1
|
Zhou H, Cai Y, Long M, Zheng N, Zhang Z, You C, Hussain A, Xia X. Computer-Aided Reconstruction and Application of Bacillus halodurans S7 Xylanase with Heat and Alkali Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1213-1227. [PMID: 38183306 DOI: 10.1021/acs.jafc.3c08221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
β-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (βT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yongchao Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Cuiping You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Asif Hussain
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, China
| |
Collapse
|
2
|
Chen Z, Shen Y, Wang R, Li S, Jia Y. Expression and characterization of a protease-resistant β-d-fructofuranosidase BbFFase9 gene suitable for preparing invert sugars from soybean meal. Heliyon 2023; 9:e19889. [PMID: 37809427 PMCID: PMC10559283 DOI: 10.1016/j.heliyon.2023.e19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
A novel gene (BbFFase9), with an ORF of 1557 bp that encodes β-d-fructofuranosidase from Bifidobacteriaceae bacterium, was cloned and expressed in Escherichia coli. The recombinant protein (BbFFase9) was successfully purified and showed a single band with a molecular mass of 66.2 kDa. This was confirmed as a β-d-fructofuranosidase and exhibited a high specific activity of 209.2 U/mg. Although BbFFase9 was a soluble protein, it exhibited excellent tolerance to proteases such as pepsin, trypsin, acidic protease, neutral protease and Flavourzyme®, indicating its potential applicability in different fields. BbFFase9 exhibited typical invertase activity, and highly catalyzed the hydrolysis of the α1↔2β glycosidic linkage in molecules containing fructosyl moieties but with no detectable fructosyltransferase activity. It was optimally active at pH 6.5 and 50 °C and stable between pH 6.0 and 9.0 at a temperature of up to 45 °C for 30 min BbFFase9 could also effectively hydrolyze galacto-oligosaccharides, which are a flatulence factor in soybean meal, thus releasing new types of product such as melibiose and mannotriose, or degrading them into invert sugars, the sweeter fructose and glucose. This study is the first to report the application of this type of β-d-fructofuranosidase.
Collapse
Affiliation(s)
- Zhou Chen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yimei Shen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Run Wang
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Siting Li
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingmin Jia
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
3
|
Chen Z, Shen Y, Xu J. A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing. Foods 2023; 12:foods12081704. [PMID: 37107499 PMCID: PMC10137638 DOI: 10.3390/foods12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
A chemical gene synthesis strategy was developed in order to obtain β-D-fructofuranosidase, and a novel gene, AlFFase3, was characterized from Aspergillus luchuensis and expressed in Escherichia coli. The recombinant protein was purified, showing a molecular mass of 68.0 kDa on SDS-PAGE, and displaying a specific activity towards sucrose of up to 771.2 U mg-1, indicating its exceptional enzymatic capacity. AlFFase3 exhibited stability between pH 5.5 and 7.5, with maximal activity at pH 6.5 and 40 °C. Impressively, AlFFase3, as a soluble protein, was resistant to digestion by various common proteases, including Flavourzyme, acidic protease, pepsin, neutral protease, Proteinase K, alkaline proteinase, and trypsin. AlFFase3 also demonstrated significant transfructosylation activity, with a yield of various fructooligosaccharides up to 67%, higher than almost all other reports. Furthermore, we demonstrated that the addition of AlFFase3 enhanced the growth of probiotics in yogurt, thereby increasing its nutritional value. AlFFase3 also improved the formation of yogurt gel, reducing the gel formation time and lowering the elasticity while increasing its viscosity, thereby improving the palatability of yogurt and reducing production costs.
Collapse
Affiliation(s)
- Zhou Chen
- Beijing Technology and Business University, Beijing 100048, China
| | - Yimei Shen
- Beijing Technology and Business University, Beijing 100048, China
| | - Jiangqi Xu
- Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Chen Z, Shen Y, Xu J. Efficient Degradation for Raffinose and Stachyose of a β-D-Fructofuranosidase and Its New Function to Improve Gel Properties of Coagulated Fermented-Soymilk. Gels 2023; 9:gels9040345. [PMID: 37102957 PMCID: PMC10137817 DOI: 10.3390/gels9040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
A novel β-D-fructofuranosidase gene was identified via database mining from Leptothrix cholodnii. The gene was chemically synthesized and expressed in Escherichia coli, resulting in the production of a highly efficient enzyme known as LcFFase1s. The enzyme exhibited optimal activity at pH 6.5 and a temperature of 50 °C while maintaining stability at pH 5.5-8.0 and a temperature below 50 °C. Furthermore, LcFFase1s exhibited remarkable resistance to commercial proteases and various metal ions that could interfere with its activity. This study also revealed a new hydrolysis function of LcFFase1s, which could completely hydrolyze 2% raffinose and stachyose within 8 h and 24 h, respectively, effectively reducing the flatulence factor in legumes. This discovery expands the potential applications of LcFFase1s. Additionally, the incorporation of LcFFase1s significantly reduced the particle size of coagulated fermented-soymilk gel, resulting in a smoother texture while maintaining the gel hardness and viscosity formed during fermentation. This represents the first report of β-D-fructofuranosidase enhancing coagulated fermented-soymilk gel properties, highlighting promising possibilities for future applications of LcFFase1s. Overall, the exceptional enzymatic properties and unique functions of LcFFase1s render it a valuable tool for numerous applications.
Collapse
Affiliation(s)
- Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yimei Shen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jiangqi Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
da Luz Morales M, de Souza Àzar RL, Guimarães VM, Alfenas RF, Maitan‐Alfenas GP. Purification of a xylanase from
Kretzschmaria zonata
with potential interest in the production of xylooligosaccharides. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Fernandes H, Salgado JM, Ferreira M, Vršanská M, Fernandes N, Castro C, Oliva-Teles A, Peres H, Belo I. Valorization of Brewer’s Spent Grain Using Biological Treatments and its Application in Feeds for European Seabass (Dicentrarchus labrax). Front Bioeng Biotechnol 2022; 10:732948. [PMID: 35592554 PMCID: PMC9110835 DOI: 10.3389/fbioe.2022.732948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Brewer’s spent grain (BSG) is the main brewery industry by-product, with potential applications in the feed and food industries due to its carbohydrate composition. In addition, the lignocellulosic nature of BSG makes it an adequate substrate for carbohydrases production. In this work, solid-state fermentation (SSF) of BSG was performed with Aspergillus ibericus, a non-mycotoxin producer fungus with a high capacity to hydrolyze the lignocellulosic matrix of the agro-industrial by-products. SSF was performed at different scales to produce a crude extract rich in cellulase and xylanase. The potential of the crude extract was tested in two different applications: -(1) - the enzymatic hydrolysis of the fermented BSG and (2) - as a supplement in aquafeeds. SSF of BSG increased the protein content from 25% to 29% (w/w), while the fiber content was reduced to 43%, and cellulose and hemicellulose contents were markedly reduced to around 15%. The scale-up of SSF from 10 g of dry BSG in flasks to 50 g or 400 g in tray-type bioreactors increased 55% and 25% production of cellulase and xylanase, up to 323 and 1073 U g−1 BSG, respectively. The optimum temperature and pH of maximal activities were found to be 55°C and pH 4.4 for xylanase and 50°C and pH 3.9 for cellulase, cellulase being more thermostable than xylanase when exposed at temperatures from 45°C to 60°C. A Box–Behnken factorial design was applied to optimize the hydrolysis of the fermented BSG by crude extract. The crude extract load was a significant factor in sugars release, highlighting the role of hydrolytic enzymes, while the load of fermented BSG, and addition of a commercial β-glucosidase were responsible for the highest phenolic compounds and antioxidant activity release. The lyophilized crude extract (12,400 and 1050 U g−1 lyophilized extract of xylanase and cellulase, respectively) was also tested as an enzyme supplement in aquafeed for European seabass (Dicentrarchus labrax) juveniles. The dietary supplementation with the crude extract significantly improved feed and protein utilization. The processing of BSG using biological treatments, such as SSF with A. ibericus, led to the production of a nutritionally enriched BSG and a crude extract with highly efficient carbohydrases capable of hydrolyzing lignocellulosic substrates, such as BSG, and with the potential to be used as feed enzymes with remarkable results in improving feed utilization of an important aquaculture fish species.
Collapse
Affiliation(s)
- Helena Fernandes
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre Ed. FC4, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, Matosinhos, Portugal
| | - José Manuel Salgado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, Matosinhos, Portugal
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Marta Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Nélson Fernandes
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre Ed. FC4, Porto, Portugal
| | - Carolina Castro
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre Ed. FC4, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, Matosinhos, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre Ed. FC4, Porto, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre Ed. FC4, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, Matosinhos, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- *Correspondence: Isabel Belo,
| |
Collapse
|
7
|
Bibi Z, Sattar H, Asif Nawaz M, Karim A, Pervez S, Ali Ul Qader S, Aman A. Polyacrylamide hydrogel carrier (matrix-type macrogel beads): Improvement in the catalytic behavior, stability, and reusability of industrially valuable xylanase from a thermophile Geobacillus stearothermophilus. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Rastogi M, Shrivastava S, Shukla P. Bioprospecting of xylanase producing fungal strains: Multilocus phylogenetic analysis and enzyme activity profiling. J Basic Microbiol 2021; 62:150-161. [PMID: 34783043 DOI: 10.1002/jobm.202100408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 11/07/2022]
Abstract
The study aims to explore potential xylanase-producing indigenous fungi isolated from soil and vegetable wastes containing plant degraded matter, reporting multilocus phylogenetic analysis and xylanase enzyme activity from selective strains. Four potential xylanolytic fungi were identified through distinct primary and secondary screening of 294 isolates obtained from the samples. Morphological characterization and multigene analysis (ITS rDNA, 18S rDNA, LSU rDNA, β-tubulin, and actin gene) confirmed them as Aspergillus sp. AUMS56, Aspergillus tubingensis AUMS60 and AUMS64, and Aspergillus fumigatus AUKEMS24; achieving crude xylanase activities (through submerged fermentation using corn cobs) of 18.9, 32.29, 30.68, and 15.82 U ml-1 , respectively. AUMS60 and AUMS64 (forming lineage with A. tubingensis and Aspergillus niger in the same phylogroup with 100% Bayesian posterior probability support) secreted single xylanase (Xyn60; 36 kDa) and multiple xylanases (Xyn64A and Xyn64B; 33.4 and 19.8 kDa) respectively, having pH optima of 6.0 and exhibiting maximal activity at 60°C. These enzymes were highly stable at 40°C (120 h) and retained more than 70% activity at 50°C and at pH 5-6 (upon 72 h incubation). Our analysis suggested these enzymes to be endoxylanases demonstrating substrate hydrolysis within 15 min of reaction and maximum efficiency of xylanases from AUMS60 and AUMS64 achieving 51.1% (13 h) and 52.2% (24 h) saccharification, respectively. They also showed enhanced catalytic activity with various cations. Based on our investigation on xylan hydrolysis, we believe that these xylanases may find significant industrial applications as they have a real potential of working as a bio-catalytic cocktail (patent file number: IN E1/38213/2020-DEL) for the enhanced saccharification of lignocelluloses.
Collapse
Affiliation(s)
- Meenal Rastogi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Smriti Shrivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Liu Y, Wang J, Bao C, Dong B, Cao Y. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Int J Biol Macromol 2021; 182:701-711. [PMID: 33862072 DOI: 10.1016/j.ijbiomac.2021.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A study was carried out to investigate the characterization of a novel Aspergillus sulphureus JCM01963 xylanase (AS-xyn10A) with a carbohydrate binding module (CBM) and its application in degrading alkali pretreated corncob, rapeseed meal and corn stover alone and in combination with a commercial cellulase. In this study, the 3D structure of AS-xyn10A, which contained a CBM at C-terminal. AS-xyn10A and its CBM-truncated variant (AS-xyn10A-dC) was codon-optimized and over-expressed in Komagaella phaffii X-33 (syn. Pichia pastoris) and characterized with optimal condition at 70 °C and pH 5.0, respectively. AS-xyn10A displayed high activity to xylan extracted from corn stover, corncob, and rapeseed meal. The concentration of hydrolyzed xylo-oligosaccharides (XOSs) reached 1592.26 μg/mL, 1149.92 μg/mL, and 621.86 μg/mL, respectively. Xylobiose was the main product (~70%) in the hydrolysis mixture. AS-xyn10A significantly synergized with cellulase to improve the hydrolysis efficiency of corn stover, corncob, and rapeseed meal to glucose. The degree of synergy (DS) was 1.32, 1.31, and 1.30, respectively. Simultaneously, XOSs hydrolyzed with AS-xyn10A and cellulase was improved by 46.48%, 66.13% and 141.45%, respectively. In addition, CBM variant decreased the yields of xylo-oligosaccharide and glucose in rapeseed meal degradation. This study provided a novel GH10 endo-xylanase, which has potential applications in hydrolysis of biomass.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
10
|
Safitri E, Hanifah, Previta, Sudarko, Ni Nyoman Tri Puspaningsih, Istri Ratnadewi AA. Cloning, purification, and characterization of recombinant endo- β-1,4-D-xylanase of Bacillus sp. From soil termite abdomen. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Chen S, Feng H, Li X, Chao HJ, Wu J, Liu J, Zhu WJ, Yan DZ. The Complete Genome Sequence of a Bacterial Strain with High Alkalic Xylanase Activity Isolated from the Sludge Near a Papermill. Curr Microbiol 2020; 77:3945-3952. [PMID: 33011835 DOI: 10.1007/s00284-020-02227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Many organisms secrete xylanase, an import group of proteins hydrolyzing xylan, and thus are able to use xylan as their carbon source. In this study, we sequenced the whole genome of a bacterial strain, YD01, which was isolated from the sludge near the sewage discharge outlet of a papermill and showed high alkalic xylanase activity. Its genome consists of a chromosome and two plasmids. Six rRNA genes, 46 tRNA genes, 3136 CDSs as well as 955 repetitive sequences were predicted. 3046 CDSs were functionally annotated. Phylogenetic analysis on 16S rRNA shows that YD01 is a new species in Microbacterium genus and is taxonomically close to M. jejuense THG-C31T and M. kyungheense THG-C26T. A comparative study on phylogenetic trees of 16S rRNA and xylanase genes suggests that xylanase genes in YD01 may originate from horizontal gene transfer instead of ancestral gene duplication.
Collapse
Affiliation(s)
- Si Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hao Feng
- Jiangsu Yanghe Brewery Joint-Stock Co., Ltd., Suqian, 223800, Jiangsu, China
| | - Xin Li
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hong-Jun Chao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jing Wu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jun Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wen-Jun Zhu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Da-Zhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
12
|
Characterization of a novel xylanase from an extreme temperature hot spring metagenome for xylooligosaccharide production. Appl Microbiol Biotechnol 2020; 104:4889-4901. [DOI: 10.1007/s00253-020-10562-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
|
13
|
Liu L, Xu M, Cao Y, Wang H, Shao J, Xu M, Zhang Y, Wang Y, Zhang W, Meng X, Liu W. Biochemical Characterization of Xylanases from Streptomyces sp. B6 and Their Application in the Xylooligosaccharide Production from Viscose Fiber Production Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3184-3194. [PMID: 32105462 DOI: 10.1021/acs.jafc.9b06704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Enzymatic hydrolysis of xylan represents a promising way to produce xylooligosaccharide (XOS), which is a novel ingredient in functional food. However, the recalcitrance of xylan in natural lignocellulosic biomass entails effective and robust xylanases. In the present study, we reported the isolation of a thermophilic Streptomyces sp. B6 from mushroom compost producing high xylanase activity. Two xylanases of Streptomyces sp. B6 belonging to GH10 (XynST10) and GH11 (XynST11) families were thus identified and biochemically characterized to be robust enzymes with high alkaline- and thermostability. Direct hydrolysis of neutralized viscose fiber production waste using XynST10 and XynST11 showed that while XynST10 produced 23.22 g/L XOS with a degree of polymerization (DP) of 2-4 and 9.27 g/L xylose, XynST11 produced much less xylose (1.19 g/L) and a higher amounts of XOS with a DP = 2-4 (28.29 g/L). Thus, XynST11 holds great potential for the production of XOS from agricultural and industrial waste.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Mingyuan Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Hai Wang
- Qingdao Vland Biotech Company Group, No. 29 Miaoling Road, Qingdao 266061, People's Republic of China
| | - Jing Shao
- Qingdao Vland Biotech Company Group, No. 29 Miaoling Road, Qingdao 266061, People's Republic of China
| | - Meiqing Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yuancheng Zhang
- Leling Shengli New Energy Company, Limited, Yangan, Leling, Dezhou 253614, People's Republic of China
| | - Yunhe Wang
- Leling Shengli New Energy Company, Limited, Yangan, Leling, Dezhou 253614, People's Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| |
Collapse
|