1
|
Shah H, Zhang C, Khan S, Patil PJ, Li W, Xu Y, Ali A, Liang E, Li X. Comprehensive Insights into Microbial Lipases: Unveiling Structural Dynamics, Catalytic Mechanism, and Versatile Applications. Curr Microbiol 2024; 81:394. [PMID: 39375258 DOI: 10.1007/s00284-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Microbial lipases (MLs) are pivotal biocatalysts in lipid biotechnology due to their diverse enzymatic properties and substrate specificity, garnering significant research attention. This comprehensive review explores the significance of MLs in biocatalysis, providing insights into their structure, catalytic domain, and oxyanion hole. The catalytic mechanism is elucidated, highlighting the molecular processes driving their efficiency. The review delves into ML sources, spanning fungi, yeasts, bacteria, and actinomycetes, followed by a discussion on classification and characterization. Emphasizing the scattered findings in the literature, the paper consolidates the latest information on ML applications across various industries, from food and pharmaceuticals to biofuel production and the paper and pulp industry. The review captures the dynamic landscape of ML research, emphasizing their structure-function relationships and practical implications across diverse sectors.
Collapse
Affiliation(s)
- Haroon Shah
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Chengnan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
| | - Sohail Khan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Prasanna Jagannath Patil
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Akhtiar Ali
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Erhong Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China.
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China.
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China.
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China.
| |
Collapse
|
2
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Choudhary P, Bhowmik A, Verma S, Srivastava S, Chakdar H, Saxena AK. Multi-substrate sequential optimization, characterization and immobilization of lipase produced by Pseudomonas plecoglossicida S7. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4555-4569. [PMID: 35974269 DOI: 10.1007/s11356-022-22098-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Lipases are important biocatalysts having the third largest global demand after amylases and proteases. In the present study, we have screened 56 potential lipolytic Pseudomonas strains for their lipolytic activity. Pseudomonas plecoglossicida S7 showed highest lipase production with specific activity of 70 U/mg. Statistical optimizations using Plackett Burman design and response surface methodology evaluated fourteen different media supplements including various oilcakes, carbon sources, nitrogen sources, and metal ions which led to a 2.23-fold (156.23 U/mg) increase in lipase activity. Further, inoculum size optimization increased the overall lipase activity by 2.81-folds. The lipase was active over a range of 30-50° C with a pH range (7-10). The enzyme was tolerant to various solvents like chloroform, methanol, 1-butanol, acetonitrile, and dichloromethane and retained 60% of its activity in the presence of sodium dodecyl sulfate (0.5% w/v). The enzyme was immobilized onto Ca-alginate beads which increased thermal (20-60 °C) and pH stability (5-10). The purified enzyme could successfully remove sesame oil stains and degraded upto 25.2% of diesel contaminated soil. These properties of the lipase will help in its applicability in detergent formulations, wastewater treatments, and biodegradation of oil in the environment.
Collapse
Affiliation(s)
- Prassan Choudhary
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226028, India
| | - Arpan Bhowmik
- ICAR-Indian Agricultural Statistics Research Institute (IASRI), New Delhi, 110012, India
| | - Shaloo Verma
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226028, India
| | - Hillol Chakdar
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India.
| | - Anil Kumar Saxena
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| |
Collapse
|
4
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
6
|
Dutta B, Nigam VK, Panja AS, Shrivastava S, Bandopadhyay R. Statistical optimisation of esterase from Salinicoccus roseus strain RF1H and its potential application in synthetic dye decolorisation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2010718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bhramar Dutta
- Department of Botany, The University of Burdwan, Bardhaman, India
| | - Vinod Kumar Nigam
- Department of Bio-Engineering, Birla Institute of Technology, Ranchi, India
| | - Anindya Sundar Panja
- Post-Graduate Department of Biotechnology and Biochemistry, Oriental Institute of Science and Technology, Burdwan, India
| | | | | |
Collapse
|
10
|
Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Ahmad MA. Biosynthesis of butyl esters from crude oil of palm fruit and kernel using halophilic lipase secretion by Marinobacter litoralis SW-45. 3 Biotech 2019; 9:314. [PMID: 31406636 DOI: 10.1007/s13205-019-1845-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
Initially, a new moderate halophilic strain was locally isolated from seawater. The partial 16S rRNA sequence analysis positioned the organism in Marinobacter genus and was named 'Marinobacter litoralis SW-45'. This study further demonstrates successful utilization of the halophilic M. litoralis SW-45 lipase (MLL) for butyl ester synthesis from crude palm fruit oil (CPO) and kernel oil (CPKO) in heptane and solvent-free system, respectively, using hydroesterification. Hydrolysis and esterification of enzymatic [Thermomyces lanuginosus lipase (TLL)] hydrolysis of CPO and CPKO to free fatty acids (FFA) followed by MLL-catalytic esterification of the concentrated FFAs with butanol (acyl acceptor) to synthesize butyl esters were performed. A one-factor-at-a-time technique (OFAT) was used to study the influence of physicochemical factors on the esterification reaction. Under optimal esterification conditions of 40 and 45 °C, 150 and 230 rpm, 50% (v/v) biocatalyst concentration, 1:1 and 5:1 butanol:FFA, 9% and 15% (w/v) NaCl, 60 and 15 min reaction time for CPO- and CPKO-derived FFA esterification system, maximum ester conversion of 62.2% and 69.1%, respectively, was attained. Gas chromatography (GC) analysis confirmed the products formed as butyl esters. These results showed halophilic lipase has promising potential to be used for biosynthesis of butyl esters in oleochemical industry.
Collapse
|