1
|
Wen C, Pan Z, Liang S, Shen L, Wen X, Wang C. Fine Structure of the Visual System of Arge similis (Hymenoptera, Argidae). INSECTS 2022; 13:152. [PMID: 35206725 PMCID: PMC8880150 DOI: 10.3390/insects13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
External morphology and ultrastructure of the visual system of Arge similis (Vollenhoven, 1860) adults were investigated by light microscopy, scanning electron microscopy, and transmission electron microscopy. Each compound eye contains 2022 ± 89 (mean ± SE) facets in males and 2223 ± 52 facets in females. Arge similis has an apposition kind of compound eye composed of a cornea, a crystalline cone of four cone cells, and a centrally fused rhabdom made up of the rhabdomeres of eight large retinular cells. Each crystalline cone is surrounded by primary and secondary pigment cells with black spherical screening pigment granules measuring 0.60 ± 0.02 and 0.41 ± 0.01 μm in diameter, respectively. Based on our findings, the compound eye of A. similis can be expected to exhibit high adaptability to light intensity changes.
Collapse
Affiliation(s)
| | | | | | | | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.W.); (Z.P.); (S.L.); (L.S.)
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.W.); (Z.P.); (S.L.); (L.S.)
| |
Collapse
|
2
|
Saidi-Mehrabad A, Kits DK, Kim JJ, Tamas I, Schumann P, Khadka R, Strilets T, Smirnova AV, Rijpstra WIC, Sinninghe Damsté JS, Dunfield PF. Methylicorpusculum oleiharenae gen. nov., sp. nov., an aerobic methanotroph isolated from an oil sands tailings pond. Int J Syst Evol Microbiol 2020; 70:2499-2508. [DOI: 10.1099/ijsem.0.004064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0–3.3 µm in length and 1.0–1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and
Methylomicrobium
were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class
Gammaproteobacteria
and family
Methylococcaceae
, most closely related to members of the genera
Methylomicrobium
and
Methylobacter
(95.0–97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA–DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.
Collapse
Affiliation(s)
- Alireza Saidi-Mehrabad
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Dimitri K. Kits
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ivica Tamas
- Departman Za Biologiju I Ekologiju, Prirodno-Matematicki Fakultet, Univerzitet u Novom Sadu, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Peter Schumann
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures. Inhoffenstr. 7 B 38124 Braunschweig, Germany
| | - Roshan Khadka
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Tania Strilets
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Angela V. Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
3
|
Bender M, Conrad R. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1992.tb01663.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Murase J, Hordijk K, Tayasu I, Bodelier PLE. Strain-specific incorporation of methanotrophic biomass into eukaryotic grazers in a rice field soil revealed by PLFA-SIP. FEMS Microbiol Ecol 2010; 75:284-90. [PMID: 21133958 DOI: 10.1111/j.1574-6941.2010.01007.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In wetland ecosystems, methane is actively utilized by methanotrophs. The immobilized methane carbon is then passed on to other organisms such as grazers. Here, we traced the incorporation of methanotrophic biomass into eukaryotes in a rice field soil using phospholipid fatty acid stable-isotope probing (PLFA-SIP). Addition of (13)C-labeled cells of five methanotrophs to soil (5 × 10(7) cells g(-1) soil) did not affect the CO(2) release rate, but significantly increased the carbon isotopic ratio within 24 h. In 48 h, 2-7% of the added bacterial biomass carbon was detected as (13)CO(2) . The soil with Methylobacter luteus released the highest amount of (13)CO(2) , comparable to that with Escherichia coli. The amount of polyunsaturated PLFAs (C18:3ω6c and C20:4ω6c) was not affected by the addition of bacterial cells to soil, but their carbon isotopic ratio increased significantly within 24-48 h. The extent of (13)C-enrichment in PLFAs differed between the added methanotrophs, with the highest labeling upon addition of M. luteus. The relative abundance of (13) C-labeled C18:3ω6c to C20:4ω6C also differed between the strains. The results indicated that the eukaryotes in soil, probably protozoa, preferentially graze on specific methanotrophs and immediately incorporate their biomass.
Collapse
Affiliation(s)
- Jun Murase
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
5
|
Horz HP, Raghubanshi AS, Heyer J, Kammann C, Conrad R, Dunfield PF. Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 2009; 41:247-57. [PMID: 19709259 DOI: 10.1111/j.1574-6941.2002.tb00986.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The structure and activity of the methane-oxidising microbial community in a wet meadow soil in Germany were investigated using biogeochemical, cultivation, and molecular fingerprinting techniques. Both methane from the atmosphere and methane produced in anaerobic subsurface soil were oxidised. The specific affinity (first-order rate constant) for methane consumption was highest in the top 20 cm of soil and the apparent half-saturation constant was 137-300 nM CH(4), a value intermediate to measured values in wetland soils versus well-aerated upland soils. Most-probable-number (MPN) counting of methane-oxidising bacteria followed by isolation and characterisation of strains from the highest positive dilution steps suggested that the most abundant member of the methane-oxidising community was a Methylocystis strain (10(5)-10(7) cells g(-1) d.w. soil). Calculations based on kinetic data suggested that this cell density was sufficient to account for the observed methane oxidation activity in the soil. DNA extraction directly from the same soil samples, followed by PCR amplification and comparative sequence analyses of the pmoA gene, also detected Methylocystis. However, molecular community fingerprinting analyses revealed a more diverse and dynamic picture of the methane-oxidising community. Retrieved pmoA sequences included, besides those closely related to Methylocystis spp., others related to the genera Methylomicrobium and Methylocapsa, and there were differences across samples which were not evident in MPN analyses.
Collapse
Affiliation(s)
- Hans-Peter Horz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Bussmann I, Pester M, Brune A, Schink B. Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiol Ecol 2009; 47:179-89. [PMID: 19712333 DOI: 10.1016/s0168-6496(03)00260-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Most widely used medium for cultivation of methanotrophic bacteria from various environments is that proposed in 1970 by Whittenbury. In order to adapt and optimize medium for culturing of methanotrophs from freshwater sediment, media with varying concentrations of substrates, phosphate, nitrate, and other mineral salts were used to enumerate methanotrophs by the most probable number method. High concentrations (>1 mM) of magnesium and sulfate, and high concentrations of nitrate (>500 microM) significantly reduced the number of cultured methanotrophs, whereas phosphate in the range of 15-1500 microM had no influence. Also oxygen and carbon dioxide influenced the culturing efficiency, with an optimal mixing ratio of 17% O(2) and 3% CO(2); the mixing ratio of methane (6-32%) had no effect. A clone library of pmoA genes amplified by PCR from DNA extracted from sediment revealed the presence of both type I and type II methanotrophs. Nonetheless, the cultivation of methanotrophs, also with the improved medium, clearly favored growth of type II methanotrophs of the Methylosinus/Methylocystis group. Although significantly more methanotrophs could be cultured with the modified medium, their diversity did not mirror the diversity of methanotrophs in the sediment sample detected by molecular biology method.
Collapse
Affiliation(s)
- Ingeborg Bussmann
- LS Mikrobielle Okologie, Fachbereich Biologie, Universität Konstanz, Germany.
| | | | | | | |
Collapse
|
7
|
Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR. Methanotrophs and methanotrophic activity in engineered landfill biocovers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:2509-2517. [PMID: 19477627 DOI: 10.1016/j.wasman.2009.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 05/27/2023]
Abstract
The dynamics and changes in the potential activity and community structure of methanotrophs in landfill covers, as a function of time and depth were investigated. A passive methane oxidation biocover (PMOB-1) was constructed in St-Nicéphore MSW Landfill (Quebec, Canada). The most probable number (MPN) method was used for methanotroph counts, methanotrophic diversity was assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the pmoA gene and the potential CH(4) oxidation rate was determined using soil microcosms. Results of the PMOB-1 were compared with those obtained for the existing landfill cover (silty clay) or a reference soil (RS). During the monitoring period, changes in the number of methanotrophic bacteria in the PMOB-1 exhibited different developmental phases and significant variations with depth. In comparison, no observable changes over time occurred in the number of methanotrophs in the RS. The maximum counts measured in the uppermost layer was 1.5x10(9) cells g dw(-1) for the PMOB-1 and 1.6x10(8) cells g dw(-1) for the RS. No distinct difference was observed in the methanotroph diversity in the PMOB-1 or RS. As expected, the potential methane oxidation rate was higher in the PMOB-1 than in the RS. The maximum potential rates were 441.1 and 76.0 microg CH(4) h(-1) g dw(-1) in the PMOB and RS, respectively. From these results, the PMOB was found to be a good technology to enhance methane oxidation, as its performance was clearly better than the starting soil that was present in the landfill site.
Collapse
Affiliation(s)
- S Ait-Benichou
- Faculty of Engineering, Civil Engineering Department, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec, Canada J1K 2R1
| | | | | | | |
Collapse
|
8
|
Murase J, Frenzel P. Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol Ecol 2008; 65:408-14. [DOI: 10.1111/j.1574-6941.2008.00511.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Bussmann I, Rahalkar M, Schink B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 2006; 56:331-44. [PMID: 16689866 DOI: 10.1111/j.1574-6941.2006.00076.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In sediments, methane-oxidizing bacteria live in opposing gradients of methane and oxygen. In such a gradient system, the fluxes of methane and oxygen are controlled by diffusion and consumption rates, and the rate-limiting substrate is maintained at a minimum concentration at the layer of consumption. Opposing gradients of methane and oxygen were mimicked in a specific cultivation set-up in which growth of methanotrophic bacteria occurred as a sharp band at either c. 5 or 20 mm below the air-exposed end. Two new strains of methanotrophic bacteria were isolated with this system. One isolate, strain LC 1, belonged to the Methylomonas genus (type I methantroph) and contained soluble methane mono-oxygenase. Another isolate, strain LC 2, was related to the Methylobacter group (type I methantroph), as determined by 16S rRNA gene and pmoA sequence similarities. However, the partial pmoA sequence was only 86% related to cultured Methylobacter species. This strain accumulated significant amounts of formaldehyde in conventional cultivation with methane and oxygen, which may explain why it is preferentially enriched in a gradient cultivation system.
Collapse
Affiliation(s)
- Ingeborg Bussmann
- LS Mikrobielle Okologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.
| | | | | |
Collapse
|
10
|
Jäckel U, Thummes K, Kämpfer P. Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 2004; 52:175-84. [PMID: 16329904 DOI: 10.1016/j.femsec.2004.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 08/04/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022] Open
Abstract
Methane cycling within compost heaps has not yet been investigated in detail. We show that thermophilic methane oxidation occurred after a lag phase of up to one day in 4-week old, 8-week old and mature (>10-week old) compost material. The potential rate of methane oxidation was between 2.6 and 4.1 micromol CH4(gdw)(-1)h(-1). Profiles of methane concentrations within heaps of different ages indicated that 46-98% of the methane produced was oxidised by methanotrophic bacteria. The population size of thermophilic methanotrophs was estimated at 10(9) cells (gdw)(-1), based on methane oxidation rates. A methanotroph (strain KTM-1) was isolated from the highest positive step of a serial dilution series. This strain belonged to the genus Methylocaldum, which contains thermotolerant and thermophilic methanotrophs. The closest relative organism on the basis of 16S rRNA gene sequence identity was M. szegediense (>99%), a species originally isolated from hot springs. The temperature optimum (45-55 degrees C) for methane oxidation within the compost material was identical to that of strain KTM-1, suggesting that this strain was well adapted to the conditions in the compost material. The temperatures measured in the upper layer (0-40 cm) of the compost heaps were also in this range, so we assume that these organisms are capable of effectively reducing the potential methane emissions from compost.
Collapse
Affiliation(s)
- Udo Jäckel
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
11
|
Heyer J, Galchenko VF, Dunfield PF. Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2831-2846. [PMID: 12213929 DOI: 10.1099/00221287-148-9-2831] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type II methane-oxidizing bacteria (MOB) were isolated from diverse environments, including rice paddies, pristine and polluted freshwaters and sediments, mangrove roots, upland soils, brackish water ecosystems, moors, oil wells, water purification systems and livestock manure. Isolates were identified based on morphological traits as either Methylocystis spp., Methylosinus sporium or Methylosinus trichosporium. Molecular phylogenies were constructed based on nearly complete 16S rRNA gene sequences, and on partial sequences of genes encoding PmoA (a subunit of particulate methane monooxygenase), MxaF (a subunit of methanol dehydrogenase) and MmoX (a subunit of soluble methane monooxygenase). The maximum pairwise 16S rDNA difference between isolates was 4.2%, and considerable variability was evident within the Methylocystis (maximum difference 3.6%). Due to this variability, some of the published 'specific' oligonucleotide primers for type II MOB exhibit multiple mismatches with gene sequences from some isolates. The phylogenetic tree constructed from pmoA gene sequences closely mirrored that constructed from 16S rDNA sequences, and both supported the presently accepted taxonomy of type II MOB. Contrary to previously published phylogenetic trees, morphologically distinguishable species were generally monophyletic based on pmoA or 16S rRNA gene sequences. This was not true for phylogenies constructed from mmoX and mxaF gene sequences. The phylogeny of mxaF gene sequences suggested that horizontal transfer of this gene may have occurred across type II MOB species. Soluble methane monooxygenase could not be detected in many Methylocystis strains either by an enzyme activity test (oxidation of naphthalene) or by PCR-based amplification of an mmoX gene.
Collapse
Affiliation(s)
- Jürgen Heyer
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany1
| | - Valery F Galchenko
- Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia2
| | - Peter F Dunfield
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany1
| |
Collapse
|
12
|
Dunfield PF, Yimga MT, Dedysh SN, Berger U, Liesack W, Heyer JÃ. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol 2002; 41:17-26. [DOI: 10.1111/j.1574-6941.2002.tb00962.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Sokolov A, Trotsenko Y. Methane consumption in (hyper) saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 1995. [DOI: 10.1111/j.1574-6941.1995.tb00186.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Conrad R, Frenzel P, Cohen Y. Methane emission from hypersaline microbial mats: Lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 1995. [DOI: 10.1111/j.1574-6941.1995.tb00294.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Conrad R. Soil Microbial Processes Involved in Production and Consumption of Atmospheric Trace Gases. ADVANCES IN MICROBIAL ECOLOGY 1995. [DOI: 10.1007/978-1-4684-7724-5_5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
16
|
Bender M, Conrad R. Methane oxidation activity in various soils and freshwater sediments: Occurrence, characteristics, vertical profiles, and distribution on grain size fractions. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94jd00266] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Bender M, Conrad R. Kinetics of CH4oxidation in oxic soils exposed to ambient air or high CH4mixing ratios. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05783.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
King GM. Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics. ADVANCES IN MICROBIAL ECOLOGY 1992. [DOI: 10.1007/978-1-4684-7609-5_9] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
|
20
|
Frenzel P, Thebrath B, Conrad R. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb03935.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
|
22
|
Abstract
Four new methane-oxidizing bacteria have been isolated from marine samples taken at the Hyperion sewage outfall, near Los Angeles, CA. These bacteria require NaCl for growth. All exhibit characteristics typical of Type I methanotrophs, except they contain enzyme activities of both the ribulose monophosphate pathway and the serine cycle. All four strains are characterized by rapid growth in liquid culture and on agar plates, and all have temperature optima above 35 degrees C. One strain, chosen for further study, has been shown to maintain broadhost range cloning vectors and is currently being used for genetic studies.
Collapse
Affiliation(s)
- M E Lidstrom
- Keck Laboratories, California Institute of Technology, Pasadena 91125
| |
Collapse
|