1
|
Elgharbi F, Salem K, Elbedoui M, Hmida-Sayari A. High-Molecular-Weight Xylanase from B. pumilus US570 Strain: Purification, Characterization and Application in Banana and Orange Peels Hydrolysis and Breadmaking. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04866-x. [PMID: 38393579 DOI: 10.1007/s12010-024-04866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
New xylanase (XylUS570) was purified from the Bacillus pumilus US570 strain. It has a molecular mass of about 232 kDa. This is the first report on the highest molecular weight monomeric xylanase produced by bacteria. The optimum pH and temperature recorded for enzyme activity were 7 and 55 °C, respectively with a half-life time of 10 min at 60 °C. At 37 °C, the enzyme retains more than 50% of its activity at a pH ranging from 6 to 9.5 for 24 h. The XylUS570 exhibited a high activity on xylan, but no activity was detected for cellulosic substrates. The Vmax and Km values exhibited by the purified enzyme on beechwood xylan were 37.05 U mL-1 and 4.189 mg mL-1, respectively. The XylUS570 was used in banana and orange peels hydrolysis and showed potential efficiency to liberate reducing sugars. It could be a good candidate for bio-ethanol production from fruit waste. The purified enzyme was used also as an additive in breadmaking. A decrease in water absorption, an increase in dough rising and improvements in volume and specific volume of the bread were recorded.
Collapse
Affiliation(s)
- Fatma Elgharbi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route de Sidi Mansour Km 6, BP "1177", 3018, Sfax, Tunisie.
| | - Karima Salem
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route de Sidi Mansour Km 6, BP "1177", 3018, Sfax, Tunisie
| | - Maissa Elbedoui
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route de Sidi Mansour Km 6, BP "1177", 3018, Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route de Sidi Mansour Km 6, BP "1177", 3018, Sfax, Tunisie
| |
Collapse
|
2
|
Laut S, Poapolathep S, Piasai O, Sommai S, Boonyuen N, Giorgi M, Zhang Z, Fink-Gremmels J, Poapolathep A. Storage Fungi and Mycotoxins Associated with Rice Samples Commercialized in Thailand. Foods 2023; 12:487. [PMID: 36766016 PMCID: PMC9914209 DOI: 10.3390/foods12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The study focused on the examination of the different fungal species isolated from commercial rice samples, applying conventional culture techniques, as well as different molecular and phylogenic analyses to confirm phenotypic identification. Additionally, the mycotoxin production and contamination were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 40 rice samples were obtained covering rice berry, red jasmine rice, brown rice, germinated brown rice, and white rice. The blotting paper technique applied on the 5 different types of rice samples detected 4285 seed-borne fungal infections (26.8%) for 16,000 rice grains. Gross morphological data revealed that 19 fungal isolates belonged to the genera Penicillium/Talaromyces (18 of 90 isolates; 20%) and Aspergillus (72 of 90 isolates; 80%). To check their morphologies, molecular data (fungal sequence-based BLAST results and a phylogenetic tree of the combined ITS, BenA, CaM, and RPB2 datasets) confirmed the initial classification. The phylogenic analysis revealed that eight isolates belonged to P. citrinum and, additionally, one isolate each belonged to P. chermesinum, A. niger, A. fumigatus, and A. tubingensis. Furthermore, four isolates of T. pinophilus and one isolate of each taxon were identified as Talaromyces (T. radicus, T. purpureogenum, and T. islandicus). The results showed that A. niger and T. pinophilus were two commonly occurring fungal species in rice samples. After subculturing, ochratoxin A (OTA), generated by T. pinophilus code W3-04, was discovered using LC-MS/MS. In addition, the Fusarium toxin beauvericin was detected in one of the samples. Aflatoxin B1 or other mycotoxins, such as citrinin, trichothecenes, and fumonisins, were detected. These preliminary findings should provide valuable guidance for hazard analysis critical control point concepts used by commercial food suppliers, including the analysis of multiple mycotoxins. Based on the current findings, mycotoxin analyses should focus on A. niger toxins, including OTA and metabolites of T. pinophilus (recently considered a producer of emerging mycotoxins) to exclude health hazards related to the traditionally high consumption of rice by Thai people.
Collapse
Affiliation(s)
- Seavchou Laut
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Onuma Piasai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sujinda Sommai
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|