1
|
Martínez-Soto D, García-Ortega LF, Guzmán-Rincón A, Ortiz-Castellanos L, León-Ramírez CG. Conservation of the Pal/Rim Pathway in Ustilaginomycetes. Curr Microbiol 2024; 81:173. [PMID: 38750329 DOI: 10.1007/s00284-024-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024]
Abstract
The ability of fungi to effectively sense and internalize signals related to extracellular changing environments is essential for survival. This adaptability is particularly important for fungal pathogens of humans and plants that must sense and respond to drastic environmental changes when colonizing their hosts. One of the most important physicochemical factors affecting fungal growth and development is the pH. Ascomycota fungal species possess mechanisms such as the Pal/Rim pathway for external pH sensing and adaptation. However, the conservation of this mechanism in other fungi, such as Ustilaginomycetes is still little studied. To overcome this knowledge gap, we used a comparative genomic approach to explore the conservation of the Pal/Rim pathway in the 13 best sequenced and annotated Ustilaginomycetes. Our findings reveal that the Rim proteins and the Endosomal Sorting Complex Required for Transport (ESCRT) proteins are conserved in Ustilaginomycetes. They conserve the canonical domains present in Pal/Rim and ESCRT proteins of Ascomycota. This study sheds light on the molecular mechanisms used by these fungi for responding to extracellular stresses such as the pH, and open the door to further experimentations for understanding the molecular bases of the signaling in Ustilaginomycetes.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada 3918, Zona Playitas, 22860, Ensenada, BC, Mexico.
| | - Luis F García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Andrés Guzmán-Rincón
- Bioingenieria, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Zona Playitas, 22860, Ensenada, BC, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Claudia G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
2
|
Huang M, Ma Z, Zhou X. Comparative Genomic Data Provide New Insight on the Evolution of Pathogenicity in Sporothrix Species. Front Microbiol 2020; 11:565439. [PMID: 33117312 PMCID: PMC7561385 DOI: 10.3389/fmicb.2020.565439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Sporothrix species are commonly isolated from environmental and clinical samples. As common causes of zoonotic mycosis, Sporothrix species may result in localized or disseminated infections, posing considerable threat to animal and human health. However, the pathogenic profiles of different Sporothrix species varied, in virulence, geographic location and host ranges, which have yet to be explored. Analysing the genomes of Sporothrix species are useful for understanding their pathogenicity. In this study, we analyzed the whole genome of 12 Sporothrix species and six S. globosa isolates from different clinical samples in China. By combining comparative analyses with Kyoto Encyclopedia of Genes and Genomes (KEGG), Carbohydrate-Active enZymes (CAZy), antiSMASH, Pfam, and PHI annotations, Sporothrix species showed exuberant primary and secondary metabolism processes. The genome sizes of four main clinical species, i.e., S. brasiliensis, S. schenckii, S. globosa, and S. luriei were significantly smaller than other environmental and clinical Sporothrix species. The contracted genes included mostly CAZymes and peptidases genes that were usually associated with the decay of plants, as well as the genes that were associated with the loss of pathogenicity and the reduced virulence. Our results could, to some extent, explain a habitat shift of Sporothrix species from a saprobic life in plant materials to a pathogenic life in mammals and the increased pathogenicity during the evolution. Gene clusters of melanin and clavaric acid were identified in this study, which improved our understanding on their pathogenicity and possible antitumor effects. Moreover, our analyses revealed no significant genomic variations among different clinical isolates of S. globosa from different regions in China.
Collapse
Affiliation(s)
- Mengya Huang
- Department of Dermatology and Cosmetology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ziying Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijin, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Martínez-Soto D, Ortiz-Castellanos L, Robledo-Briones M, León-Ramírez CG. Molecular Mechanisms Involved in the Multicellular Growth of Ustilaginomycetes. Microorganisms 2020; 8:E1072. [PMID: 32708448 PMCID: PMC7409079 DOI: 10.3390/microorganisms8071072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Multicellularity is defined as the developmental process by which unicellular organisms became pluricellular during the evolution of complex organisms on Earth. This process requires the convergence of genetic, ecological, and environmental factors. In fungi, mycelial and pseudomycelium growth, snowflake phenotype (where daughter cells remain attached to their stem cells after mitosis), and fruiting bodies have been described as models of multicellular structures. Ustilaginomycetes are Basidiomycota fungi, many of which are pathogens of economically important plant species. These fungi usually grow unicellularly as yeasts (sporidia), but also as simple multicellular forms, such as pseudomycelium, multicellular clusters, or mycelium during plant infection and under different environmental conditions: Nitrogen starvation, nutrient starvation, acid culture media, or with fatty acids as a carbon source. Even under specific conditions, Ustilago maydis can form basidiocarps or fruiting bodies that are complex multicellular structures. These fungi conserve an important set of genes and molecular mechanisms involved in their multicellular growth. In this review, we will discuss in-depth the signaling pathways, epigenetic regulation, required polyamines, cell wall synthesis/degradation, polarized cell growth, and other cellular-genetic processes involved in the different types of Ustilaginomycetes multicellular growth. Finally, considering their short life cycle, easy handling in the laboratory and great morphological plasticity, Ustilaginomycetes can be considered as model organisms for studying fungal multicellularity.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Los Reyes, Los Reyes 60300, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| | - Mariana Robledo-Briones
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain;
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| |
Collapse
|
4
|
Cervantes-Montelongo JA, Silva-Martínez GA, Pliego-Arreaga R, Guevara-Olvera L, Ruiz-Herrera J. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis. Arch Microbiol 2020; 202:2221-2232. [PMID: 32529509 DOI: 10.1007/s00203-020-01936-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
We report the characterization of the gene UMAG_00031 from Ustilago maydis, previously identified as upregulated at alkaline pH. This gene is located on chromosome 1 and contains an ORF of 1539 bp that encodes a putative protein of 512 amino acids with an MW of 54.8 kDa. The protein is predicted to contain seven transmembrane domains (TMDs) and a signal peptide suggesting that is located in the cell membrane. Null ΔUMAG_00031 mutants were constructed, and their phenotype was analyzed. The mutant displayed a pleiotropic phenotype suggesting its participation in processes of alkaline pH adaptation independent of the Pal/Rim pathway. Also, it was involved in the dimorphic process induced by fatty acids. These results indicate that the protein encoded by the UMAG_00031 gene possibly functions as a receptor of different signals in the cell membrane of the fungus.
Collapse
Affiliation(s)
- Juan Antonio Cervantes-Montelongo
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Ave. Tecnológico y Antonio García Cubas S/N, col. FOVISSSTE, 38010, Celaya, Gto, Mexico
| | | | - Raquel Pliego-Arreaga
- Escuela de Medicina de La Universidad de Celaya, Carretera Panamericana, Rancho Pinto km 269, 38080, Celaya, Gto, Mexico
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Ave. Tecnológico y Antonio García Cubas S/N, col. FOVISSSTE, 38010, Celaya, Gto, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 629, 36500, Irapuato, Gto, Mexico.
| |
Collapse
|
5
|
Saville BJ, Perlin MH. "When worlds collide and smuts converge": Tales from the 1st International Ustilago/Smut Convergence. Fungal Genet Biol 2019; 132:103260. [PMID: 31394176 DOI: 10.1016/j.fgb.2019.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/15/2022]
Abstract
From the evening of March 12, till dinner on March 13, 2017, the 1st International Ustilago/Smut Convergence took place as a workshop prior to the start of the 29th Fungal Genetics Conference, in Asilomar, California. The overall goals of the meeting were to expand the smut model systems being used and to expand participation by the next generations of scientists with these fungi. These goals were implemented through a combination of emphasis on student and post-doc presentations, mentoring of such individuals, and active recruitment of participation by groups under-represented at such meetings in recent years in the US, especially those from Latin America and other Spanish-speaking countries. Work was presented at the first workshop on U. maydis, Sporosorium reilianum, Microbotryum violaceum, U. esculenta, and Thecaphora thlaspeos. Students and post-doctoral researchers were encouraged to present their "just-in-time," as-yet-unpublished data, in a safe environment, with the understanding of those attending the meeting that this early access was a privilege not to be taken advantage of. The result was lively and constructive discussion, including a variety of presentations by these young scientists on putative and characterized smut effector proteins, clearly at the forefront of such research, even considering the advances presented later that week at the Fungal Genetics Conference. This review also briefly compares the first meeting with the events of the recent 2nd International Ustilago/Smut Convergence (March 11-12, 2019), which ended with a tribute to Prof. Dr. Regine Kahmann, in honor of her career, and especially for her contributions to the field of smut genetics.
Collapse
Affiliation(s)
- Barry J Saville
- Forensic Science Program, Trent University, Peterborough, Canada
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| |
Collapse
|