1
|
Aktürk Dizman Y. Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes. J Basic Microbiol 2024; 64:e2400289. [PMID: 39099168 DOI: 10.1002/jobm.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
2
|
Cho M, Min X, Been N, Son HS. The evolutionary and genetic patterns of African swine fever virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105612. [PMID: 38824981 DOI: 10.1016/j.meegid.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
African swine fever (ASF) is a serious animal disease, and has spread to Africa, Europe and Asia, causing massive economic losses. African swine fever virus (ASFV) is transmitted from a reservoir host (warthog) to domestic pigs via a sylvatic cycle (transmission between warthogs and soft ticks) and a domestic cycle (transmission between domestic pigs) and survives by expressing a variety of genes related to virus-host interactions. We evaluated differences in codon usage patterns among ASFV genotypes and clades and explored the common and specific evolutionary and genetic characteristics of ASFV sequences. We analysed the evolutionary relationships, nucleotide compositions, codon usage patterns, selection pressures (mutational pressure and natural selection) and viral adaptation to host codon usage based on the coding sequences (CDS) of key functional genes of ASFV. AT bias was detected in the six genes analysed, irrespective of clade. The AT bias of genes (A224L, A179L, EP153R) encoding proteins involved in interaction with host cells after infection was high; among them, the AT bias of EP153R was the greatest at 78.3%. A large number of overrepresented codons were identified in EP153R, whereas there were no overrepresented codons with a relative synonymous codon usage (RSCU) value of ≥3 in B646L. In most genes, the pattern of selection pressure was similar for each clade, but in EP153R, diverse patterns of selection pressure were captured within the same clade and genotype. As a result of evaluating host adaptation based on the codon adaptation index (CAI), for B646L, E183L, CP204L and A179L, the codon usage patterns in all sequences were more similar to tick than domestic pig or wild boar. However, EP153R showed the lowest average CAI value of 0.52 when selecting tick as a reference set. The genes analysed in this study showed different magnitudes of selection pressure at the clade and genotype levels, which is likely to be related to the function of the encoded proteins and may determine key evolutionary traits of viruses, such as the level of genetic variation and host range. The diversity of codon adaptations at the genetic level in ASFV may account for differences in translational selection in ASFV hosts and provides insight into viral host adaptation and co-evolution.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Xianglan Min
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Nara Been
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hyeon S Son
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
4
|
Wang Y, Chi C, Zhang J, Zhang K, Deng D, Zheng W, Chen N, Meurens F, Zhu J. Systematic analysis of the codon usage patterns of African swine fever virus genome coding sequences reveals its host adaptation phenotype. Microb Genom 2024; 10:001186. [PMID: 38270515 PMCID: PMC10868601 DOI: 10.1099/mgen.0.001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
African swine fever (ASF) is a severe haemorrhagic disease caused by the African swine fever virus (ASFV), transmitted by ticks, resulting in high mortality among domestic pigs and wild boars. The global spread of ASFV poses significant economic threats to the swine industry. This study employs diverse analytical methods to explore ASFV's evolution and host adaptation, focusing on codon usage patterns and associated factors. Utilizing phylogenetic analysis methods including neighbour-joining and maximum-likelihood, 64 ASFV strains were categorized into four clades. Codon usage bias (CUB) is modest in ASFV coding sequences. This research identifies multiple factors - such as nucleotide composition, mutational pressures, natural selection and geographical diversity - contributing to the formation of CUB in ASFV. Analysis of relative synonymous codon usage reveals CUB variations within clades and among ASFVs and their hosts. Both Codon Adaptation Index and Similarity Index analyses confirm that ASFV strains are highly adapted to soft ticks (Ornithodoros moubata) but less so to domestic pigs, which could be a result of the long-term co-evolution of ASFV with ticks. This study sheds light on the factors influencing ASFV's codon usage and fitness dynamics, enriching our understanding of its evolution, adaptation and host interactions.
Collapse
Affiliation(s)
- Yuening Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chenglin Chi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiajia Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Kaili Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Dafu Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC, J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
5
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|