1
|
Zhao X, Zhang Y, Ju M, Yang Y, Liu H, Qin X, Xu Q, Hao M. RamA upregulates the ATP-binding cassette transporter mlaFEDCB to mediate resistance to tetracycline-class antibiotics and the stability of membranes in Klebsiella pneumoniae. Microbiol Spectr 2025; 13:e0172824. [PMID: 39745369 DOI: 10.1128/spectrum.01728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
RamA is an intrinsic regulator in Klebsiella pneumoniae, belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of ramA resulted in a fivefold decrease in the transcriptional levels of the mlaFEDCB operon. After complementation with ramA, the transcriptional levels were comparable to those of wild-type strain. Furthermore, an electrophoretic mobility shift assay showed that RamA could bind to the promoter region of mlaEFDCB operon, which confirmed RamA is an activator of mlaEFDCB operon. The mlaEFDCB operon could mildly mediate resistance to the tetracycline family of antibiotics under RamA regulation. The MIC (minimum inhibitory concentration) of tigecycline decreased fourfold, and the MIC of doxycycline, minocycline, and eravacycline decreased twofold after mlaE-knockout. The ramA- and mlaE-knockout strains exhibited greater sensitivity to sodium dodecyl sulfate (SDS)-EDTA than the wild-type. Growth of ΔramA cells was severely compromised in 0.25/0.5% SDS and 0.55 mM EDTA, and this sensitivity was restored by complementation with ramA and mlaE. This study demonstrates that RamA can directly regulate the malEFEDCB operon, thereby mediating resistance to tetracycline-class antibiotics, contributing to the stability of bacterial membranes in K. pneumoniae. We identified a novel signal pathway in which RamA mediates multidrug resistance of K. pneumoniae, leading to new ideas for the development of novel antimicrobial therapeutics, therefore deserving further comprehensive study. IMPORTANCE Multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae have emerged as significant global health concerns resulting in high mortality rates. Although previous research has investigated the maintenance of lipid asymmetry (Mla) pathway, the extent to which it mediates antimicrobial resistance in K. pneumoniae and the underlying upstream regulatory mechanisms remain unclear. In this study, we sought to determine at the molecular level how the AraC-type global regulator RamA directly regulates mlaFEDCB, which mediates resistance to tetracycline-class antibiotics and the stability of bacterial membranes in K. pneumoniae.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
- Institute of Microbes and Infections, Huashan Hospital, Fudan University, Shanghai, China
| | - Yixin Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Mohan Ju
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Haoqi Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
- Institute of Microbes and Infections, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Min Hao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| |
Collapse
|
2
|
Morales BGDV, Evaristo JAM, Oliveira GARDE, Garay AFG, Diaz JJAR, Arruda A, Pereira SS, Zanchi FB. Expression and purification of active shikimate dehydrogenase from Plasmodium falciparum. AN ACAD BRAS CIENC 2024; 96:e20230382. [PMID: 38422345 DOI: 10.1590/0001-3765202420230382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/02/2023] [Indexed: 03/02/2024] Open
Abstract
Plasmodium falciparum is known to cause severe malaria, current treatment consists in artemisinin-based combination therapy, but resistance can lead to treatment failure. Knowledge concerning P. falciparum essential proteins can be used for searching new antimalarials, among these a potential candidate is shikimate dehydrogenase (SDH), an enzyme part of the shikimate pathway which is responsible for producing endogenous aromatic amino acids. SDH from P. falciparum (PfSDH) is unexplored by the scientific community, therefore, this study aims to establish the first protocol for active PfSDH expression. Putative PfSDH nucleotide sequence was used to construct an optimized expression vector pET28a+PfSDH inserted in E. coli BL21(DE3). As a result, optimal expression conditions were acquired by varying IPTG and temperature through time. Western Blot analysis was applied to verify appropriate PfSDH expression, solubilization and purification started with lysis followed by two-steps IMAC purification. Enzyme activity was measured spectrophotometrically by NADPH oxidation, optimal PfSDH expression occur at 0.1 mM IPTG for 48 hours growing at 37 °C and shaking at 200 rpm, recombinant PfSDH obtained after purification was soluble, pure and its physiological catalysis was confirmed. Thus, this study describes the first protocol for heterologous expression of PfSDH in soluble and active form.
Collapse
Affiliation(s)
- Bruno G Dalla Vecchia Morales
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Federal University of Rondonia (UNIR), BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- São Lucas University Center (UniSL), Alexandre Guimarães Street, 1927, Areal, 76804-373 Porto Velho, RO, Brazil
| | - Joseph Albert M Evaristo
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
| | - George A R DE Oliveira
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Oswaldo Cruz Institute (IOC), Brasil Avenue 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Ana Fidelina G Garay
- Centro para el Desarrollo de la Investigación Científica (CEDIC), P975+F58, Manduvira, Asuncion, Paraguay
| | - Jorge Javier A R Diaz
- Centro para el Desarrollo de la Investigación Científica (CEDIC), P975+F58, Manduvira, Asuncion, Paraguay
| | - Andrelisse Arruda
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Antibodies Engineering, Beira Street, 7671, Lagoa, 76812-245 Porto Velho, RO, Brazil
- Oswaldo Cruz Foundation Brasília (FIOCRUZ BRASÍLIA), L3 North Avenue, Gleba A, 70904-130 Brasília, DF, Brazil
| | - Soraya S Pereira
- Federal University of Rondonia (UNIR), BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Antibodies Engineering, Beira Street, 7671, Lagoa, 76812-245 Porto Velho, RO, Brazil
| | - Fernando B Zanchi
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Federal University of Rondonia (UNIR), BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Oswaldo Cruz Institute (IOC), Brasil Avenue 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Liu K, Liu Y, Li X, Zhang X, Xue Z, Zhao M. Efficient production of α-ketoglutaric acid using an economical double-strain cultivation and catalysis system. Appl Microbiol Biotechnol 2023; 107:6497-6506. [PMID: 37682299 DOI: 10.1007/s00253-023-12757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The whole-cell catalysis strategy of alpha-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) using recombinant Escherichia coli, in which L-glutamate oxidase (LGox) was over-expressed, has replaced the traditional chemical synthesis strategy. However, large amounts of toxic by-product, H2O2, should be eliminated through co-expressing catalase (Cat), thus severely increasing burden in cells. To efficiently and economically produce α-KG, here, the genes SpLGox (from Streptomyces platensis NTU3304) and SlCat (from Streptomyces lividans TK24) were inserted into the low-dosage-IPTG (Isopropyl β-D-Thiogalactoside) inducible expression system, constructed in our previous work, in E. coli, respectively. Besides, a double-strain catalysis system was established and optimized to produce α-KG, and the productivity of α-KG was increased 97% compared with that through single strain catalysis. Finally, a double-strain cultivation strategy was designed and employed to simplify the scale-up fermentation. Using the optimized whole-cell biocatalyst conditions (pH 7.0, 35 °C), majority of the L-glutamic acid was transformed into α-KG and the titer reached 95.4 g/L after 6 h with the highest productivity at present. Therefore, this strategy may efficiently and cost-effectively produce α-KG, enhancing its potential for industrial applications. KEY POINTS: • SpLGox and SlCat were over-expressed to catalyze L-Glu to α-KG and eliminate by-product H2O2, respectively. • Double-strain cultivation and catalysis system can efficiently and cost-effectively produce α-KG from L-Glu.
Collapse
Affiliation(s)
- Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiangfei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiushan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhenglian Xue
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| |
Collapse
|
4
|
Zhou M, Chen J, Meng K, Zhang Y, Zhang M, Lu P, Feng Y, Huang M, Dong Q, Li X, Tian H. Production of bioactive recombinant human fibroblast growth factor 12 using a new transient expression vector in E. coli and its neuroprotective effects. Appl Microbiol Biotechnol 2021; 105:5419-5431. [PMID: 34244814 DOI: 10.1007/s00253-021-11430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, an increasing number of studies have shown that fibroblast growth factor 12 (FGF12) plays important roles in regulating neural development and function. Importantly, changes of FGF12 expression are thought to be related to the pathophysiology of many neurological diseases. However, little research has been performed to explore the protective effect of FGF12 on nerve damage. This study aims to explore its neuroprotective effects using our recombinant humanized FGF12 (rhFGF12). The hFGF12 gene was cloned and ligated into an expression vector to construct a recombinant plasmid pET-3a-hFGF12. Single colonies were screened to obtain high expression engineering strains, and fermentation and purification protocols for rhFGF12 were designed and optimized. The biological activities and related mechanisms of rhFGF12 were investigated by MTT assay using NIH3T3 and PC12 cell lines. The in vitro neurotoxicity model of H2O2-induced oxidative injury in PC12 cells was established to explore the protective effects of rhFGF12. The results indicate that the beneficial effects of rhFGF12 were most likely achieved by promoting cell proliferation and reducing apoptosis. Moreover, a transgenic zebrafish (islet) with strong GFP fluorescence in the motor neurons of the hindbrain was used to establish a central injury model caused by mycophenolate mofetil (MMF). The results suggested that rhFGF12 could ameliorate central injury induced by MMF in zebrafish. In conclusion, we have established an efficient method to express and purify active rhFGF12 using an Escherichia coli expression system. Besides, rhFGF12 plays a protective effect of on nerve damage, and it provides a promising therapeutic approach for nerve injury. KEY POINTS: • Effective expression and purification of bioactive rhFGF12 protein in E. coli. • ERK/MAPK pathway is involved in rhFGF12-stimulated proliferation on PC12 cells. • The rhFGF12 has the neuroprotective effects by inhibiting apoptosis.
Collapse
Affiliation(s)
- Mi Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kuikui Meng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meng Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Panyu Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongjun Feng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
5
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
6
|
RamA upregulates multidrug resistance efflux pumps AcrAB and OqxAB in Klebsiella pneumoniae. Int J Antimicrob Agents 2020; 57:106251. [PMID: 33259915 DOI: 10.1016/j.ijantimicag.2020.106251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023]
Abstract
Overexpression of the acrAB genes regulated by RamA and overexpression of oqxAB regulated by RarA have been reported to mediate multidrug resistance in Gram-negative bacilli. In this study, regulation of acrAB and oqxAB simultaneously by the global regulator RamA was investigated in a multidrug-resistant Klebsiella pneumoniae clinical isolate (KP22) resistant to tigecycline and other antimicrobials. KP22 overexpressed ramA due to a ramR mutation, along with an unexpected overexpression of oqxB. Deletion of ramA led to a 16-fold decrease in the tigecycline minimum inhibitory concentration (MIC) with decreased expression of acrB (4.3-fold) and oqxB (7.1-fold) compared with KP22. Transcomplementation of KP22ΔramA with the wild-type ramA gene restored the tigecycline MIC and upregulation of the acrB (3.9-fold) and oqxB (4.0-fold) genes compared with KP22. When oqxB was knocked out, MICs of ciprofloxacin, olaquindox and nitrofurantoin were considerably decreased, while deletion of acrB led to MIC decreases for cefepime, piperacillin/tazobactam and tigecycline in addition to the above three antimicrobials. The results of electrophoretic mobility shift assay showed that RamA could bind the promoter regions of both the acrAB and oqxAB operons. This study demonstrates for the first time that RamA can directly regulate multidrug resistance efflux pumps AcrAB and OqxAB in K. pneumoniae.
Collapse
|
7
|
Yu W, Ma J, Chen X, Tan Y, Chen P, Zhu X, Liu L. Expression and purification of recombinant Lactobacillus casei bacteriocin and analysis of its antibacterial activity. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1749134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoqian Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| | - Ying Tan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| | - Pin Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| | - Xumeng Zhu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|