1
|
Tian J, Wei S, Liang W, Wang G. Enhancing levan biosynthesis by destroying the strongly acidic environment caused by membrane-bound glucose dehydrogenase (mGDH) in Gluconobacter sp. MP2116. Synth Syst Biotechnol 2024; 10:68-75. [PMID: 39263351 PMCID: PMC11388042 DOI: 10.1016/j.synbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Levan produced by Gluconobacter spp. has great potential in biotechnological applications. However, Gluconobacter spp. can synthesize organic acids during fermentation, resulting in environmental acidification. Few studies have focused on the effects of environmental acidification on levan synthesis. This study revealed that the organic acids, mainly gluconic acid (GA) and 2-keto-gluconic acid (2KGA) secreted by Gluconobacter sp. MP2116 created a highly acidic environment (pH < 3) that inhibited levan biosynthesis. The levansucrase derived from strain MP2116 had high enzyme activity at pH 4.0 ∼ pH 6.5. When the ambient pH was less than 3, the enzyme activity decreased by 67 %. Knocking out the mgdh gene of membrane-bound glucose dehydrogenase (mGDH) in the GA and 2KGA synthesis pathway in strain MP2116 eliminated the inhibitory effect of high acid levels on levansucrase function. As a result, the levan yield increased from 7.4 g/l (wild-type) to 18.8 g/l (Δmgdh) during fermentation without pH control. This study provides a new strategy for improving levan production by preventing the inhibition of polysaccharide synthesis by environmental acidification.
Collapse
Affiliation(s)
- Junjie Tian
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Shumin Wei
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| |
Collapse
|
2
|
Wahab WAA, Shafey HI, Mahrous KF, Esawy MA, Saleh SAA. Coculture of bacterial levans and evaluation of its anti-cancer activity against hepatocellular carcinoma cell lines. Sci Rep 2024; 14:3173. [PMID: 38326332 PMCID: PMC10850072 DOI: 10.1038/s41598-024-52699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
This research represents a novel study to assess how coculture affects levan yield, structure, bioactivities, and molecular weight. Among the 16 honey isolates, four bacterial strains recorded the highest levan yield. The Plackett-Burman design showed that the coculture (M) of isolates G2 and K2 had the maximum levan yield (52 g/L) and the effective factors were sucrose, incubation time, and sugarcane bagasse. The CCD showed that the most proper concentrations for maximum levan yield (81 g/L): were 130 g/L of sucrose and 6 g/f of sugarcane bagasse. Levan's backbone was characterized, and the molecular weight was determined. G2 and K2 isolates were identified based on 16 sRNA as Bacillus megaterium strain YM1C10 and Rhizobium sp. G6-1. M levan had promising antioxidant activity (99.66%), slowed the migration activity to a great extent, and recorded 70.70% inhibition against the hepatoblastoma cell line (HepG2) at 1000 µg/mL. Gene expression analysis in liver cancer cell lines (HePG2) revealed that M levan decreased the expression of CCL20), 2GRB2, and CCR6) genes and was superior to Doxo. While increasing the expression of the IL4R and IL-10 genes. The DNA damage values were significantly increased (P < 0.01) in treated liver cancer cell lines with levan M and Doxo. The results referred to the importance of each of the hydroxyl and carboxyl groups and the molecular weight in levans bioactivities.
Collapse
Affiliation(s)
- Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba I Shafey
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Karima F Mahrous
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
3
|
Li Z, Hu C, Chen H, Meng F, Mir B, Hu X, Yang J, Zhang H. Rational design of a self-assembly promoting fusion domain enhances high molecular weight levan synthesis by levansucrase SacB. Int J Biol Macromol 2023:125442. [PMID: 37330087 DOI: 10.1016/j.ijbiomac.2023.125442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The catalytic product of levansucrase from Bacillus subtilis (SacB) is mainly composed of 10 % high molecular weight levan (HMW, ~2000 kDa) and 90 % low molecular weight levan (LMW, ~7000 Da). In order to achieve efficient production of food hydrocolloid, high molecular weight levan (HMW), with the help of molecular dynamics simulation software, a protein self-assembly element, Dex-GBD, was found and fused with the C-terminus of SacB to construct a novel fusion enzyme, SacB-GBD. The product distribution of SacB-GBD was reversed compared with SacB, and the proportion of HMW in the total polysaccharide was significantly increased to >95 %. We then confirmed that the self-assembly was responsible for the reversal of the SacB-GBD product distribution by the simultaneous modulation of SacB-GBD particle size and product distribution by SDS. The hydrophobic effect may be the main driver of self-assembly as analyzed by molecular simulations and hydrophobicity determination. Our study provides an enzyme source for the industrial production of HMW and provides a new theoretical basis for guiding the molecular modification of levansucrase towards the size of the catalytic product.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huiyong Chen
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fanping Meng
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baiza Mir
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xueqin Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Identification of a Thermostable Levansucrase from Pseudomonas orientalis That Allows Unique Product Specificity at Different Temperatures. Polymers (Basel) 2023; 15:polym15061435. [PMID: 36987215 PMCID: PMC10058814 DOI: 10.3390/polym15061435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The biological production of levan by levansucrase (LS, EC 2.4.1.10) has aroused great interest in the past few years. Previously, we identified a thermostable levansucrase from Celerinatantimonas diazotrophica (Cedi-LS). A novel thermostable LS from Pseudomonas orientalis (Psor-LS) was successfully screened using the Cedi-LS template. The Psor-LS showed maximum activity at 65 °C, much higher than the other LSs. However, these two thermostable LSs showed significantly different product specificity. When the temperature was decreased from 65 to 35 °C, Cedi-LS tended to produce high-molecular-weight (HMW) levan. By contrast, Psor-LS prefers to generate fructooligosaccharides (FOSs, DP ≤ 16) rather than HMW levan under the same conditions. Notably, at 65 °C, Psor-LS would produce HMW levan with an average Mw of 1.4 × 106 Da, indicating that a high temperature might favor the accumulation of HMW levan. In summary, this study allows a thermostable LS suitable for HMW levan and levan-type FOSs production simultaneously.
Collapse
|
5
|
Characterization of levansucrase produced by novel Bacillus siamensis and optimization of culture condition for levan biosynthesis. Heliyon 2022; 8:e12137. [PMID: 36544824 PMCID: PMC9761727 DOI: 10.1016/j.heliyon.2022.e12137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Levan has attracted interest due to the potential health benefits associated with its prebiotic, biological, and functional properties. However, the production of levan is expensive due to its high resource requirements. With the growing demand for levan, it is vital to determine suitable cultivation condition for its production and reduce costs accordingly. The present study characterized the enzyme levansucrase produced by a novel strain of Bacillus siamensis and optimized the conditions for the biosynthesis of levansucrase and levan. The crude levansucrase enzyme production by B. siamensis was induced at a specific temperature in a medium containing different concentrations of sucrose, fructose, and glucose to evaluate transfructosylation and hydrolysis activities. Crude levansucrase significantly increased transfructosylation relative to hydrolysis activity at 37 °C in a medium containing 20% (w/v) sucrose. Both transfructosylation and hydrolysis activities were inhibited in glucose and fructose containing medium. Purification and characterization of the levansucrase were performed by precipitating the enzyme with ammonium sulfate solution, purified anion-exchange chromatography, and analyzed by Sodium Dodecyl Sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The results showed the molecular weight of the enzyme to be approximately 30 kDa with specific activity at 15.95 U/mg, corresponding to a protein purification efficiency of 11.47 and a yield of 78.75%. The optimal culture condition for the purified-levansucrase activity for levan biosynthesis was obtained at 37 °C after 48 h, at pH 6.0 in 50 mM phosphate buffer and 20% (w/v) sucrose. The study demonstrated the optimized condition for levan biosynthesis utilizing the B. siamensis that can serve as a model for various commercial and industrial applications for efficient levan production.
Collapse
|
6
|
Ehinger FJ, Neff A, Kosciow K, Netzband L, Hövels M. Rapid, real-time sucrase characterization: Showcasing the feasibility of a one-pot activity assay. J Biotechnol 2022; 354:21-33. [PMID: 35716887 DOI: 10.1016/j.jbiotec.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Sucrases can modify numerous carbohydrates, and short-chain oligosaccharides produced by the unique transfructosylation activity of levansucrases are promising candidates for the growing sugar substitute market. These compounds could counteract the increasing number of diseases associated with the consumption of high-calorie sugars. Thus, there is great interest in the characterization of novel levansucrases. The commonly used method for sucrase activity determination is to quantify d-glucose released in the sucrose-splitting reaction. This is usually done in a discontinuous mode, i.e., several samples taken from the sucrase reaction are applied to a separately performed d-glucose determination (e.g., GOPOD assay). Employing the newly isolated levansucrase LevSKK21 from Pseudomonas sp. KK21, the feasibility of a one-pot sucrase characterization was investigated by combining sucrase reaction and GOPOD-based d-glucose determination into a single, continuous assay (Real-time GOPOD). The enzyme was characterized with respect to kinetic parameters, ion dependency, pH value, and reaction temperature in a comparative approach employing Real-time GOPOD and HPLC. High data consistency for all investigated enzyme parameters demonstrated that current processes for sucrase characterization can be considerably accelerated by the continuous assay while maintaining data validity. However, the assay was not applicable at acidic pH, as decolorization of the quinoneimine dye formed during the GOPOD reaction was observed. Overall, the study presents valuable data on the potentials of real-time sucrase activity assessment for an accelerated discovery and characterization of interesting enzymes such as the hereby introduced levansucrase LevSKK21. Progress in sucrase discovery will finally foster the development of health-promoting sucrose substitutes.
Collapse
Affiliation(s)
| | - André Neff
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany
| | - Konrad Kosciow
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany
| | - Lars Netzband
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Evaluation of different bacterial honey isolates as probiotics and their efficient roles in cholesterol reduction. World J Microbiol Biotechnol 2022; 38:106. [PMID: 35507200 PMCID: PMC9068672 DOI: 10.1007/s11274-022-03259-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Continue to hypothesize that honey is a storehouse of beneficial bacteria, and the majority of these isolates are levansucrase producers. Accordingly, ten bacterial strains were isolated from different honey sources. Four honey isolates that had the highest levansucrase production and levan yield were identified by the partial sequencing of the 16S rRNA gene as Achromobacter sp. (10A), Bacillus paralicheniformis (2M), Bacillus subtilis (9A), and Bacillus paranthracis (13M). The cytotoxicity of the selected isolates showed negative blood hemolysis. Also, they are sensitive to the tested antibiotics (Amoxicillin + Flucloxacillin, Ampicillin, Gentamicin, Benzathine benzylpenicillin, Epicephin, Vancomycin, Amikacin, and Zinol). The isolates had strong alkaline stability (pHs 9, 11) and were resistant to severe acidic conditions (29-100 percent). The tested isolates recorded complete tolerance to both H2O2 and the bile salt (0.3% Oxgall powder) after 24 h incubation. The cell-free supernatant of the examined strains had antifungal activities against C. Albicans with varying degrees. Also, isolates 2M and 13M showed strong activities against S. aureus. The isolates showed strong adhesion and auto-aggregation capacity. Isolate 10A showed the highest antioxidant activity (91.45%) followed by 2M (47.37%). The isolates recorded different catalase and protease activity. All isolates produced cholesterol oxidase and lipase with different levels. Besides, the four isolates reduced LDL (low-density lipoprotein) to different significant values. The cholesterol-reducing ability varied not only for strains but also for the time of incubation. The previous results recommended these isolates be used safely in solving the LDL problem.
Collapse
|
8
|
Production of levan from Bacillus subtilis var. natto and apoptotic effect on SH-SY5Y neuroblastoma cells. Carbohydr Polym 2021; 273:118613. [PMID: 34561011 DOI: 10.1016/j.carbpol.2021.118613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Levan is a high-valued polysaccharide of fructose produced by several microbial species. These polysaccharides have been described as effective therapeutic agents in some human disease conditions, such as cancer, heart diseases and diabetes. The objective of this study was to examine the effect of levan (β-(2 → 6)-fructan) produced through sucrose fermentation by B. subtilis var. natto on the proliferation rate, cytotoxicity, and apoptosis of human neuroblastoma SH-SY5Y cells. It was obtained 41.44 g/L of levan in 18 h by biotechnological fermentation and SH-SY5Y cells were exposed to 1000 μg/mL of levan. The treatment with 1000 μg/mL of levan induced apoptosis in SH-SY5Y cancer cells by the significant increase in Annexin V/7-AAD and caspase 3/7 activation, but did not decrease proliferation or triggered a cytotoxic effect. 1000 μg/mL levan treatment is a promising therapeutic strategy for SH-SY5Y neuroblastoma cells.
Collapse
|
9
|
Zhang X, Liang Y, Yang H, Yang H, Chen S, Huang F, Hou Y, Huang R. A novel fusion levansucrase improves thermostability of polymerization and production of high molecular weight levan. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Charoenwongpaiboon T, Wangpaiboon K, Pichyangkura R. Cross-linked levansucrase aggregates for fructooligosaccharide synthesis in fruit juices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Biopolymer production by bacteria isolated from native stingless bee honey, Scaptotrigona jujuyensis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Doan CT, Tran TN, Nguyen TT, Tran TPH, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers (Basel) 2021; 13:polym13121959. [PMID: 34199171 PMCID: PMC8231626 DOI: 10.3390/polym13121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there has been increasing use of agro-byproducts in microbial fermentation to produce a variety of value-added products. In this study, among various kinds of agro-byproducts, pomelo albedo powder (PAP) was found to be the most effective carbon source for the production of sucrose hydrolyzing enzyme by Bacillus licheniformis TKU004. The optimal medium for sucrolytic enzyme production contained 2% PAP, 0.75% NH4NO3, 0.05% MgSO4, and 0.05% NaH2PO4 and the optimal culture conditions were pH 6.7, 35 °C, 150 rpm, and 24 h. Accordingly, the highest sucrolytic activity was 1.87 U/mL, 4.79-fold higher than that from standard conditions using sucrose as the carbon source. The purified sucrolytic enzyme (sleTKU004) is a 53 kDa monomeric protein and belongs to the glycoside hydrolase family 68. The optimum temperature and pH of sleTKU004 were 50 °C, and pH = 6, respectively. SleTKU004 could hydrolyze sucrose, raffinose, and stachyose by attacking the glycoside linkage between glucose and fructose molecules of the sucrose unit. The Km and Vmax of sleTKU004 were 1.16 M and 5.99 µmol/min, respectively. Finally, sleTKU004 showed strong sucrose tolerance and presented the highest hydrolytic activity at the sucrose concentration of 1.2 M–1.5 M.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Trung Dung Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
13
|
Gamal AA, Abbas HY, Abdelwahed NAM, Kashef MT, Mahmoud K, Esawy MA, Ramadan MA. Optimization strategy of Bacillus subtilis MT453867 levansucrase and evaluation of levan role in pancreatic cancer treatment. Int J Biol Macromol 2021; 182:1590-1601. [PMID: 34015407 DOI: 10.1016/j.ijbiomac.2021.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Pancreatic cancer is the fourth most lethal cancer type worldwide. Due to multiple levan applications including anticancer activities, studies related to levansucrase production are of interest. To our knowledge, levan effect on pancreatic cancer cells has not been tested previously. In this work, among eighteen bacterial honey isolates, Bacillus subtilis MT453867 showed the highest levan yield (33 g/L) and levansucrase production (8.31 U/mL). One-factor-at-a-time technique increased levansucrase activity by 60% when MgSO4 was eliminated. The addition of 60 g/L banana peels enhanced the enzyme activity (192 U/mL). Placket Burman design determined the media composition for maximum levan yield (54.8 g/L) and levansucrase production (505 U/mL). The identification of levan was confirmed by thin-layer chromatography, Fourier-Transform Infrared spectrometric analysis, 13C-nuclear-magnetic resonance, and 1H-nuclear-magnetic resonance. Both crude and dialyzed levan completely inhibited the pancreatic cancer cell line at 100 ppm with no cytotoxicity on the normal retinal cell line. The LD50 of crude levan was 4833 mg/kg body weight. Levan had strong antioxidant activity and significantly reduced the expression of CXCR4 and MCM7 genes in pancreatic cancer cells with significant DNA fragmentation. In conclusion, Bacillus subtilis MT453867 levan is a promising adjunct to pancreatic-anticancer agents with both anti-cancer and chemoprotective effects.
Collapse
Affiliation(s)
- Amira A Gamal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Heba Y Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| | - Khaled Mahmoud
- Pharmacognosy Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
14
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
15
|
Kırtel O, Aydın H, Toksoy Öner E. Fructanogenic traits in halotolerant Bacillus licheniformis OK12 and their predicted functional significance. J Appl Microbiol 2021; 131:1391-1404. [PMID: 33484024 DOI: 10.1111/jam.15015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 01/26/2023]
Abstract
AIMS Isolating a novel bacterial source of fructan from a saltern and analysis of its genome to better understand the possible roles of fructans in hypersaline environments. METHODS AND RESULTS Bacteria were isolated from crude salt samples originating from Çamaltı Saltern in Western Turkey and screened for fructanogenic traits in high-salt and sucrose-rich selective medium. Exopolysaccharide accumulated in the presence of sucrose by isolate OK12 was purified and chemically characterized via HPLC, FT-IR and NMR, which revealed that it was a levan-type fructan (β-2,6 linked homopolymer of fructose). The isolate was taxonomically classified as Bacillus licheniformis OK12 through 16S rRNA gene and whole-genome sequencing methods. Strain OK12 harbours one levansucrase and two different levanase genes, which altogether were predicted to significantly contribute to intracellular glucose and fructose pools. The isolate could withstand 15% NaCl, and thus classified as a halotolerant. CONCLUSIONS Fructanogenic traits in halotolerant B. licheniformis OK12 are significant due to predicted influx of glucose and fructose as a result of levan biosynthesis and levan hydrolysis, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY Fructans from the residents of hypersaline habitats are underexplored compounds and are expected to demonstrate physicochemical properties different from their non-halophilic counterparts. Revealing fructanogenic traits in the genome of a halotolerant bacterium brings up a new perspective in physiological roles of fructans.
Collapse
Affiliation(s)
- O Kırtel
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Bioengineering Department, Göztepe Campus, Marmara University, Istanbul, Turkey
| | - H Aydın
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Bioengineering Department, Göztepe Campus, Marmara University, Istanbul, Turkey
| | - E Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Bioengineering Department, Göztepe Campus, Marmara University, Istanbul, Turkey
| |
Collapse
|
16
|
Gamal AA, Hashem AM, El-Safty MM, Soliman RA, Esawy MA. Evaluation of the antivirus activity of Enterococcus faecalis Esawy levan and its sulfated form. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ezzat A, Fayad W, Ibrahim A, Kamel Z, El-Diwany AI, Shaker KH, Esawy MA. Combination treatment of MCF-7 spheroids by Pseudomonas aeruginosa HI1 levan and cisplatin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|