distributions of the archaeal phyla conformed to two patterns among the four sampling sites. In the winter samples, the archaeal 16S rRNA gene abundance was approximately 1.0E+10 copies/g of wet sediment and the Shannon index was 7.3±5, which were significantly higher than in the summer samples and in other karst environments. A correlation analysis showed that the moisture content and pH were the factors that mostly affected the archaeal communities. The prevalence of nitrate in the summer may be a key factor causing a significant decrease in archaeal abundance and diversity. Two features specific to karst environments, calcium-richness and weak alkalescence of the water supplies, may benefit the prevalence of bathyarchaeotal subgroups MCG-11, MCG-5b, and MCG-6. These results suggest that in karst wetlands, most of the archaea belong to clades that have significant roles in carbon turnover; their composition remains stable, but their abundance and diversity vary significantly from season to season.
Collapse
Affiliation(s)
- Ying Chen
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Kairui Qiu
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Ziyuan Zhong
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Tao Zhou
- School of Biotechnology, Guilin Medical University, Guilin, China
| |
Collapse
|
7
|
Procaryotic Diversity and Hydrogenotrophic Methanogenesis in an Alkaline Spring (La Crouen, New Caledonia). Microorganisms 2021; 9:microorganisms9071360. [PMID: 34201651 PMCID: PMC8307142 DOI: 10.3390/microorganisms9071360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.
Collapse
|
8
|
Lv J, Niu Y, Yuan R, Wang S. Different Responses of Bacterial and Archaeal Communities in River Sediments to Water Diversion and Seasonal Changes. Microorganisms 2021; 9:microorganisms9040782. [PMID: 33917984 PMCID: PMC8068392 DOI: 10.3390/microorganisms9040782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, different responses of archaea and bacteria to environmental changes have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl- and Na+ in water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the composition of bacteria and archaea in sediments was determined in winter and summer, respectively. Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora increased after water diversion. The abundance and diversity of bacterial communities in river sediments were more sensitive to anthropogenic and naturally induced environmental changes than that of archaeal communities. Bacterial communities showed greater resistance than archaeal communities under long-term external disturbances, such as seasonal changes, because of rich species composition and complex community structure. Archaea were more stable than bacteria, especially under short-term drastic environmental disturbances, such as water transfer, due to their insensitivity to environmental changes. These results have important implications for understanding the responses of bacterial and archaeal communities to environmental changes in river ecosystems affected by water diversion.
Collapse
Affiliation(s)
- Jiali Lv
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yangdan Niu
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
| | - Ruiqiang Yuan
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Correspondence:
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
| |
Collapse
|
9
|
Anda D, Szabó A, Kovács-Bodor P, Makk J, Felföldi T, Ács É, Mádl-Szőnyi J, Borsodi AK. In situ modelling of biofilm formation in a hydrothermal spring cave. Sci Rep 2020; 10:21733. [PMID: 33303927 PMCID: PMC7729855 DOI: 10.1038/s41598-020-78759-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
Attachment of microorganisms to natural or artificial surfaces and the development of biofilms are complex processes which can be influenced by several factors. Nevertheless, our knowledge on biofilm formation in karstic environment is quite incomplete. The present study aimed to examine biofilm development for a year under controlled conditions in quasi-stagnant water of a hydrothermal spring cave located in the Buda Thermal Karst System (Hungary). Using a model system, we investigated how the structure of the biofilm is formed from the water and also how the growth rate of biofilm development takes place in this environment. Besides scanning electron microscopy, next-generation DNA sequencing was used to reveal the characteristic taxa and major shifts in the composition of the bacterial communities. Dynamic temporal changes were observed in the structure of bacterial communities. Bacterial richness and diversity increased during the biofilm formation, and 9-12 weeks were needed for the maturation. Increasing EPS production was also observed from the 9-12 weeks. The biofilm was different from the water that filled the cave pool, in terms of the taxonomic composition and metabolic potential of microorganisms. In these karstic environments, the formation of mature biofilm appears to take place relatively quickly, in a few months.
Collapse
Affiliation(s)
- Dóra Anda
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary.
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Petra Kovács-Bodor
- Department of Geology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Éva Ács
- Danube Research Institute, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.,Faculty of Water Sciences, National University of Public Service, Bajcsy-Zsilinszky utca, 12-14, 6500, Baja, Hungary
| | - Judit Mádl-Szőnyi
- Department of Geology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary. .,Danube Research Institute, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
| |
Collapse
|
10
|
Enyedi NT, Anda D, Borsodi AK, Szabó A, Pál SE, Óvári M, Márialigeti K, Kovács-Bodor P, Mádl-Szőnyi J, Makk J. Radioactive environment adapted bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest, Hungary). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:8-17. [PMID: 30844681 DOI: 10.1016/j.jenvrad.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
The thermal waters of Gellért Hill discharge area of the Buda Thermal Karst System (Hungary) are characterized by high (up to 1000 Bq/L) 222Rn-activity due to the radium-accumulating biogeochemical layers. Samples were taken from these ferruginous and calcareous layers developed on spring cave walls and water surface. Accumulation of potentially toxic metals (e.g. As, Hg, Pb, Sn, Sr, Zn) in the dense extracellular polymeric substance containing bacterial cells and remains was detected by inductively coupled plasma mass spectrometry. The comparison of bacterial phylogenetic diversity of the biofilm samples was performed by high throughput next generation sequencing (NGS). The analysis showed similar sets of mainly unidentified taxa of phyla Chloroflexi, Nitrospirae, Proteobacteria, Planctomycetes; however, large differences were found in their abundance. Cultivation-based method complemented with irradiation assay was performed using 5, 10 and 15 kGy doses of gamma-rays from a 60Co-source to reveal the extreme radiation-resistant bacteria. The phyla Actinobacteria, Firmicutes, Proteobacteria (classes Alpha- Beta- and Gammaproteobacteria), Bacteriodetes and Deinococcus-Thermus were represented among the 452 bacterial strains. The applied irradiation treatments promoted the isolation of 100 different species, involving candidate novel species, as well. The vast majority of the isolates belonged to bacterial taxa previously unknown as radiation-resistant microorganisms. Members of the genera Paracoccus, Marmoricola, Dermacoccus and Kytococcus were identified from the 15 kGy dose irradiated samples. The close relatives of several known radiation-tolerant bacteria were also detected from the biofilm samples, alongside with bacteria capable of detoxification by metal accumulation, adsorption and precipitation in the form of calcium-carbonate which possibly maintain the viability of the habitat. The results suggest the establishment of a unique, extremophilic microbiota in the studied hydrothermal spring caves.
Collapse
Affiliation(s)
- Nóra Tünde Enyedi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Dóra Anda
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary; Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29, H-1113, Budapest, Hungary.
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary; Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29, H-1113, Budapest, Hungary.
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Sára Eszter Pál
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Mihály Óvári
- Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29, H-1113, Budapest, Hungary; Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány P. sétány 1/A, H-1117, Budapest, Hungary.
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Petra Kovács-Bodor
- Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Judit Mádl-Szőnyi
- Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Judit Makk
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|