1
|
Espíndola-Rodríguez NH, Muñoz-Cázares N, Serralta-Peraza LEDS, Díaz-Nuñez JL, Montoya-Reyes F, García-Contreras R, Díaz-Guerrero M, Rivera-Chávez JA, Gutiérrez J, Sotelo-Barrera M, Castillo-Juárez I. Antivirulence and antipathogenic activity of Mayan herbal remedies against Pseudomonas aeruginosa. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118373. [PMID: 38782309 DOI: 10.1016/j.jep.2024.118373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yucatan Peninsula has a privileged wealth of vascular plants with which various Mayan herbal formulations have been developed. However, studies on their antipathogenic and antivirulence properties are scarce. AIM OF THE STUDY Identify antivirulence properties in Mayan herbal remedies and determine their antipathogenic capacity in burn wounds infected with Pseudomonas aeruginosa. MATERIALS AND METHODS An ethnobotanical study was conducted in Mayan communities in central and southern Quintana Roo, Mexico. Furthermore, the antipathogenic capacity of three Mayan herbal remedies was analyzed using an animal model of thermal damage and P. aeruginosa infection. Antivirulence properties were determined by inhibiting phenotypes regulated by quorum sensing (pyocyanin, biofilm, and swarming) and by the secretion of the ExoU toxin. The chemical composition of the most active herbal remedy was analyzed using molecular network analysis. RESULTS It was found that topical administration of the remedy called "herbal soap" (HS) for eleven days maintained 100% survival of the animals, reduced establishment of the bacteria in the burn and prevented its systemic dispersion. Although no curative effect was recorded on tissue damaged by HS treatment, its herbal composition strongly reduced swarming and ExoU secretion. Through analysis of Molecular Networks, it was possible to carry out a global study of its chemical components, and identify the family of oxindole monoterpenoid alkaloids and carboline and tetrahydropyrididole alkaloids. In addition, flavonols, flavan-3-ols, and quinic acid derivatives were detected. CONCLUSIONS The antipathogenic and antivirulence capacity of ancient Mayan remedies makes them a potential resource for developing new antibacterial therapies to treat burns infected by P. aeruginosa.
Collapse
Affiliation(s)
- Nadine Heidi Espíndola-Rodríguez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Naybi Muñoz-Cázares
- Campo Experimental Chetumal, Instituto de Investigaciones Forestales, Agrícolas y Pecuarias, Quintana Roo, 77963, Mexico; Investigadora Posdoctoral CONAHCYT Comisionada al Colegio de Postgraduados-Campus Tabasco, Cárdenas, Tabasco, C. P. 86500, Mexico.
| | | | - José Luis Díaz-Nuñez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Francisco Montoya-Reyes
- Campo Experimental Chetumal, Instituto de Investigaciones Forestales, Agrícolas y Pecuarias, Quintana Roo, 77963, Mexico.
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico.
| | - Jorge Gutiérrez
- Área de Biología, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, Texcoco, 56230, Mexico.
| | - Mireya Sotelo-Barrera
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Texcoco, 56230, Mexico; Conahcyt-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, 42184, Mexico.
| |
Collapse
|
2
|
De la Vega-Camarillo E, Sotelo-Aguilar J, González-Silva A, Hernández-García JA, Mercado-Flores Y, Villa-Tanaca L, Hernández-Rodríguez C. Genomic Insights into Pseudomonas protegens E1BL2 from Giant Jala Maize: A Novel Bioresource for Sustainable Agriculture and Efficient Management of Fungal Phytopathogens. Int J Mol Sci 2024; 25:9508. [PMID: 39273455 PMCID: PMC11395412 DOI: 10.3390/ijms25179508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.
Collapse
Affiliation(s)
- Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Josimar Sotelo-Aguilar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Adilene González-Silva
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Juan Alfredo Hernández-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Yuridia Mercado-Flores
- Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún Km. 20, Rancho Luna, Ex-Hacienda de Santa Bárbara Zempoala, Pachuca 43830, Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Maldonado-Ruiz K, Pedroza-Islas R, Pedraza-Segura L. Blue Biotechnology: Marine Bacteria Bioproducts. Microorganisms 2024; 12:697. [PMID: 38674641 PMCID: PMC11051736 DOI: 10.3390/microorganisms12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ocean is the habitat of a great number of organisms with different characteristics. Compared to terrestrial microorganisms, marine microorganisms also represent a vast and largely unexplored reservoir of bioactive compounds with diverse industrial applications like terrestrial microorganisms. This review examines the properties and potential applications of products derived from marine microorganisms, including bacteriocins, enzymes, exopolysaccharides, and pigments, juxtaposing them in some cases against their terrestrial counterparts. We discuss the distinct characteristics that set marine-derived products apart, including enhanced stability and unique structural features such as the amount of uronic acid and sulfate groups in exopolysaccharides. Further, we explore the uses of these marine-derived compounds across various industries, ranging from food and pharmaceuticals to cosmetics and biotechnology. This review also presents a broad description of biotechnologically important compounds produced by bacteria isolated from marine environments, some of them with different qualities compared to their terrestrial counterparts.
Collapse
Affiliation(s)
| | - Ruth Pedroza-Islas
- Department of Chemical, Industrial and Food Engineering, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico City 01210, Mexico; (K.M.-R.); (L.P.-S.)
| | | |
Collapse
|
4
|
Muriel-Millán LF, Montelongo-Martínez LF, González-Valdez A, Bedoya-Pérez LP, Cocotl-Yañez M, Soberón-Chávez G. The alternative sigma factor RpoS regulates Pseudomonas aeruginosa quorum sensing response by repressing the pqsABCDE operon and activating vfr. Mol Microbiol 2024; 121:291-303. [PMID: 38169053 DOI: 10.1111/mmi.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen. Several of its virulence-related processes, including the synthesis of pyocyanin (PYO) and biofilm formation, are controlled by quorum sensing (QS). It has been shown that the alternative sigma factor RpoS regulates QS through the reduction of lasR and rhlR transcription (encoding QS regulators). However, paradoxically, the absence of RpoS increases PYO production and biofilm development (that are RhlR dependent) by unknown mechanisms. Here, we show that RpoS represses pqsE transcription, which impacts the stability and activity of RhlR. In the absence of RpoS, rhlR transcript levels are reduced but not the RhlR protein concentration, presumably by its stabilization by PqsE, whose expression is increased. We also report that PYO synthesis and the expression of pqsE and phzA1B1C1D1E1F1G1 operon exhibit the same pattern at different RpoS concentrations, suggesting that the RpoS-dependent PYO production is due to its ability to modify PqsE concentration, which in turn modulates the activation of the phzA1 promoter by RhlR. Finally, we demonstrate that RpoS favors the expression of Vfr, which activates the transcription of lasR and rhlR. Our study contributes to the understanding of how RpoS modulates the QS response in P. aeruginosa, exerting both negative and positive regulation.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Luis Fernando Montelongo-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Leidy Patricia Bedoya-Pérez
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
5
|
García-Cruz JC, Rebollar-Juarez X, Limones-Martinez A, Santos-Lopez CS, Toya S, Maeda T, Ceapă CD, Blasco L, Tomás M, Díaz-Velásquez CE, Vaca-Paniagua F, Díaz-Guerrero M, Cazares D, Cazares A, Hernández-Durán M, López-Jácome LE, Franco-Cendejas R, Husain FM, Khan A, Arshad M, Morales-Espinosa R, Fernández-Presas AM, Cadet F, Wood TK, García-Contreras R. Resistance against two lytic phage variants attenuates virulence and antibiotic resistance in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 13:1280265. [PMID: 38298921 PMCID: PMC10828002 DOI: 10.3389/fcimb.2023.1280265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Background Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance. Methods In this work, we studied the Pseudomonas aeruginosa lytic phage φDCL-PA6 and its variant φDCL-PA6α. Additionally, we characterized and evaluated the production of virulence factors and the virulence in a Galleria mellonella model of resistant mutants against each phage for PA14 and two clinical strains. Results Phage φDCL-PA6α differs from the original by only two amino acids: one in the baseplate wedge subunit and another in the tail fiber protein. According to genomic data and cross-resistance experiments, these changes may promote the change of the phage receptor from the O-antigen to the core lipopolysaccharide. Interestingly, the host range of the two phages differs as determined against the Pseudomonas aeruginosa reference strains PA14 and PAO1 and against nine multidrug-resistant isolates from ventilator associated pneumonia. Conclusions We show as well that phage resistance impacts virulence factor production. Specifically, phage resistance led to decreased biofilm formation, swarming, and type III secretion; therefore, the virulence towards Galleria mellonella was dramatically attenuated. Furthermore, antibiotic resistance decreased for one clinical strain. Our study highlights important potential advantages of phage therapy's evolutionary impact that may be exploited to generate robust therapy schemes.
Collapse
Affiliation(s)
- Juan Carlos García-Cruz
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Xareni Rebollar-Juarez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Aldo Limones-Martinez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Cristian Sadalis Santos-Lopez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Universidad Univer Milenium, Toluca de Lerdo, Mexico
| | - Shotaro Toya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Corina Diana Ceapă
- Microbiology Laboratory, Chemistry Institute, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lucia Blasco
- Microbiología Traslacional y Multidisciplinar (MicroTM), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
- Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - María Tomás
- Microbiología Traslacional y Multidisciplinar (MicroTM), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
- Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Clara Estela Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Daniel Cazares
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Adrián Cazares
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Melisa Hernández-Durán
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico, Mexico
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Subdirección de Investigación Biomédica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico, Mexico
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, France
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|