1
|
de Carvalho CCCR, Fernandes P. Biocatalysis of Steroids by Mycobacterium sp. in Aqueous and Organic Media. Methods Mol Biol 2023; 2704:221-229. [PMID: 37642847 DOI: 10.1007/978-1-0716-3385-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mycobacterium sp. can convert steroids such as β-sitosterol, campesterol, and cholesterol, by selective side-chain cleavage and oxidation of the C3 hydroxyl group to a ketone, into key intermediates that can be easily functionalized to yield commercially interesting pharmaceutical products. In aqueous systems, the biocatalysis is limited by the low solubility of the steroids in water. Several strategies have been introduced to tackle this limitation, e.g., formation of cyclodextrin-steroid complexes and generation of aqueous microdispersions with steroid particle size in the range of hundreds of nanometers. Still, the introduction of an organic phase acting as a substrate and/or product reservoir is a well-established and relatively easy to implement strategy to overcome the sparing water solubility of steroid molecules. However, the organic phase has to be carefully chosen to prevent tampering with the activity/viability of microbial cells.In this chapter, we describe the methodology for the biocatalysis of β-sitosterol to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD), both in aqueous and organic:aqueous systems. In the latter case, both traditional organic solvents and green solvents are proposed.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
2
|
Sun WJ, Liu YJ, Liu HH, Ma JD, Ren YH, Wang FQ, Wei DZ. Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene pbpB in Mycobacterium neoaurum. J Basic Microbiol 2019; 59:924-935. [PMID: 31347189 DOI: 10.1002/jobm.201900159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 11/05/2022]
Abstract
Some species of mycobacteria have been modified to transform sterols to valuable steroid synthons. The unique cell wall of mycobacteria has been recognized as an important organelle to absorb sterols. Some cell wall inhibitors (e.g., vancomycin and glycine) have been validated to enhance sterol conversion by interfering with transpeptidation in peptidoglycan biosynthesis. Therefore, two transpeptidase genes, pbpA and pbpB, were selected to rationally modify the cell wall to simulate the enhancement effect of vancomycin and glycine on sterol conversion in a 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain (WIII). Unexpectedly, the pbpA or pbpB gene augmentation was conducive to the utilization of sterols. The pbpB augmentation strain WIII-pbpB was further investigated for its better performance. Compared to WIII, the morphology of WIII-pbpB was markedly changed from oval to spindle, indicating alterations of the cell wall. Biochemical analysis indicated that the altered cell wall properties of WIII-pbpB might contribute to the positive effect on sterol utilization. The productivity of 4-HBC was enhanced by 28% in the WIII-pbpB strain compared to that of WIII. These results demonstrated that the modification of peptidoglycan synthesis can improve the conversion of sterols to steroid synthons in mycobacteria.
Collapse
Affiliation(s)
- Wan-Ju Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yong-Jun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao-Hao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jie-De Ma
- Department of Pharmacy, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | | | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media. Methods Mol Biol 2017. [PMID: 28710638 DOI: 10.1007/978-1-4939-7183-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mycobacterium sp. can convert steroids such as β-sitosterol, campesterol, and cholesterol into commercially interesting products. In aqueous systems, the biocatalysis is limited by the low solubility of the steroids in water. This may be overcome by the introduction of an organic phase acting as a substrate and/or product reservoir.In this chapter, we describe the biocatalysis of β-sitosterol to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) both in aqueous and organic-aqueous systems. In the latter case, both traditional organic solvents and green solvents are proposed.
Collapse
|
4
|
Bax HI, de Steenwinkel JEM, Ten Kate MT, van der Meijden A, Verbon A, Bakker-Woudenberg IAJM. Colistin as a potentiator of anti-TB drug activity against Mycobacterium tuberculosis. J Antimicrob Chemother 2015; 70:2828-37. [PMID: 26183185 DOI: 10.1093/jac/dkv194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/11/2015] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The mycobacterial cell wall is an effective permeability barrier that limits intracellular concentrations of anti-TB drugs and hampers the success of treatment. We hypothesized that colistin might enhance the efficacy of anti-TB drugs by increasing mycobacterial cell wall permeability. In this study, we investigated the additional effect of colistin on the activity of anti-TB drugs against Mycobacterium tuberculosis in vitro. METHODS The concentration-dependent and time-dependent killing activity of isoniazid, rifampicin or amikacin alone or in combination with colistin against M. tuberculosis H37Rv was determined. Mycobacterial populations with both high and low metabolic activity were studied, and these were characterized by increasing or steady levels of ATP, respectively. RESULTS With exposure to a single drug, striking differences in anti-TB drug activity were observed when the two mycobacterial populations were compared. The addition of colistin to isoniazid and amikacin resulted in sterilization of the mycobacterial load, but only in the M. tuberculosis population with high metabolic activity. The emergence of isoniazid and amikacin resistance was completely prevented by the addition of colistin. CONCLUSIONS The results of this study emphasize the importance of investigating mycobacterial populations with both high and low metabolic activity when evaluating the efficacy of anti-TB drugs in vitro. This is the first study showing that colistin potentiates the activity of isoniazid and amikacin against M. tuberculosis and prevents the emergence of resistance to anti-TB drugs. These results form the basis for further studies on the applicability of colistin as a potentiator of anti-TB drugs.
Collapse
Affiliation(s)
- Hannelore I Bax
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marian T Ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Aart van der Meijden
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Abstract
A myriad of methods has been reported for the isolation of genomic DNA from Mycobacterium spp.; some methods use mechanical disruption of the bacterial cells, whereas others use some form of chemical or enzymatic lysis. Regardless of the approach, the end points remain efficient breaking of the complex mycobacterial cell wall and release of high-quality DNA that is suitable for manipulation and analyses by molecular genetic techniques. This chapter providers detailed methods for the large and small isolation of mycobacterial genomic DNA.
Collapse
Affiliation(s)
- John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
6
|
Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols. BIORESOURCE TECHNOLOGY 2008; 99:6725-6737. [PMID: 18329874 DOI: 10.1016/j.biortech.2008.01.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/23/2008] [Accepted: 01/26/2008] [Indexed: 05/26/2023]
Abstract
Androstenedione is a key intermediate of microbial steroid metabolism. It belongs to the 17-keto steroid family and is used as starting material for the preparation of different steroids. Androstenedione can be produced by microbial side chain cleavage of phytosterol, which is an alternative to multi-step chemical synthesis. In this review, various methods of biotransformation of sterols to androstenedione are surveyed. It begins with the history and current research status in this field. The existing methods of chemical and biochemical synthesis are examined. Various issues related to these methods and how researchers have addressed them is presented. Among these, the low solubility of sterols in aqueous systems is a critical problem since it limits the product yield. The main content of this review focuses on new methods of biotransformation that are being investigated. Recent biotechnological advances in this field are presented. The review ends with a note on future perspectives.
Collapse
Affiliation(s)
- Alok Malaviya
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
7
|
Donova MV, Nikolayeva VM, Dovbnya DV, Gulevskaya SA, Suzina NE. Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. MICROBIOLOGY-SGM 2007; 153:1981-1992. [PMID: 17526855 DOI: 10.1099/mic.0.2006/001636-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modified beta-cyclodextrins have been shown previously to enhance sterol conversion to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) by growing Mycobacterium spp. The enhancement effect was mainly attributed to steroid solubilization by the formation of inclusion complexes with modified cyclodextrins. In this work, the influence of randomly methylated beta-cyclodextrin (MCD) on the growth, AD- and ADD-producing activity, cell wall (CW) composition and ultrastructure of sterol-transforming Mycobacterium sp. VKM Ac-1816D was studied. The specific growth rate of the strain on glycerol increased in the presence of MCD (20-100 mM). Washed cells grown in the presence of MCD (20-40 mM) expressed 1.6-fold higher ADD-producing activity than did the cells grown without MCD, and their adhesiveness differed. Electron microscopy showed MCD-mediated CW exfoliation and accumulation of membrane-like structures outside the cells, while preserving cells intact. The analysis of CW composition revealed both a decrease in the proportion of extractable lipids and a considerable shift in fatty acid profile resulting from MCD action. The MCD-mediated enhancement of mycolic and fatty acids content was observed outside the cells. The total secreted protein level rose 2.4-fold, and the extracellular 3-hydroxysteroid oxidase activity 3.2-fold. The composition of the CW polysaccharide was not altered, while the overall proportion of the carbohydrates in the CW of the MCD-exposed mycobacteria increased. The results showed that the multiple mechanisms of MCD-mediated intensification of sterol to AD(D) conversion by mycobacteria include not only solubilization of steroids, but also the increase of CW permeability for both steroids and soluble nutrients, disorganization of the lipid bilayer and the release of steroid-transforming enzymes weakly associated with the CW.
Collapse
Affiliation(s)
- M V Donova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - V M Nikolayeva
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D V Dovbnya
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - S A Gulevskaya
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - N E Suzina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
8
|
Egorova OV, Nikolayeva VM, Suzina NE, Donova MV. Localization of 17beta-hydroxysteroid dehydrogenase in Mycobacterium sp. VKM Ac-1815D mutant strain. J Steroid Biochem Mol Biol 2005; 94:519-25. [PMID: 15876416 DOI: 10.1016/j.jsbmb.2004.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 12/08/2004] [Indexed: 11/20/2022]
Abstract
The localization of mycobacterial 17beta-hydroxysteroid dehydrogenase (17beta-OH SDH) was studied using cell fractionation and cytochemical investigation. Mycobacterium sp. Et1 mutant strain derived from Mycobacterium sp. VKM Ac-1815D and characterized by increased 17beta-OH SDH activity was used as a model organism. Subcellular distribution study showed both soluble and membrane-bound forms of mycobacterial 17beta-hydroxysteroid dehydrogenase. The cytochemical method based on a copper ferrocyanide procedure followed by electron microscopic visualization was applied in order to investigate the intracellular localization of bacterial 17beta-OH SDH in more detail. The enzyme was found to be located in the peripheral cytoplasmic zone adjoining the cytoplasmic membrane (CM). 17beta-OH SDH was loosely membrane bound and easily released into the environment under the cell integrity failure.
Collapse
Affiliation(s)
- O V Egorova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | | | | | | |
Collapse
|
9
|
Fernandes P, Cruz A, Angelova B, Pinheiro H, Cabral J. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00029-2] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Korycka-Machała M, Ziółkowski A, Rumijowska-Galewicz A, Lisowska K, Sedlaczek L. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2769-2781. [PMID: 11577156 DOI: 10.1099/00221287-147-10-2769] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycations [protamine, polymyxin B nonapeptide (PMBN) and polyethyleneimine (PEI)] have been shown to increase the cell wall permeability of Mycobacterium vaccae to highly hydrophobic compounds, as manifested in enhanced intracellular bioconversion of beta-sitosterol to 4-androsten-3,17-dione (AD) and 1,4-androstadien-3,17-dione (ADD), and cell sensitization to erythromycin and rifampicin. The quantity of AD(D) formed per biomass unit was twice as high in the presence of PMBN and PEI, and three times higher with protamine. The sensitization factor, i.e. the MIC(50) ratio of the control bacteria to those exposed to polycations, ranged from 4 to 16, depending on the polycation/antibiotic combination. Non-covalently bound free lipids were extracted from the control and polycation-treated cells and fractionated with the use of chloroform, acetone and methanol. Chloroform- and acetone-eluted fractions (mainly neutral lipids and glycolipids, respectively) showed significant polycation-induced alterations in their quantitative and qualitative composition. The fatty acid profile of neutral lipids was reduced in comparison to control, whereas acetone-derived lipids were characterized by a much higher level of octadecenoic acid (C(18:1)) and a considerably lower content of docosanoic acid (C(22:0)), the marker compound of mycolate-containing glycolipids. Methanol-eluted fractions remained unaltered. Cell-wall-linked mycolates obtained from delipidated cells were apparently unaffected by the action of polycations, as judged from the TLC pattern of mycolic acid subclasses, the mean weight of mycolate preparations and the C(22:0) acid content in the mycolates, determined by GC/MS and pyrolysis GC. The results suggest the involvement of the components of non-covalently bound lipids in the outer layer in the M. vaccae permeability barrier.
Collapse
Affiliation(s)
| | - Andrzej Ziółkowski
- Centre for Microbiology & Virology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland1
| | - Anna Rumijowska-Galewicz
- Centre for Microbiology & Virology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland1
| | - Katarzyna Lisowska
- University of Łódź, Institute of Microbiology and Immunology, Department of Industrial Microbiology, 90-237 Łódź, Banacha 12/16, Poland2
| | - Leon Sedlaczek
- Centre for Microbiology & Virology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland1
| |
Collapse
|
11
|
Transformation of sterols byMycobacterium vaccae: effect of lecithin on the permeability of cell envelopes to sterols. World J Microbiol Biotechnol 1997. [DOI: 10.1007/bf02770813] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|