1
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Bone Healing of Critical-Sized Femoral Defects in Rats Treated with Erythropoietin Alone or in Combination with Xenograft. Vet Sci 2023; 10:vetsci10030196. [PMID: 36977235 PMCID: PMC10056540 DOI: 10.3390/vetsci10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Critical-size bone defect models are the standard in studies of the osteogenic potential of biomaterials. The present investigation aimed to evaluate the ability of recombinant human erythropoietin (EPO) to induce trabecular bone healing either alone or combined with a xenograft in a rat femoral critical-size defect model. Five-mm bone defects were created in the femoral diaphysis of fifty-six skeletally mature male Wistar albino rats. The animals were divided into six groups: one control group and five experimental groups. The defects in the control group were left empty, whereas an absorbable collagen cone soaked either with saline or erythropoietin (alone or in combination with xenograft) was placed in locally treated groups. The systemic treatment group received EPO subcutaneously. Bone formation was objectively evaluated through radiography, osteodensitometry and histological examination on post-operative days 30 and 90. The results demonstrate that EPO, locally applied on a collagen scaffold, was capable of inducing bone healing, whereas the single systemically administered high EPO dose had only an insignificant effect on bone formation. The combination of EPO with a bone substitute under the form of cancellous granules resulted in more rapid integration between the xenograft and host bone.
Collapse
|
3
|
Saunders WB, Dejardin LM, Soltys-Niemann EV, Kaulfus CN, Eichelberger BM, Dobson LK, Weeks BR, Kerwin SC, Gregory CA. Angle-stable interlocking nailing in a canine critical-sized femoral defect model for bone regeneration studies: In pursuit of the principle of the 3R’s. Front Bioeng Biotechnol 2022; 10:921486. [PMID: 36118571 PMCID: PMC9479202 DOI: 10.3389/fbioe.2022.921486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Critical-sized long bone defects represent a major therapeutic challenge and current treatment strategies are not without complication. Tissue engineering holds much promise for these debilitating injuries; however, these strategies often fail to successfully translate from rodent studies to the clinical setting. The dog represents a strong model for translational orthopedic studies, however such studies should be optimized in pursuit of the Principle of the 3R’s of animal research (replace, reduce, refine). The objective of this study was to refine a canine critical-sized femoral defect model using an angle-stable interlocking nail (AS-ILN) and reduce total animal numbers by performing imaging, biomechanics, and histology on the same cohort of dogs. Methods: Six skeletally mature hounds underwent a 4 cm mid-diaphyseal femoral ostectomy followed by stabilization with an AS-ILN. Dogs were assigned to autograft (n = 3) or negative control (n = 3) treatment groups. At 6, 12, and 18 weeks, healing was quantified by ordinal radiographic scoring and quantified CT. After euthanasia, femurs from the autograft group were mechanically evaluated using an established torsional loading protocol. Femurs were subsequently assessed histologically. Results: Surgery was performed without complication and the AS-ILN provided appropriate fixation for the duration of the study. Dogs assigned to the autograft group achieved radiographic union by 12 weeks, whereas the negative control group experienced non-union. At 18 weeks, median bone and soft tissue callus volume were 9,001 mm3 (range: 4,939–10,061) for the autograft group and 3,469 mm3 (range: 3,085–3,854) for the negative control group. Median torsional stiffness for the operated, autograft treatment group was 0.19 Nm/° (range: 0.19–1.67) and torque at failure was 12.0 Nm (range: 1.7–14.0). Histologically, callus formation and associated endochondral ossification were identified in the autograft treatment group, whereas fibrovascular tissue occupied the critical-sized defect in negative controls. Conclusion: In a canine critical-sized defect model, the AS-ILN and described outcome measures allowed refinement and reduction consistent with the Principle of the 3R’s of ethical animal research. This model is well-suited for future canine translational bone tissue engineering studies.
Collapse
Affiliation(s)
- W. B. Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
- *Correspondence: W. B. Saunders,
| | - L. M. Dejardin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - E. V. Soltys-Niemann
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - C. N. Kaulfus
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - B. M. Eichelberger
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - L. K. Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - B. R. Weeks
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - S. C. Kerwin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - C. A. Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, School of Medicine, Texas A & M Health Science Center, College Station, TX, United States
| |
Collapse
|
4
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Hixon KR, McKenzie JA, Sykes DAW, Yoneda S, Hensley A, Buettmann EG, Zheng H, Skouteris D, McAlinden A, Miller AN, Silva MJ. Ablation of Proliferating Osteoblast Lineage Cells After Fracture Leads to Atrophic Nonunion in a Mouse Model. J Bone Miner Res 2021; 36:2243-2257. [PMID: 34405443 PMCID: PMC8719642 DOI: 10.1002/jbmr.4424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023]
Abstract
Nonunion is defined as the permanent failure of a fractured bone to heal, often necessitating surgical intervention. Atrophic nonunions are a subtype that are particularly difficult to treat. Animal models of atrophic nonunion are available; however, these require surgical or radiation-induced trauma to disrupt periosteal healing. These methods are invasive and not representative of many clinical nonunions where osseous regeneration has been arrested by a "failure of biology". We hypothesized that arresting osteoblast cell proliferation after fracture would lead to atrophic nonunion in mice. Using mice that express a thymidine kinase (tk) "suicide gene" driven by the 3.6Col1a1 promoter (Col1-tk), proliferating osteoblast lineage cells can be ablated upon exposure to the nucleoside analog ganciclovir (GCV). Wild-type (WT; control) and Col1-tk littermates were subjected to a full femur fracture and intramedullary fixation at 12 weeks age. We confirmed abundant tk+ cells in fracture callus of Col-tk mice dosed with water or GCV, specifically many osteoblasts, osteocytes, and chondrocytes at the cartilage-bone interface. Histologically, we observed altered callus composition in Col1-tk mice at 2 and 3 weeks postfracture, with significantly less bone and more fibrous tissue. Col1-tk mice, monitored for 12 weeks with in vivo radiographs and micro-computed tomography (μCT) scans, had delayed bone bridging and reduced callus size. After euthanasia, ex vivo μCT and histology showed failed union with residual bone fragments and fibrous tissue in Col1-tk mice. Biomechanical testing showed a failure to recover torsional strength in Col1-tk mice, in contrast to WT. Our data indicates that suppression of proliferating osteoblast-lineage cells for at least 2 weeks after fracture blunts the formation and remodeling of a mineralized callus leading to a functional nonunion. We propose this as a new murine model of atrophic nonunion. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - David A W Sykes
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin Hensley
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Dimitrios Skouteris
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA.,St. Louis Shriners Hospital Research Center, Shriners Hospital for Children, St. Louis, MO, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Surgical Fixation Hardware for Regeneration of Long Bone Segmental Defects: Translating Large Animal Model and Human Experiences. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Lozada-Gallegos AR, Letechipia-Moreno J, Palma-Lara I, Montero AA, Rodríguez G, Castro-Muñozledo F, Cornejo-Cortés MA, Juárez-Mosqueda ML. Development of a bone nonunion in a noncritical segmental tibia defect model in sheep utilizing interlocking nail as an internal fixation system. J Surg Res 2013; 183:620-8. [DOI: 10.1016/j.jss.2013.02.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/20/2013] [Accepted: 02/28/2013] [Indexed: 11/25/2022]
|
8
|
Abstract
This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature. We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model when considering its application.
Collapse
Affiliation(s)
- L. A. Mills
- Royal National Orthopaedic Hospital, Stanmore, Brockley
Hill, Middlesex HA7 4LP, UK
| | - A. H. R. W. Simpson
- Edinburgh University, Department
of Orthopaedics and Trauma, Chancellors Building, Little
France, Edinburgh EH16 4SB, UK
| |
Collapse
|
9
|
Geris L, Reed AAC, Vander Sloten J, Simpson AHRW, Van Oosterwyck H. Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 2010; 6:e1000915. [PMID: 20824125 PMCID: PMC2932678 DOI: 10.1371/journal.pcbi.1000915] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 08/03/2010] [Indexed: 12/15/2022] Open
Abstract
Recently developed atrophic non-union models are a good representation of the clinical situation in which many non-unions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for the early treatment of patients with problematic fractures. In light of the ageing population, the occurrence of bone fractures is expected to rise substantially in the near future. In 5 to 10% of these cases, the healing process does not succeed in repairing the bone, leading to the formation of delayed unions or even non-unions. In this study we used a combination of an animal model mimicking a clinical non-union situation and a mathematical model developed for normal fracture healing to investigate both the causes of non-union formation and potential therapeutic strategies that can be applied to restart the healing process. After showing that the mathematical model is able to simulate key aspects of the non-union formation, we have used it to investigate several treatment strategies. One of these strategies, the treatment of a non-union involving a transplantation of cells from the bone marrow to the fracture site, was also tested in a pilot animal experiment. Both the simulations and the experiments showed the formation of a bony union between the fractured bone ends. In addition, we used the mathematical model to explain some unexpected experimental observations. This study demonstrates the added value of using a combination of mathematical modelling and experimental research as well the potential of using cell transplantation for the treatment of non-unions.
Collapse
Affiliation(s)
- Liesbet Geris
- Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Andersen T, Christensen FB, Langdahl BL, Ernst C, Fruensgaard S, Ostergaard J, Andersen JL, Rasmussen S, Niedermann B, Høy K, Helmig P, Holm R, Lindblad BE, Hansen ES, Egund N, Bünger C. Fusion mass bone quality after uninstrumented spinal fusion in older patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:2200-8. [PMID: 20429017 DOI: 10.1007/s00586-010-1373-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/22/2010] [Accepted: 03/07/2010] [Indexed: 01/22/2023]
Abstract
Older people are at increased risk of non-union after spinal fusion, but little is known about the factors determining the quality of the fusion mass in this patient group. The aim of this study was to investigate fusion mass bone quality after uninstrumented spinal fusion and to evaluate if it could be improved by additional direct current (DC) electrical stimulation. A multicenter RCT compared 40 and 100 μA DC stimulation with a control group of uninstrumented posterolateral fusion in patients older than 60 years. This report comprised 80 patients who underwent DEXA scanning at the 1 year follow-up. The study population consisted of 29 men with a mean age of 72 years (range 62-85) and 51 women with a mean age of 72 years (range 61-84). All patients underwent DEXA scanning of their fusion mass. Fusion rate was assessed at the 2 year follow-up using thin slice CT scanning. DC electrical stimulation did not improve fusion mass bone quality. Smokers had lower fusion mass BMD (0.447 g/cm(2)) compared to non-smokers (0.517 g/cm(2)) (P = 0.086). Women had lower fusion mass BMD (0.460 g/cm(2)) compared to men (0.552 g/cm(2)) (P = 0.057). Using linear regression, fusion mass bone quality, measured as BMD, was significantly influenced by gender, age of the patient, bone density of the remaining part of the lumbar spine, amount of bone graft applied and smoking. Fusion rates in this cohort was 34% in the control group and 33 and 43% in the 40 and 100 μA groups, respectively (not significant). Patients classified as fused after 2 years had significant higher fusion mass BMD at 1 year (0.592 vs. 0.466 g/cm(2), P = 0.0001). Fusion mass bone quality in older patients depends on several factors. Special attention should be given to women with manifest or borderline osteoporosis. Furthermore, bone graft materials with inductive potential might be considered for this patient population.
Collapse
Affiliation(s)
- Thomas Andersen
- Spine Section, Orthopaedic Research Laboratory, Orthopaedic Department E, Aarhus University Hospital, Building 1A, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Selecting the most appropriate outcome measures can be especially burdensome in trials studying fracture healing, because the process of fracture healing is subjective and without a gold standard. Although a wide variety of radiographic modalities are available, plain radiography remains the most common approach for healing assessment. Radiographic criteria, however, do not correlate well with fracture strength and stiffness. Additional challenges include a lack of consensus in what radiographic measures are most appropriate in the assessment of healing. In this article, we provide an overview of the most commonly used radiographic and clinical criteria for defining fracture healing. The validity and reliability of alternative approaches is also discussed.
Collapse
|
12
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Kratzel C, Bergmann C, Duda G, Greiner S, Schmidmaier G, Wildemann B. Characterization of a rat osteotomy model with impaired healing. BMC Musculoskelet Disord 2008; 9:135. [PMID: 18842126 PMCID: PMC2571093 DOI: 10.1186/1471-2474-9-135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 10/08/2008] [Indexed: 11/10/2022] Open
Abstract
Background Delayed union or nonunion are frequent and feared complications in fracture treatment. Animal models of impaired bone healing are rare. Moreover, specific descriptions are limited although understanding of the biological course of pathogenesis of fracture nonunion is essential for therapeutic approaches. Methods A rat tibial osteotomy model with subsequent intramedullary stabilization was performed. The healing progress of the osteotomy model was compared to a previously described closed fracture model. Histological analyses, biomechanical testing and radiological screening were undertaken during the observation period of 84 days (d) to verify the status of the healing process. In this context, particular attention was paid to a comparison of bone slices by histological and immunohistological (IHC) methods at early points in time, i.e. at 5 and 10 d post bone defect. Results In contrast to the closed fracture technique osteotomy led to delayed union or nonunion until 84 d post intervention. The dimensions of whole reactive callus and the amounts of vessels in defined regions of the callus differed significantly between osteotomized and fractured animals at 10 d post surgery. A lower fraction of newly formed bone and cartilaginous tissue was obvious during this period in osteotomized animals and more inflammatory cells were observed in the callus. Newly formed bone tissue accumulated slowly on the anterior tibial side with both techniques. New formation of reparative cartilage was obviously inhibited on the anterior side, the surgical approach side, in osteotomized animals only. Conclusion Tibial osteotomy with intramedullary stabilisation in rats leads to pronounced delayed union and nonunion until 84 d post intervention. The early onset of this delay can already be detected histologically within 10 d post surgery. Moreover, the osteotomy technique is associated with cellular and vascular signs of persistent inflammation within the first 10 d after bone defect and may be a contributory factor to impaired healing. The model would be excellent to test agents to promote fracture healing.
Collapse
Affiliation(s)
- Christine Kratzel
- Julius Wolff Institut, BCRT, CMSC Charité-Universitätsmedizin Berlin Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Morshed S, Corrales L, Genant H, Miclau T. Outcome assessment in clinical trials of fracture-healing. J Bone Joint Surg Am 2008; 90 Suppl 1:62-7. [PMID: 18292359 DOI: 10.2106/jbjs.g.01556] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although there are numerous methods for defining fracture-healing in clinical studies, no consensus exists regarding the most valid and reliable manner for assessing union or for determining which outcomes are most important. This article summarizes and describes methods for the clinical assessment of fracture-healing and reports results from a systematic review of prevalent definitions currently used in published clinical studies. Conventional radiography and ad hoc clinical definitions continue to be the most commonly used means of assessing fracture-healing in clinical studies. Investigators must improve upon and apply more rigorous outcome assessment in clinical trials, emphasize patient-important outcomes, and report factors that may bias estimated effects.
Collapse
Affiliation(s)
- Saam Morshed
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, Room 3A-36, San Francisco, CA 94110, USA
| | | | | | | |
Collapse
|
15
|
Kokubu T, Hak DJ, Hazelwood SJ, Reddi AH. Development of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J Orthop Res 2003; 21:503-10. [PMID: 12706024 DOI: 10.1016/s0736-0266(02)00209-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although most fractures heal, some fail to heal and become nonunions. Many animal models have been developed to study problems of fracture healing. The majority of nonunion models have involved segmental bone defects, but this may not adequately represent the biologic condition in which nonunions clinically develop. The objective of the present study is to develop a nonunion model that better simulates the clinical situation in which there is soft tissue damage including periosteal disruption and to compare this model to a standard closed fracture model utilizing identical fracture stabilization, providing a similar mechanical environment. A total of 96 three month old Long Evans rats were utilized. A 1.25 mm diameter K-wire was inserted into the femur in a retrograde fashion, and a mid-diaphyseal closed transverse fracture was created using a standard three-point bending device. To create a nonunion, 48 of the rats received additional surgery to the fractured femur. The fracture site was exposed and 2 mm of the periosteum was cauterized on each side of the fracture. Fracture healing was evaluated with serial radiographs every two weeks. Animals were maintained for intervals of two, four, six or eight weeks after surgery. Specimens from each time interval were subjected to biomechanical and histological evaluation. None of the cauterized fractures healed throughout the eight weeks experimental duration. The radiographical appearance of nonunion models was atrophic. This investigation showed pronounced differences between the experimental nonunions and standard closed fractures both histologically and biomechanically. In conclusion, we have developed a reproducible atrophic nonunion model in the rat femur that simulates the clinical condition in which there is periosteal disruption but no bone defect.
Collapse
Affiliation(s)
- Takeshi Kokubu
- Department of Orthopaedic Surgery and Center for Tissue Regeneration and Repair, University of California, Davis, 4860 Y Street, Suite 3800, Sacramento 95817, USA
| | | | | | | |
Collapse
|
16
|
Lauten SD, Cox NR, Brawner WR, Baker HJ. Use of dual energy x-ray absorptiometry for noninvasive body composition measurements in clinically normal dogs. Am J Vet Res 2001; 62:1295-301. [PMID: 11497454 DOI: 10.2460/ajvr.2001.62.1295] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine quantitative values for components of body composition in clinically normal dogs of various breeds by use of dual energy x-ray absorptiometry (DEXA) and validate the precision and accuracy of DEXA technology in dogs. ANIMALS 103 clinically normal sexually intact adult dogs. PROCEDURE In a cross-sectional study, Beagles, Pembroke Welsh Corgis, Golden Retrievers, Great Danes, Pointers, Rottweilers, and nonpurebred dogs received total body DEXA scans. For the validation portion of the study, the results of DEXA scans of 6 dogs were compared with values obtained by chemical analyses of tissues from euthanatized dogs to determine the accuracy of this modality in dogs. RESULTS Results (coefficient of variation) of the precision tests ranged from 0.10% for lean tissue to 5.19% for fat tissue, whereas accuracy tests revealed a difference between percentage bone mineral content and ash values. Body composition differed by sex, such as higher lean tissue and bone mineral content in males within some breeds, and among breeds. Regardless of body size or weight, the percentage of body weight that was bone mineral ranged from 3 to 4.0% [corrected]. CONCLUSIONS AND CLINICAL RELEVANCE Results of this cross-sectional study provide valuable body composition data for clinically normal adult dogs, which may have research and clinical applications.
Collapse
Affiliation(s)
- S D Lauten
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | | | | | | |
Collapse
|
17
|
Blokhuis TJ, den Boer FC, Bramer JA, van Lingen A, Roos JC, Bakker FC, Patka P, Haarman HJ. Evaluation of strength of healing fractures with dual energy Xray absorptiometry. Clin Orthop Relat Res 2000:260-8. [PMID: 11065000 DOI: 10.1097/00003086-200011000-00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dual energy xray absorptiometry was investigated as a method for evaluation of the strength of closed tibial fractures. In 40 goats, a closed midshaft fracture was created in the left tibia. The fractures were stabilized with an external fixator. After 2 weeks (n = 21) and after 4 weeks (n = 19), both tibias were explanted and, using dual energy xray absorptiometry, bone mineral density and bone mineral content were measured in a 1 cm region. With nondestructive bending tests, area ratio and stiffness index were determined and torsional strength and torsional stiffness were determined with a torsional test to failure. Linear regression analysis was used to calculate the squared correlation coefficients for the relations between dual energy xray absorptiometry and the outcome of the mechanical tests. The squared correlation coefficients for the relation between bone mineral density and torsional strength, torsional stiffness, and area ratio and stiffness index were 0.72, 0.76, 0.64, and 0.72, respectively. The squared correlation coefficients for the relation between bone mineral content and these mechanical parameters were 0.72, 0.77, 0.63, and 0.77, respectively. The results using dual energy xray absorptiometry indicate the strength of healing closed fractures. Additional research is required to investigate specific aspects of this technique.
Collapse
Affiliation(s)
- T J Blokhuis
- Department of Traumatology, Academic Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Emmerson TD, Lawes TJ, Goodship AE, Rueux-Mason C, Muir P. Dual-energy X-ray absorptiometry measurement of bone-mineral density in the distal aspect of the limbs in racing Greyhounds. Am J Vet Res 2000; 61:1214-9. [PMID: 11039550 DOI: 10.2460/ajvr.2000.61.1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine those bones in the distal aspect of the limbs of Greyhounds with fatigue fractures that have the greatest left-to-right differences in bone-mineral density (BMD). SAMPLE POPULATION Limbs obtained from 20 Greyhounds. PROCEDURE Dual-energy x-ray absorptiometry (DXA) of the distal aspect of each limb and isolated bones from 10 dogs with a fracture of the central tarsal bone (CTB) of the right pelvic limb was performed. High-resolution scanning was performed on excised bones, and BMD measurements of CTB also were obtained from limbs of dogs without a CTB fracture. RESULTS The BMD of the accessory carpal bone and calcaneus was not significantly different from the BMD of those bones in the contralateral limb. Although BMD of the CTB of the entire right pelvic limb and isolated bones from dogs with a CTB fracture was lower, compared with values for the entire left pelvic limb, values for isolated CTB from dogs without a CTB fracture were not significantly different. Metacarpal or metatarsal and thoracic or pelvic limb significantly affected BMD for measurements of the entire limb and isolated bones. Left-to-right differences in BMD were greatest for metacarpal 5. CONCLUSIONS AND CLINICAL RELEVANCE Asymmetric adaptive remodeling of metacarpal 5 can be detected by DXA. The potentially confounding effects of CTB fracture and unknown racing history made it difficult to interpret BMD changes in the CTB of these specimens. Densitometry could be developed as an in vivo assessment for risk of fractures in racing Greyhounds.
Collapse
Affiliation(s)
- T D Emmerson
- The Royal Veterinary College, University of London, Department of Small Animal Medicine and Surgery, North Mymms, Hertfordshire, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
den Boer FC, Patka P, Bakker FC, Wippermann BW, van Lingen A, Vink GQ, Boshuizen K, Haarman HJ. New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res 1999; 17:654-60. [PMID: 10569473 DOI: 10.1002/jor.1100170506] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An appropriate animal model is required for the study of treatments that enhance bone healing. A new segmental long bone defect model was developed for this purpose, and dual energy x-ray absorptiometry was used to quantify healing of this bone defect. In 15 sheep, a 3-cm segmental defect was created in the left tibia and fixed with an interlocking intramedullary nail. In seven animals, the defect was left empty for the assessment of the spontaneous healing response. In eight animals serving as a positive control, autologous bone grafting was performed. After 12 weeks, healing was evaluated with radiographs, a torsional test to failure, and dual energy x-ray absorptiometry. The mechanical test results were used for the assessment of unions and nonunions. Radiographic determination of nonunion was not reliably accomplished in this model. By means of dual energy x-ray absorptiometry, bone mineral density and content were measured in the middle of the defect. Bone mineral density was 91+/-7% (mean +/- SEM) and 72+/-6% that of the contralateral intact tibia in, respectively, the autologous bone-grafting and empty defect groups (p = 0.04). For bone mineral content, the values were, respectively, 117+/-18 and 82+/-9% (p = 0.07). Torsional strength and stiffness were also higher, although not significantly, in the group with autologous bone grafting than in that with the empty defect. Bone mineral density and content were closely related to the torsional properties (r2 ranged from 0.76 to 0.85, p < or = 0.0001). Because interlocking intramedullary nailing is a very common fixation method in patients, the newly developed segmental defect model has clinical relevance. The interlocking intramedullary nail provided adequate stability without implant failure. This model may be useful for the study of treatments that affect bone healing, and dual energy x-ray absorptiometry may be somewhat helpful in the analysis of healing of this bone defect.
Collapse
Affiliation(s)
- F C den Boer
- Department of Traumatology, Free University Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|