1
|
Hamada M, Eskelinen ASA, Florea C, Mikkonen S, Nieminen P, Grodzinsky AJ, Tanska P, Korhonen RK. Loss of collagen content is localized near cartilage lesions on the day of injurious loading and intensified on day 12. J Orthop Res 2024. [PMID: 39312444 DOI: 10.1002/jor.25975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Joint injury can lead to articular cartilage damage, excessive inflammation, and post-traumatic osteoarthritis (PTOA). Collagen is an essential component for cartilage function, yet current literature has limited understanding of how biochemical and biomechanical factors contribute to collagen loss in injured cartilage. Our aim was to investigate spatially dependent changes in collagen content and collagen integrity of injured cartilage, with an explant model of early-stage PTOA. We subjected calf knee cartilage explants to combinations of injurious loading (INJ), interleukin-1α-challenge (IL) and physiological cyclic loading (CL). Using Fourier transform infrared microspectroscopy, collagen content (Amide I band) and collagen integrity (Amide II/1338 cm-1 ratio) were estimated on days 0 and 12 post-injury. We found that INJ led to lower collagen content near lesions compared to intact regions on day 0 (p < 0.001). On day 12, near-lesion collagen content was lower compared to day 0 (p < 0.05). Additionally, on day 12, INJ, IL, and INJ + IL groups exhibited lower collagen content along most of tissue depth compared to free-swelling control group (p < 0.05). CL groups showed higher collagen content along most of tissue depth compared to corresponding groups without CL (p < 0.05). Immunohistochemical analysis revealed higher MMP-1 and MMP-3 staining intensities localized within cell lacunae in INJ group compared to CTRL group on day 0. Our results suggest that INJ causes rapid loss of collagen content near lesions, which is intensified on day 12. Additionally, CL could mitigate the loss of collagen content at intact regions after 12 days.
Collapse
Affiliation(s)
- Moustafa Hamada
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Atte S A Eskelinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Cristina Florea
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petteri Nieminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alan J Grodzinsky
- Departments of Biological Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, Massachusetts, USA
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Zigan C, Benito Alston C, Chatterjee A, Solorio L, Chan DD. Characterization of Composite Agarose-Collagen Hydrogels for Chondrocyte Culture. Ann Biomed Eng 2024:10.1007/s10439-024-03613-x. [PMID: 39277549 DOI: 10.1007/s10439-024-03613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and mechanotransduction studies but lack features that make them ideal for functional engineered cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical properties. Acellular and cell-laden studies were completed to assess rheologic and compressive properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose-2 mg/mL collagen I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and continual glycosaminoglycan production, indicating promise toward the development of an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies.
Collapse
Affiliation(s)
- Clarisse Zigan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Aritra Chatterjee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
4
|
Kurz B, Hart ML, Rolauffs B. Mechanical Articular Cartilage Injury Models and Their Relevance in Advancing Therapeutic Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:107-124. [PMID: 37052850 DOI: 10.1007/978-3-031-25588-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This chapter details how Alan Grodzinsky and his team unraveled the complex electromechanobiological structure-function relationships of articular cartilage and used these insights to develop an impressively versatile shear and compression model. In this context, this chapter focuses (i) on the effects of mechanical compressive injury on multiple articular cartilage properties for (ii) better understanding the molecular concept of mechanical injury, by studying gene expression, signal transduction and the release of potential injury biomarkers. Furthermore, we detail how (iii) this was used to combine mechanical injury with cytokine exposure or co-culture systems for generating a more realistic trauma model to (iv) investigate the therapeutic modulation of the injurious response of articular cartilage. Impressively, Alan Grodzinsky's research has been and will remain to be instrumental in understanding the proinflammatory response to injury and in developing effective therapies that are based on an in-depth understanding of complex structure-function relationships that underlay articular cartilage function and degeneration.
Collapse
Affiliation(s)
- Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Kiel, Germany.
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
London DA, Gluck MJ, Kirschenbaum JD, Hausman MR. Casting Position for Distal Radius Fractures Changes Radiocarpal Joint Forces: A Cadaveric Study. J Hand Surg Am 2022; 47:482.e1-482.e10. [PMID: 34303567 DOI: 10.1016/j.jhsa.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/06/2021] [Accepted: 06/16/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Nonsurgical distal radius fracture treatment requires immobilization and classical teaching suggests varying cast positions. We investigated the effect of cast position on the force and pressure experienced by the articular cartilage in the scaphoid and lunate fossae. METHODS Ten fresh-frozen cadaveric specimens were used. A standardized extra-articular distal radius fracture was made. Force sensors were affixed to the articular cartilage of the scaphoid and lunate fossae. Baseline data were obtained. Specimens were then placed into a short arm cast with the wrist either neutrally aligned or flexed and ulnarly deviated (FUD). Specimens had a standard load applied, and a force profile was obtained. The cast was removed and the other cast type was placed and measurements were repeated. Overall force and pressure values were compared between baseline data and the 2 cast types. Additionally, differences in volar and dorsal scaphoid and lunate fossa forces and pressures were compared pairwise within the 2 cast types. The relative force and pressure values across cast types were also compared. RESULTS Both cast types significantly reduced the median force and pressure experienced by the radiocarpal joint compared with no cast. In the FUD cast, the volar and dorsal lunate fossa experienced significantly greater force, and the dorsal lunate fossa experienced significantly greater pressure compared with the dorsal scaphoid fossa. There were no differences for any fossae in the neutral cast. When comparing between casts, the volar lunate fossa experienced a significantly greater relative force in the FUD cast compared with the neutral cast. CONCLUSIONS Casting a distal radius fracture decreases the forces and pressures in the radiocarpal joint. Placing the wrist in a FUD position results in greater forces and pressures on the lunate fossa compared with the scaphoid fossa. CLINICAL RELEVANCE When immobilization is needed, we advocate for the placement of patients in a relatively neutral short-arm cast with minimal FUD to avoid this increased pressure.
Collapse
Affiliation(s)
- Daniel A London
- Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY; Department of Orthopaedic Surgery, University of Missouri, Columbia, MO.
| | - Matthew J Gluck
- Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY
| | - Joshua D Kirschenbaum
- Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY
| | - Michael R Hausman
- Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY
| |
Collapse
|
6
|
An S, Zheng S, Cai Z, Chen S, Wang C, Li Y, Deng Z. Connexin43 in Musculoskeletal System: New Targets for Development and Disease Progression. Aging Dis 2022; 13:1715-1732. [DOI: 10.14336/ad.2022.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
|
7
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|
8
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Houtman E, van Hoolwerff M, Lakenberg N, Suchiman EHD, van der Linden-van der Zwaag E, Nelissen RGHH, Ramos YFM, Meulenbelt I. Human Osteochondral Explants: Reliable Biomimetic Models to Investigate Disease Mechanisms and Develop Personalized Treatments for Osteoarthritis. Rheumatol Ther 2021; 8:499-515. [PMID: 33608843 PMCID: PMC7991015 DOI: 10.1007/s40744-021-00287-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Likely due to ignored heterogeneity in disease pathophysiology, osteoarthritis (OA) has become the most common disabling joint disease, without effective disease-modifying treatment causing a large social and economic burden. In this study we set out to explore responses of aged human osteochondral explants upon different OA-related perturbing triggers (inflammation, hypertrophy and mechanical stress) for future tailored biomimetic human models. Methods Human osteochondral explants were treated with IL-1β (10 ng/ml) or triiodothyronine (T3; 10 nM) or received 65% strains of mechanical stress (65% MS). Changes in chondrocyte signalling were determined by expression levels of nine genes involved in catabolism, anabolism and hypertrophy. Breakdown of cartilage was measured by sulphated glycosaminoglycans (sGAGs) release, scoring histological changes (Mankin score) and mechanical properties of cartilage. Results All three perturbations (IL-1β, T3 and 65% MS) resulted in upregulation of the catabolic genes MMP13 and EPAS1. IL-1β abolished COL2A1 and ACAN gene expression and increased cartilage degeneration, reflected by increased Mankin scores and sGAGs released. Treatment with T3 resulted in a high and significant upregulation of the hypertrophic markers COL1A1, COL10A1 and ALPL. However, 65% MS increased sGAG release and detrimentally altered mechanical properties of cartilage. Conclusion We present consistent and specific output on three different triggers of OA. Perturbation with the pro-inflammatory IL-1β mainly induced catabolic chondrocyte signalling and cartilage breakdown, while T3 initiated expression of hypertrophic and mineralization markers. Mechanical stress at a strain of 65% induced catabolic chondrocyte signalling and changed cartilage matrix integrity. The major strength of our ex vivo models was that they considered aged, preserved, human cartilage of a heterogeneous OA patient population. As a result, the explants may reflect a reliable biomimetic model prone to OA onset allowing for development of different treatment modalities. Supplementary Information The online version contains supplementary material available at 10.1007/s40744-021-00287-y.
Collapse
Affiliation(s)
- Evelyn Houtman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcella van Hoolwerff
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico Lakenberg
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Eka H D Suchiman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Ke H, Mou X, Xia Q. Remifentanil repairs cartilage damage and reduces the degradation of cartilage matrix in post-traumatic osteoarthritis, and inhibits IL-1β-induced apoptosis of articular chondrocytes via inhibition of PI3K/AKT/NF-κB phosphorylation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1487. [PMID: 33313232 PMCID: PMC7729373 DOI: 10.21037/atm-20-6000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Remifentanil (RFT) is an opioid analgesic with a unique pharmacokinetic profile, and plays an important role in the intra- and post-operative periods. Post-traumatic osteoarthritis (PTO) is a particular type of osteoarthritis (OA) that occurs secondary to a traumatic injury. In the present study, we investigated the effects of RFT both in vivo and in vitro. Methods In vivo, 50 Sprague Dawley (SD) rats (7 weeks old) were randomly divided into five groups. Four groups of rats received RFT (0.2, 0.5, and 1 µg) or vehicle (PTO group), while the remaining group served as the control. A PTO model in rats was established using the Hulth method. The cartilage damage, articular cartilage formation, and the degradation of cartilage matrix were evaluated. The effects of RFT on cell proliferation, apoptosis, and nuclear factor (NF)-κB phosphorylation were also examined. Results The results indicated that RFT improved cartilage damage, enhanced articular cartilage formation, and inhibited the degradation of cartilage matrix in PTO model rats. Compared with the control group, the protein levels of Osterix (OSX), Collagen type I alpha 1 (COL1A1), and osteocalcin (OC) were down-regulated in PTO model rats. RFT also inhibited the interleukin-1β (IL-1β)-induced apoptosis of chondrocytes in vitro. Furthermore, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/NF-κB pathway was inhibited both in vitro and in vitro. Conclusions RFT has significant potential as a therapeutic intervention to ameliorate PTO and provides a foundation for further clinical studies.
Collapse
Affiliation(s)
- Hai Ke
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaping Mou
- Department of Orthopedics, The People's Hospital of Jianyang, Jianyang, China
| | - Qing Xia
- Department of Traumatic Orthopedics, No. 1 People's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
11
|
Zhang F, Wang J, Lü D, Zheng L, Shangguan B, Gao Y, Wu Y, Long M. Mechanomics analysis of hESCs under combined mechanical shear, stretch, and compression. Biomech Model Mechanobiol 2020; 20:205-222. [PMID: 32809130 DOI: 10.1007/s10237-020-01378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of mechanical stimuli, i.e., tensile stretch, shear flow, and mechanical compression, were applied in respective parameter sets of loading pattern, amplitude, frequency, and/or duration, and then, iTRAQ proteomics test was used for identifying and quantifying differentially expressed proteins in hESCs. Bioinformatics analysis identified 37, 41, and 23 proteins under stretch pattern, frequency, and duration, 13, 18, and 41 proteins under shear pattern, amplitude, and duration, and 4, 0, and 183 proteins under compression amplitude, frequency, and duration, respectively, where distinct parameters yielded the differentially weighted preferences under each stimulus. Ten mechanosensitive proteins were commonly shared between two of three mechanical stimuli, together with numerous proteins identified under single stimulus. More importantly, functional GSEA and WGCNA analyses elaborated the variations of the screened proteins with loading parameters. Common functions in protein synthesis and modification were identified among three stimuli, and specific functions were observed in skin development under stretch alone. In conclusion, mechanomics analysis is indispensable to map actual mechanosensitive proteins under physiologically mimicking mechanical environment, and sheds light on understanding the core hub proteins in mechanobiology.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Shangguan
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxin Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Bonnevie ED, Bonassar LJ. A Century of Cartilage Tribology Research Is Informing Lubrication Therapies. J Biomech Eng 2020; 142:031004. [PMID: 31956901 DOI: 10.1115/1.4046045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 07/25/2024]
Abstract
Articular cartilage is one of the most unique materials found in nature. This tissue's ability to provide low friction and low wear over decades of constant use is not surpassed, as of yet, by any synthetic materials. Lubrication of the body's joints is essential to mammalian locomotion, but breakdown and degeneration of cartilage is the leading cause of severe disability in the industrialized world. In this paper, we review how theories of cartilage lubrication have evolved over the past decades and connect how theories of cartilage lubrication have been translated to lubrication-based therapies. Here, we call upon these historical perspectives and highlight the open questions in cartilage lubrication research. Additionally, these open questions within the field's understanding of natural lubrication mechanisms reveal strategic directions for lubrication therapy.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850; Meinig School of Biomedical Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| |
Collapse
|
13
|
Effects of macro-cracks on the load bearing capacity of articular cartilage. Biomech Model Mechanobiol 2019; 18:1371-1381. [DOI: 10.1007/s10237-019-01149-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
|
14
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
15
|
Khoshgoftar M, Torzilli PA, Maher SA. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res 2018; 36:721-729. [PMID: 29044742 PMCID: PMC5839971 DOI: 10.1002/jor.23774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
Understanding the mechanical factors that drive the biological responses of chondrocytes is central to our interpretation of the cascade of events that lead to osteoarthritic changes in articular cartilage. Chondrocyte mechanics is complicated by changes in tissue properties that can occur as osteoarthritis (OA) progresses and by the interaction between macro-scale, tissue level, properties, and micro-scale pericellular matrix (PCM) and local extracellular matrix (ECM) properties, both of which cannot be easily studied using in vitro systems. Our objective was to study the influence of macro- and micro-scale OA-associated structural changes on chondrocyte strains. We developed a multi-scale finite element model of articular cartilage subjected to unconfined loading, for the following three conditions: (i) normal articular cartilage, (ii) OA cartilage (where macro and micro-scale changes in collagen content, matrix modulus, and permeability were modeled), and (iii) early-stage OA cartilage (where only micro-scale changes in matrix modulus were modeled). In the macro-scale model, we found that a depth-dependent strain field was induced in both healthy and OA cartilage and that the middle and superficial zones of OA cartilage had increased tensile and compressive strains. At the micro-scale, chondrocyte shear strains were sensitive to PCM and local ECM properties. In the early-OA model, micro-scale spatial softening of PCM and ECM resulted in a substantial increase (30%) of chondrocyte shear strain, even with no structural changes in macro-scale tissue properties. Our study provides evidence that micromechanical changes at the cellular level may affect chondrocyte activities before macro-scale degradations at the tissue level become apparent. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:721-729, 2018.
Collapse
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States
| | - Peter A. Torzilli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1087
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1083
| |
Collapse
|
16
|
Trevino RL, Pacione CA, Malfait AM, Chubinskaya S, Wimmer MA. Development of a Cartilage Shear-Damage Model to Investigate the Impact of Surface Injury on Chondrocytes and Extracellular Matrix Wear. Cartilage 2017; 8:444-455. [PMID: 28934882 PMCID: PMC5613899 DOI: 10.1177/1947603516681133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Many i n vitro damage models investigate progression of cartilage degradation after a supraphysiologic, compressive impact at the surface and do not model shear-induced damage processes. Models also neglect the response to uninterrupted tribological stress after damage. It was hypothesized that shear-induced removal of the superficial zone would accelerate matrix degradation when damage was followed by continued load and articulation. Methods Bovine cartilage underwent a 5-day test. Shear-damaged samples experienced 2 days of damage induction with articulation against polyethylene and then continued articulation against cartilage (CoC), articulation against metal (MoC), or rest as free-swelling control (FSC). Surface-intact samples were randomized to CoC, MoC, or FSC for the entire 5-day test. Samples were evaluated for chondrocyte viability, GAG (glycosaminoglycan) release (matrix wear surrogate), and histological integrity. Results Shear induction wore away the superficial zone. Damaged samples began continued articulation with collagen matrix disruption and increased cell death compared to intact samples. In spite of the damaged surface, these samples did not exhibit higher GAG release than intact samples articulating against the same counterface ( P = 0.782), contrary to our hypothesis. Differences in GAG release were found to be due to tribological testing against metal ( P = 0.003). Conclusion Shear-induced damage lowers chondrocyte viability and affects extracellular matrix integrity. Continued motion of either cartilage or metal against damaged surfaces did not increase wear compared with intact samples. We conjecture that favorable reorganization of the surface collagen fibers during articulation protected the underlying matrix. This finding suggests a potential window for clinical interventions to slow matrix degradation after traumatic incidents.
Collapse
Affiliation(s)
- Robert L. Trevino
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Carol A. Pacione
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Markus A. Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- Markus A. Wimmer, Department of Orthopedic Surgery, Rush University Medical Center, 1611 West Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Ferizi U, Rossi I, Lee Y, Lendhey M, Teplensky J, Kennedy OD, Kirsch T, Bencardino J, Raya JG. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model. Magn Reson Med 2017; 78:69-78. [PMID: 27455389 PMCID: PMC9175493 DOI: 10.1002/mrm.26336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2024]
Abstract
PURPOSE We establish a mechanical injury model for articular cartilage to assess the sensitivity of diffusion tensor imaging (DTI) in detecting cartilage damage early in time. Mechanical injury provides a more realistic model of cartilage degradation compared with commonly used enzymatic degradation. METHODS Nine cartilage-on-bone samples were obtained from patients undergoing knee replacement. The 3 Tesla DTI (0.18 × 0.18 × 1 mm3 ) was performed before, 1 week, and 2 weeks after (zero, mild, and severe) injury, with a clinical radial spin-echo DTI (RAISED) sequence used in our hospital. We performed stress-relaxation tests and used a quasilinear-viscoelastic (QLV) model to characterize cartilage mechanical properties. Serial histology sections were dyed with Safranin-O and given an OARSI grade. We then correlated the changes in DTI parameters with the changes in QLV-parameters and OARSI grades. RESULTS After severe injury the mean diffusivity increased after 1 and 2 weeks, whereas the fractional anisotropy decreased after 2 weeks (P < 0.05). The QLV-parameters and OARSI grades of the severe injury group differed from the baseline with statistical significance. The changes in mean diffusivity across all the samples correlated with the changes in the OARSI grade (r = 0.72) and QLV-parameters (r = -0.75). CONCLUSION DTI is sensitive in tracking early changes after mechanical injury, and its changes correlate with changes in biomechanics and histology. Magn Reson Med 78:69-78, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Uran Ferizi
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ignacio Rossi
- Department of Radiology, New York University School of Medicine, New York, New York, USA
- Centro de Diagnostico Dr. Enrique Rossi, Buenos Aires, Argentina
| | - Youjin Lee
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, USA
| | - Matin Lendhey
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, USA
| | - Jason Teplensky
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Oran D Kennedy
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, USA
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, USA
| | - Jenny Bencardino
- Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, USA
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
18
|
Grodzinsky AJ, Wang Y, Kakar S, Vrahas MS, Evans CH. Intra-articular dexamethasone to inhibit the development of post-traumatic osteoarthritis. J Orthop Res 2017; 35:406-411. [PMID: 27176565 PMCID: PMC5604325 DOI: 10.1002/jor.23295] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Injury to the joint provokes a number of local pathophysiological changes, including synthesis of inflammatory cytokines, death of chondrocytes, breakdown of the extra-cellular matrix of cartilage, and reduced synthesis of matrix macromolecules. These processes combine to engender the subsequent development of post-traumatic osteoarthritis (PTOA). To prevent this from happening, it is necessary to inhibit these disparate responses to injury; given their heterogeneity, this is challenging. However, dexamethasone has the necessary pleiotropic properties required of a drug for this purpose. Using in vitro models, we have shown that low doses of dexamethasone sustain the synthesis of cartilage proteoglycans while inhibiting their breakdown after injurious compression in the presence or absence of inflammatory cytokines. Under these conditions, dexamethasone is non-toxic and maintains the viability of chondrocytes exposed chronically to such cytokines as interleukin (IL) -1, IL-6, and tumor necrosis factor-α. Moreover, the anti-inflammatory properties of dexamethasone have been appreciated for decades. In view of this information, we have initiated a pilot clinical study to determine whether a single, intra-articular injection of dexamethasone into the wrist shows promise in preventing PTOA after intra-articular fracture of the distal radius. CLINICAL SIGNIFICANCE Suppressing the various etiopathophysiological responses to injury in the joint is an attractive strategy for lowering the clinical burden of PTOA. The intra-articular administration of dexamethasone soon after injury offers a simple and inexpensive means of accomplishing this. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:406-411, 2017.
Collapse
Affiliation(s)
- Alan J. Grodzinsky
- Departments of Biological, Electrical and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Yang Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Sanjeev Kakar
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN
| | - Mark S. Vrahas
- Department of Orthopaedic Surgery, Harvard Medical School
| | | |
Collapse
|
19
|
Bonnevie ED, Delco ML, Galesso D, Secchieri C, Fortier LA, Bonassar LJ. Sub-critical impact inhibits the lubricating mechanisms of articular cartilage. J Biomech 2017; 53:64-70. [DOI: 10.1016/j.jbiomech.2016.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
|
20
|
McLeod CM, Mauck RL. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation. Sci Rep 2016; 6:38852. [PMID: 27941914 PMCID: PMC5150986 DOI: 10.1038/srep38852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/15/2016] [Indexed: 12/29/2022] Open
Abstract
Extracellular matrix dynamics are key to tissue morphogenesis, homeostasis, injury, and repair. The spatiotemporal organization of this matrix has profound biological implications, but is challenging to monitor using standard techniques. Here, we address these challenges by using noncanonical amino acid tagging to fluorescently label extracellular matrix synthesized in the presence of bio-orthogonal methionine analogs. This strategy labels matrix proteins with high resolution, without compromising their distribution or mechanical function. We demonstrate that the organization and temporal dynamics of the proteinaceous matrix depend on the biophysical features of the microenvironment, including the biomaterial scaffold and the niche constructed by cells themselves. Pulse labeling experiments reveal that, in immature constructs, nascent matrix is highly fibrous and interdigitates with pre-existing matrix, while in more developed constructs, nascent matrix lacks fibrous organization and is retained in the immediate pericellular space. Inhibition of collagen crosslinking increases matrix synthesis, but compromises matrix organization. Finally, these data demonstrate marked cell-to-cell heterogeneity amongst both chondrocytes and mesenchymal stem cells undergoing chondrogenesis. Collectively, these results introduce fluorescent noncanonical amino acid tagging as a strategy to investigate spatiotemporal matrix organization, and demonstrate its ability to identify differences in phenotype, microenvironment, and matrix assembly at the single cell level.
Collapse
Affiliation(s)
- Claire M McLeod
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Novak T, Fites Gilliland K, Xu X, Worke L, Ciesielski A, Breur G, Neu CP. In Vivo Cellular Infiltration and Remodeling in a Decellularized Ovine Osteochondral Allograft. Tissue Eng Part A 2016; 22:1274-1285. [PMID: 27673714 DOI: 10.1089/ten.tea.2016.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interest in decellularized tissues has steadily gained as potential solutions for degenerative diseases and traumatic events, replacing sites of missing tissue, and providing the relevant biochemistry and microstructure for tissue ingrowth and regeneration. Osteoarthritis, a progressive and debilitating disease, is often initiated with the formation of a focal defect in the otherwise smooth surface of articular cartilage. Decellularized cartilage tissue, which maintains the structural complexity of the native extracellular matrix, has the potential to provide a clinically relevant solution to focal defects or large tissue damage, possibly even circumventing or complementing current techniques such as microfracture and mosaicplasty. However, it is currently unclear whether implantation of decellularized cartilage in vivo may provide a mechanically and biochemically relevant platform to promote cell remodeling and repair. We examined whole decellularized osteochondral allografts implanted in the ovine trochlear groove to investigate cellular remodeling and repair tissue quality compared to empty defects and contralateral controls (healthy cartilage). At 3 months postsurgery, cells were observed in both the decellularized tissue and empty defects, although both at significantly lower levels than healthy cartilage. Qualitative and quantitative histological analysis demonstrated maintenance of cartilage features of the decellularized implant similar to healthy cartilage groups. Noninvasive analysis by quantitative magnetic resonance imaging showed no difference in T1ρ and T2* between all groups. Investigation of the mechanical properties of repair tissue showed significantly lower elasticity in decellularized implants and empty defects compared to healthy cartilage, but similar tribological quantities. Overall, this study suggests that decellularized cartilage implants are subject to cellular remodeling in an in vivo environment and may provide a potential tissue engineering solution to cartilage defect interventions.
Collapse
Affiliation(s)
- Tyler Novak
- 1 Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana
| | | | - Xin Xu
- 1 Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana.,2 Department of Mechanical Engineering, University of Colorado Boulder , Boulder, Colorado
| | - Logan Worke
- 1 Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana
| | | | - Gert Breur
- 4 Department of Veterinary Clinical Sciences, Purdue University , West Lafayette, Indiana
| | - Corey P Neu
- 1 Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana.,2 Department of Mechanical Engineering, University of Colorado Boulder , Boulder, Colorado
| |
Collapse
|
22
|
Bonnevie ED, Delco ML, Fortier LA, Alexander PG, Tuan RS, Bonassar LJ. Characterization of Tissue Response to Impact Loads Delivered Using a Hand-Held Instrument for Studying Articular Cartilage Injury. Cartilage 2015; 6:226-32. [PMID: 26425260 PMCID: PMC4568733 DOI: 10.1177/1947603515595071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The objective of this study was to fully characterize the mechanics of an in vivo impactor and correlate the mechanics with superficial cracking of articular surfaces. DESIGN A spring-loaded impactor was used to apply energy-controlled impacts to the articular surfaces of neonatal bovine cartilage. The simultaneous use of a load cell and displacement sensor provided measurements of stress, stress rate, strain, strain rate, and strain energy density. Application of India ink after impact was used to correlate the mechanical inputs during impact with the resulting severity of tissue damage. Additionally, a signal processing method to deconvolve inertial stresses from impact stresses was developed and validated. RESULTS Impact models fit the data well (root mean square error average ~0.09) and provided a fully characterized impact. Correlation analysis between mechanical inputs and degree of superficial cracking made visible through India ink application provided significant positive correlations for stress and stress rate with degree of surface cracking (R (2) = 0.7398 and R (2) = 0.5262, respectively). Ranges of impact parameters were 7 to 21 MPa, 6 to 40 GPa/s, 0.16 to 0.38, 87 to 236 s(-1), and 0.3 to 1.1 MJ/m(3) for stress, stress rate, strain, strain rate, and strain energy density, respectively. Thresholds for damage for all inputs were determined at 13 MPa, 15 GPa/s, 0.23, 160 s(-1), and 0.59 MJ/m(3) for this system. CONCLUSIONS This study provided the mechanical basis for use of a portable, sterilizable, and maneuverable impacting device. Use of this device enables controlled impact loads in vitro or in vivo to connect mechanistic studies with long-term monitoring of disease progression.
Collapse
Affiliation(s)
- Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY, USA
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Peter G. Alexander
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Abstract
Articular cartilage injuries and degenerative joint diseases are responsible for progressive pain and disability in millions of people worldwide, yet there is currently no treatment available to restore full joint functionality. As the tissue functions under mechanical load, an understanding of the physiologic or pathologic effects of biomechanical factors on cartilage physiology is of particular interest. Here, we highlight studies that have measured cartilage deformation at scales ranging from the macroscale to the microscale, as well as the responses of the resident cartilage cells, chondrocytes, to mechanical loading using in vitro and in vivo approaches. From these studies, it is clear that there exists a complex interplay among mechanical, inflammatory, and biochemical factors that can either support or inhibit cartilage matrix homeostasis under normal or pathologic conditions. Understanding these interactions is an important step toward developing tissue engineering approaches and therapeutic interventions for cartilage pathologies, such as osteoarthritis.
Collapse
|
24
|
Hunziker EB, Lippuner K, Keel MJB, Shintani N. An educational review of cartilage repair: precepts & practice--myths & misconceptions--progress & prospects. Osteoarthritis Cartilage 2015; 23:334-50. [PMID: 25534362 DOI: 10.1016/j.joca.2014.12.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/29/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The repair of cartilaginous lesions within synovial joints is still an unresolved and weighty clinical problem. Although research activity in this area has been indefatigably sustained, no significant progress has been made during the past decade. The aim of this educational review is to heighten the awareness amongst students and scientists of the basic issues that must be tackled and resolved before we can hope to escape from the whirlpool of stagnation into which we have fallen: cartilage repair redivivus! DESIGN Articular-cartilage lesions may be induced traumatically (e.g., by sports injuries and occupational accidents) or pathologically during the course of a degenerative disease (e.g., osteoarthritis). This review addresses the biological basis of cartilage repair and surveys current trends in treatment strategies, focussing on those that are most widely adopted by orthopaedic surgeons [viz., abrasive chondroplasty, microfracturing/microdrilling, osteochondral grafting and autologous-chondrocyte implantation (ACI)]. Also described are current research activities in the field of cartilage-tissue engineering, which, as a therapeutic principle, holds more promise for success than any other experimental approach. RESULTS AND CONCLUSIONS Tissue engineering aims to reconstitute a tissue both structurally and functionally. This process can be conducted entirely in vitro, initially in vitro and then in vivo (in situ), or entirely in vivo. Three key constituents usually form the building blocks of such an approach: a matrix scaffold, cells, and signalling molecules. Of the proposed approaches, none have yet advanced beyond the phase of experimental development to the level of clinical induction. The hurdles that need to be surmounted for ultimate success are discussed.
Collapse
Affiliation(s)
- E B Hunziker
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| | - K Lippuner
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| | - M J B Keel
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| | - N Shintani
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Kaneva MK, Kerrigan MJ, Grieco P, Curley GP, Locke IC, Getting SJ. Melanocortin peptides protect chondrocytes from mechanically induced cartilage injury. Biochem Pharmacol 2014; 92:336-47. [DOI: 10.1016/j.bcp.2014.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
26
|
Buckley MR, Bonassar LJ, Cohen I. Localization of viscous behavior and shear energy dissipation in articular cartilage under dynamic shear loading. J Biomech Eng 2014; 135:31002. [PMID: 24231813 DOI: 10.1115/1.4007454] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/27/2012] [Indexed: 11/08/2022]
Abstract
Though remarkably robust, articular cartilage becomes susceptible to damage at high loading rates, particularly under shear. While several studies have measured the local static and steady-state shear properties of cartilage, it is the local viscoelastic properties that determine the tissue's ability to withstand physiological loading regimens. However, measuring local viscoelastic properties requires overcoming technical challenges that include resolving strain fields in both space and time and accurately calculating their phase offsets. This study combined recently developed high-speed confocal imaging techniques with three approaches for analyzing time- and location-dependent mechanical data to measure the depth-dependent dynamic modulus and phase angles of articular cartilage. For sinusoidal shear at frequencies f = 0.01 to 1 Hz with no strain offset, the dynamic shear modulus |G*| and phase angle δ reached their minimum and maximum values (respectively) approximately 100 μm below the articular surface, resulting in a profound focusing of energy dissipation in this narrow band of tissue that increased with frequency. This region, known as the transitional zone, was previously thought to simply connect surface and deeper tissue regions. Within 250 μm of the articular surface, |G*| increased from 0.32 ± 0.08 to 0.42 ± 0.08 MPa across the five frequencies tested, while δ decreased from 12 deg ± 1 deg to 9.1 deg ± 0.5 deg. Deeper into the tissue, |G*| increased from 1.5 ± 0.4 MPa to 2.1 ± 0.6 MPa and δ decreased from 13 deg ± 1 deg to 5.5 deg ± 0.2 deg. Viscoelastic properties were also strain-dependent, with localized energy dissipation suppressed at higher shear strain offsets. These results suggest a critical role for the transitional zone in dissipating energy, representing a possible shift in our understanding of cartilage mechanical function. Further, they give insight into how focal degeneration and mechanical trauma could lead to sustained damage in this tissue.
Collapse
|
27
|
Madej W, van Caam A, Blaney Davidson EN, van der Kraan PM, Buma P. Physiological and excessive mechanical compression of articular cartilage activates Smad2/3P signaling. Osteoarthritis Cartilage 2014; 22:1018-25. [PMID: 24795273 DOI: 10.1016/j.joca.2014.04.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Transforming growth factor beta (TGF-β) in articular cartilage can signal via two routes, the ALK5/Smad2/3P and the ALK1/Smad1/5/8P route, the first being protective and the latter favoring chondrocyte terminal differentiation. Since biomechanical factors are known to play an essential role in osteoarthritis (OA) initiation and progression, we investigated if excessive mechanical compression can alter TGF-β signaling in cartilage shifting it from ALK5/Smad2/3P to ALK1/Smad1/5/8P pathway, favoring terminal differentiation of chondrocytes. DESIGN Articular cartilage explants were harvested from bovine metacarpophalangeal joints. After equilibration, explants were subjected to unconfined dynamic mechanical compression (1 Hz) with 3 MPa (physiological) or 12 MPa (excessive) stress. After different time intervals samples were frozen and mRNA levels of selected genes were examined using real-time polymerase chain reaction. RESULTS In articular cartilage compressed with 3 MPa and also 12 MPa stress the expression of Smad2/3P responsive genes bSerpine1, bSmad7 and bAlk5 was up-regulated, whereas the expression of Smad1/5/8P responsive gene bId1 was down-regulated. Furthermore, the expression of bTgfb1 was significantly up-regulated in both compression groups. When ALK5/Smad2/3P pathway was blocked with a selective ALK4/5/7 inhibitor, the effect of excessive mechanical compression on bSmad7 and bAlk5 expression was prevented. CONCLUSIONS Here we show that excessive mechanical compression alone is not able to shift TGF-β signaling toward the ALK1/Smad1/5/8P pathway. In contrast, we show that mechanical compression not only with physiological but also with excessive stress can activate Smad2/3P signaling, which is known to be protective for articular cartilage and to block chondrocyte terminal differentiation.
Collapse
Affiliation(s)
- W Madej
- Orthopaedic Research Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - A van Caam
- Experimental Rheumatology & Advanced Therapeutics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - E N Blaney Davidson
- Experimental Rheumatology & Advanced Therapeutics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - P M van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - P Buma
- Orthopaedic Research Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Zhang J, Zhang HY, Zhang M, Qiu ZY, Wu YP, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 2014; 22:822-30. [PMID: 24704497 PMCID: PMC4706739 DOI: 10.1016/j.joca.2014.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Connexin (Cx) 43 hemichannels play a role in mechanotransduction. This study was undertaken in order to determine if Cx43 hemichannels were activated in rat temporomandibular joint (TMJ) chondrocytes under mechanical stimulation. METHODS Sprague-Dawley rats were stimulated dental-mechanically. Cx43 expression in rat TMJ cartilage was determined with immunohistochemistry and real-time PCR, and Cx43 hemichannel opening was evaluated by the extra- and intracellular levels of prostaglandin E2 (PGE2). Both primary rat chondrocytes and ATDC5 cells were treated with fluid flow shear stress (FFSS) to induce hemichannel opening. The Cx43 expression level was then determined by real-time PCR or Western blotting, and the extent of Cx43 hemichannel opening was evaluated by measuring both PGE2 release and cellular dye uptake. RESULTS Cx43 expression and intra- and extracellular PGE2 levels were increased in mechanically-stimulated rat TMJ cartilage compared to the unstimulated control. The FFSS treatment increased Cx43 expression and induced Cx43 hemichannel opening in primary rat chondrocytes and ATDC5 cells indicated by enhanced PGE2 release and dye uptake. Furthermore, the Cx43 hemichannel opening could be blocked by the addition of 18β-glycyrrhetinic acid, a Cx channel inhibitor, Cx43-targeting siRNA, or by withdrawal of FFSS stimulation. The migration of cytosolic Cx43 protein to the plasma membrane in ATDC5 cells was still significant after 8 h post 2-h FFSS treatment, and the Cx43 protein level was still high at 48 h, which returned to control levels at 72 h after treatment. CONCLUSION Cx43 hemichannels are activated and mediate small molecule exchange between TMJ chondrocytes and matrix under mechanical stimulation.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - H Y Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - M Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - Z Y Qiu
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Y P Wu
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - D A Callaway
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - L Lu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - L Jing
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - T Yang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - M Q Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
29
|
|
30
|
Skagen PS, Kruse HA, Horn T. Repair Mechanisms in Articular Cartilage—A Porcine in Vitro Study. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/mr.2014.24009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Solute transport across the articular surface of injured cartilage. Arch Biochem Biophys 2013; 535:241-7. [DOI: 10.1016/j.abb.2013.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/27/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022]
|
32
|
Lee CM, Kisiday JD, McIlwraith CW, Grodzinsky AJ, Frisbie DD. Development of an in vitro model of injury-induced osteoarthritis in cartilage explants from adult horses through application of single-impact compressive overload. Am J Vet Res 2013; 74:40-7. [PMID: 23270344 DOI: 10.2460/ajvr.74.1.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop an in vitro model of cartilage injury in full-thickness equine cartilage specimens that can be used to simulate in vivo disease and evaluate treatment efficacy. SAMPLE 15 full-thickness cartilage explants from the trochlear ridges of the distal aspect of the femur from each of 6 adult horses that had died from reasons unrelated to the musculoskeletal system. PROCEDURES To simulate injury, cartilage explants were subjected to single-impact uniaxial compression to 50%, 60%, 70%, or 80% strain at a rate of 100% strain/s. Other explants were left uninjured (control specimens). All specimens underwent a culture process for 28 days and were subsequently evaluated histologically for characteristics of injury and early stages of osteoarthritis, including articular surface damage, chondrocyte cell death, focal cell loss, chondrocyte cluster formation, and loss of the extracellular matrix molecules aggrecan and types I and II collagen. RESULTS Compression to all degrees of strain induced some amount of pathological change typical of clinical osteoarthritis in horses; however, only compression to 60% strain induced significant changes morphologically and biochemically in the extracellular matrix. CONCLUSIONS AND CLINICAL RELEVANCE The threshold strain necessary to model injury in full-thickness cartilage specimens from the trochlear ridges of the distal femur of adult horses was 60% strain at a rate of 100% strain/s. This in vitro model should facilitate study of pathophysiologic changes and therapeutic interventions for osteoarthritis.
Collapse
Affiliation(s)
- Christina M Lee
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | | | | | | | | |
Collapse
|
33
|
Ashwell MS, Gonda MG, Gray K, Maltecca C, O'Nan AT, Cassady JP, Mente PL. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model. J Orthop Res 2013; 31:385-91. [PMID: 23027577 PMCID: PMC3553272 DOI: 10.1002/jor.22239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Abstract
Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype.
Collapse
Affiliation(s)
- Melissa S. Ashwell
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Michael G. Gonda
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Kent Gray
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Christian Maltecca
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Audrey T. O'Nan
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Joseph P. Cassady
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Peter L. Mente
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA and University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage 2012; 20:422-429. [PMID: 22289896 PMCID: PMC3384701 DOI: 10.1016/j.joca.2012.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/24/2011] [Accepted: 01/10/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the relative susceptibility of cartilage and meniscus tissues to mechanical injury by applying a single, controlled overload and observing cellular, biochemical, and mechanical changes. DESIGN Cartilage and meniscus tissue explants in radial confinement were subjected to a range of injury by indenting to 40% strain at three different strain rates: 0.5%/s (slow), 5%/s (medium), or 50%/s (fast). Following injury, samples were cultured for either 1 or 9 days. Explants were assayed for cell metabolic activity, water content, and sulfated glycosaminoglycan (sGAG) content. Mechanical properties of explants were determined in torsional shear and unconfined compression. Conditioned medium was assayed for sGAG and lactate dehydrogenase (LDH) release. RESULTS Peak injury force increased with strain rate but both tissues displayed little to no macroscopic damage. Cell metabolism was lowest in medium and fast groups on day 1. Cell lysis increased with peak injury force and loading rate in both tissues. In contrast, sGAG content and release did not significantly vary with loading rate. Additionally, mechanical properties did not significantly vary with loading rate in either tissue. CONCLUSION By use of a custom confinement chamber, large peak forces were obtained without macroscopic destruction of the explants. At the loads achieved in this studied, cell damage was induced without detectable physical or compositional changes. These results indicate that sub-failure injury can induce biologic damage that may not be readily detected and could be an early event in osteoarthritis genesis.
Collapse
Affiliation(s)
- James F. Nishimuta
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Correro-Shahgaldian MR, Colombo V, Spencer ND, Weber FE, Imfeld T, Gallo LM. Coupling plowing of cartilage explants with gene expression in models for synovial joints. J Biomech 2011; 44:2472-6. [PMID: 21723557 DOI: 10.1016/j.jbiomech.2011.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 02/06/2023]
Abstract
Articular cartilage undergoes complex loading modalities generally including sliding, rolling and plowing (i.e. the compression by a condyle normally to the tissue surface under simultaneously tangential displacement, thus generating a tractional force due to tissue deformation). Although in in vivo studies it was shown that excessive plowing can lead to osteoarthritis, little quantitative experimental work on this loading modality and its mechanobiological effects is available in the literature. Therefore, a rolling/plowing explant test system has been developed to study the effect on pristine cartilage of plowing at different perpendicular forces. Cartilage strips harvested from bovine nasal septa of 12-months-old calves were subjected for 2h to a plowing-regime with indenter normal force of 50 or 100 N and a sliding speed of 10 mm s(-1). 50 N produced a tractional force of 1.2±0.3N, whereas 100 N generated a tractional force of 8.0±1.4N. Furthermore, quantitative-real-time polymerase chain reaction experiments showed that TIMP-1 was 2.5x up-regulated after 50 N plowing and 2x after 100 N plowing, indicating an ongoing remodeling process. The expression of collagen type-I was not affected after 50 N plowing but it was up-regulated (6.6x) after 100 N plowing, suggesting a possible progression to an injury stage of the cartilage, as previously reported in cartilage of osteoarthritic patients. We conclude that plowing as performed by our mimetic system at the chosen experimental parameters induces changes in gene expression depending on the tractional force, which, in turn, relates to the applied normal force.
Collapse
Affiliation(s)
- Maria Rita Correro-Shahgaldian
- Clinic of Masticatory Disorders, Removable Prosthodontics and Special Care, Center of Dental Medicine, University of Zurich Plattenstrasse 11 CH-8032 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation. J Proteomics 2011; 74:704-15. [PMID: 21354348 PMCID: PMC3078332 DOI: 10.1016/j.jprot.2011.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/26/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
This study employed a targeted high-throughput proteomic approach to identify the major proteins present in the secretome of articular cartilage. Explants from equine metacarpophalangeal joints were incubated alone or with interleukin-1beta (IL-1β, 10ng/ml), with or without carprofen, a non-steroidal anti-inflammatory drug, for six days. After tryptic digestion of culture medium supernatants, resulting peptides were separated by HPLC and detected in a Bruker amaZon ion trap instrument. The five most abundant peptides in each MS scan were fragmented and the fragmentation patterns compared to mammalian entries in the Swiss-Prot database, using the Mascot search engine. Tryptic peptides originating from aggrecan core protein, cartilage oligomeric matrix protein (COMP), fibronectin, fibromodulin, thrombospondin-1 (TSP-1), clusterin (CLU), cartilage intermediate layer protein-1 (CILP-1), chondroadherin (CHAD) and matrix metalloproteinases MMP-1 and MMP-3 were detected. Quantitative western blotting confirmed the presence of CILP-1, CLU, MMP-1, MMP-3 and TSP-1. Treatment with IL-1β increased MMP-1, MMP-3 and TSP-1 and decreased the CLU precursor but did not affect CILP-1 and CLU levels. Many of the proteins identified have well-established extracellular matrix functions and are involved in early repair/stress responses in cartilage. This high throughput approach may be used to study the changes that occur in the early stages of osteoarthritis.
Collapse
|
37
|
Rolauffs B, Muehleman C, Li J, Kurz B, Kuettner KE, Frank E, Grodzinsky AJ. Vulnerability of the superficial zone of immature articular cartilage to compressive injury. ACTA ACUST UNITED AC 2010; 62:3016-27. [PMID: 20556809 DOI: 10.1002/art.27610] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive moduli as well as collagen and sulfated glycosaminoglycan (sGAG) content also vary with depth. However, there is little understanding of the depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, this study was undertaken to characterize the zonal dependence of biomechanical, biochemical, and matrix-associated changes caused by compressive injury. METHODS Disks from the superficial and deeper zones of bovine calves were biomechanically characterized. Injury to the disks was achieved by applying a final strain of 50% compression at 100%/second, followed by biomechanical recharacterization. Tissue compaction upon injury as well as sGAG density, sGAG loss, and biosynthesis were measured. Collagen fiber orientation and matrix damage were assessed using histology, diffraction-enhanced x-ray imaging, and texture analysis. RESULTS Injured superficial zone disks showed surface disruption, tissue compaction by 20.3 ± 4.3% (mean ± SEM), and immediate biomechanical impairment that was revealed by a mean ± SEM decrease in dynamic stiffness to 7.1 ± 3.3% of the value before injury and equilibrium moduli that were below the level of detection. Tissue areas that appeared intact on histology showed clear textural alterations. Injured deeper zone disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose sGAG immediately after injury, but lost 17.8 ± 1.4% of sGAG after 48 hours; deeper zone disks lost only 2.8 ± 0.3% of sGAG content. Biomechanical impairment was associated primarily with structural damage. CONCLUSION The soft superficial zone of immature cartilage is vulnerable to compressive injury, causing superficial matrix disruption, extensive compaction, and textural alteration, which results in immediate loss of biomechanical function. In conjunction with delayed superficial sGAG loss, these changes may predispose the articular surface to further softening and tissue damage, thus increasing the risk of development of secondary osteoarthritis.
Collapse
Affiliation(s)
- Bernd Rolauffs
- Massachusetts Institute of Technology, Cambridge, Rush University Medical Center, Chicago, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ding L, Heying E, Nicholson N, Stroud NJ, Homandberg GA, Guo D, Buckwalter JA, Martin JA. Mechanical impact induces cartilage degradation via mitogen activated protein kinases. Osteoarthritis Cartilage 2010; 18:1509-17. [PMID: 20813194 PMCID: PMC3013628 DOI: 10.1016/j.joca.2010.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the activation of Mitogen activated protein (MAP) kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction-induced chondrocyte death and cartilage degeneration. DESIGN The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan (PG) loss were determined with fluorescent microscopy and 1, 9-Dimethyl-Methylene Blue (DMMB) assay. The expression of catabolic genes at mRNA levels was examined with quantitative real-time PCR. RESULTS Early p38 activation was detected at 20 min and 1h post-impaction. At 24h, enhanced phosphorylation of p38 and extracellular signal-regulated protein kinase (ERK)1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and PG losses. Quantitative Real-time PCR analysis revealed that blunt impaction significantly up-regulated matrix metalloproteinase (MMP)-13, Tumor necrosis factor (TNF)-α, and ADAMTS-5 expression. CONCLUSION These findings implicate p38 and ERK mitogen activated protein kinases (MAPKs) in the post-injury spread of cartilage degeneration and suggest that the risk of post-traumatic osteoarthritis (PTOA) following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Emily Heying
- Department of Biology, Wartburg College, Waverly, Iowa, USA
| | - Nathan Nicholson
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Nicolas J. Stroud
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Gene A. Homandberg
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Danping Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA,Corresponding author. 500 Newton Road, 1182 Medical Laboratories, Iowa City, Iowa 52242, USA
| |
Collapse
|
39
|
Saha AK, Kohles SS. Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis. J Nanotechnol Eng Med 2010; 1:041001. [PMID: 21152382 PMCID: PMC2997753 DOI: 10.1115/1.4002461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enhancing the available nanotechnology to describe physicochemical interactions during biokinetic regulation will strongly support cellular and molecular engineering efforts. In a recent mathematical model developed to extend the applicability of a statically loaded, single-cell biomechanical analysis, a biokinetic regulatory threshold was presented (Saha and Kohles, 2010, "A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model," J. Nanotechnol. Eng. Med., 1(3), p. 031005). Results described multiscale mechanobiology in terms of catabolic to anabolic pathways. In the present study, we expand the mathematical model to continue exploring the nanoscale biomolecular response within a controlled microenvironment. Here, we introduce a dynamic mechanical stimulus for regulating cartilage molecule synthesis. Model iterations indicate the identification of a biomathematical mechanism balancing the harmony between catabolic and anabolic states. Relative load limits were defined to distinguish between "healthy" and "injurious" biomolecule accumulations. The presented mathematical framework provides a specific algorithm from which to explore biokinetic regulation.
Collapse
Affiliation(s)
- Asit K. Saha
- Department of Mathematics and Computer Science and Center for Allaying Health Disparities Through Research and Education (CADRE), Central State University, Wilberforce, OH 45384
| | - Sean S. Kohles
- Department of Mechanical and Materials Engineering, Reparative Bioengineering Laboratory, Portland State University, Portland, OR 97201; Department of Surgery, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
40
|
Saha AK, Kohles SS. A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model. J Nanotechnol Eng Med 2010; 1:10.1115/1.4001934. [PMID: 21152243 PMCID: PMC2998284 DOI: 10.1115/1.4001934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding physicochemical interactions during biokinetic regulation will be critical for the creation of relevant nanotechnology supporting cellular and molecular engineering. The impact of nanoscale influences in medicine and biology can be explored in detail through mathematical models as an in silico testbed. In a recent single-cell biomechanical analysis, the cytoskeletal strain response due to fluid-induced stresses was characterized (Wilson, Z. D., and Kohles, S. S., 2010, "Two-Dimensional Modeling of Nanomechanical Strains in Healthy and Diseased Single-Cells During Microfluidic Stress Applications," J. Nanotech. Eng. Med., 1(2), p. 021005). Results described a microfluidic environment having controlled nanometer and piconewton resolution for explorations of multiscale mechanobiology. In the present study, we constructed a mathematical model exploring the nanoscale biomolecular response to that controlled microenvironment. We introduce mechanical stimuli and scaling factor terms as specific input values for regulating a cartilage molecule synthesis. Iterative model results for this initial multiscale static load application have identified a transition threshold load level from which the mechanical input causes a shift from a catabolic state to an anabolic state. Modeled molecule homeostatic levels appear to be dependent upon the mechanical stimulus as reflected experimentally. This work provides a specific mathematical framework from which to explore biokinetic regulation. Further incorporation of nanomechanical stresses and strains into biokinetic models will ultimately lead to refined mechanotransduction relationships at the cellular and molecular levels.
Collapse
Affiliation(s)
- Asit K. Saha
- Center for Allaying Health Disparities through Research and Education (CADRE), Department of Mathematics and Computer Science, Central State University, Wilberforce, OH 45384
| | - Sean S. Kohles
- Reparative Bioengineering Laboratory, Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201; Department of Surgery, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
41
|
Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 2010; 12:211. [PMID: 20602810 PMCID: PMC2911903 DOI: 10.1186/ar3046] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Joint trauma can lead to a spectrum of acute lesions, including osteochondral fractures, ligament or meniscus tears and damage to the articular cartilage. This is often associated with intraarticular bleeding and causes posttraumatic joint inflammation. Although the acute symptoms resolve and some of the lesions can be surgically repaired, joint injury triggers a chronic remodeling process in cartilage and other joint tissues that ultimately manifests as osteoarthritis in a majority of cases. The objective of the present review is to summarize information on pathogenetic mechanisms involved in the acute and chronic consequences of joint trauma and discuss potential pharmacological interventions. The focus of the review is on the early events that follow joint trauma since therapies for posttraumatic joint inflammation are not available and this represents a unique window of opportunity to limit chronic consequences.
Collapse
Affiliation(s)
- Martin K Lotz
- Department of Molecular and Experimental Medicine, The Scripps-Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
42
|
Mechanical injury of explants from the articulating surface of the inner meniscus. Arch Biochem Biophys 2010; 494:138-44. [DOI: 10.1016/j.abb.2009.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 11/21/2022]
|
43
|
Sui Y, Lee JH, DiMicco MA, Vanderploeg EJ, Blake SM, Hung HH, Plaas AHK, James IE, Song XY, Lark MW, Grodzinsky AJ. Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor alpha in immature bovine and adult human articular cartilage. ACTA ACUST UNITED AC 2009; 60:2985-96. [PMID: 19790045 DOI: 10.1002/art.24857] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Traumatic joint injury can damage cartilage and release inflammatory cytokines from adjacent joint tissue. The present study was undertaken to study the combined effects of compression injury, tumor necrosis factor alpha (TNFalpha), and interleukin-6 (IL-6) and its soluble receptor (sIL-6R) on immature bovine and adult human knee and ankle cartilage, using an in vitro model, and to test the hypothesis that endogenous IL-6 plays a role in proteoglycan loss caused by a combination of injury and TNFalpha. METHODS Injured or uninjured cartilage disks were incubated with or without TNFalpha and/or IL-6/sIL-6R. Additional samples were preincubated with an IL-6-blocking antibody Fab fragment and subjected to injury and TNFalpha treatment. Treatment effects were assessed by histologic analysis, measurement of glycosaminoglycan (GAG) loss, Western blot to determine proteoglycan degradation, zymography, radiolabeling to determine chondrocyte biosynthesis, and Western blot and enzyme-linked immunosorbent assay to determine chondrocyte production of IL-6. RESULTS In bovine cartilage samples, injury combined with TNFalpha and IL-6/sIL-6R exposure caused the most severe GAG loss. Findings in human knee and ankle cartilage were strikingly similar to those in bovine samples, although in human ankle tissue, the GAG loss was less severe than that observed in human knee tissue. Without exogenous IL-6/sIL-6R, injury plus TNFalpha exposure up-regulated chondrocyte production of IL-6, but incubation with the IL-6-blocking Fab significantly reduced proteoglycan degradation. CONCLUSION Our findings indicate that mechanical injury potentiates the catabolic effects of TNFalpha and IL-6/sIL-6R in causing proteoglycan degradation in human and bovine cartilage. The temporal and spatial evolution of degradation suggests the importance of transport of biomolecules, which may be altered by overload injury. The catabolic effects of injury plus TNFalpha appeared partly due to endogenous IL-6, since GAG loss was partially abrogated by an IL-6-blocking Fab.
Collapse
Affiliation(s)
- Yihong Sui
- Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee JH, Fitzgerald JB, DiMicco MA, Cheng DM, Flannery CR, Sandy JD, Plaas AH, Grodzinsky AJ. Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production. Arch Biochem Biophys 2009; 489:118-26. [PMID: 19607802 DOI: 10.1016/j.abb.2009.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 01/24/2023]
Abstract
We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-beta, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury.
Collapse
Affiliation(s)
- J H Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jones ARC, Chen S, Chai DH, Stevens AL, Gleghorn JP, Bonassar LJ, Grodzinsky AJ, Flannery CR. Modulation of lubricin biosynthesis and tissue surface properties following cartilage mechanical injury. ACTA ACUST UNITED AC 2009; 60:133-42. [PMID: 19116897 DOI: 10.1002/art.24143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effects of injurious compression on the biosynthesis of lubricin at different depths within articular cartilage and to examine alterations in structure and function of the articular surface following mechanical injury. METHODS Bovine cartilage explants were subdivided into level 1, with intact articular surface, and level 2, containing middle and deep zone cartilage. Following mechanical injury, lubricin messenger RNA (mRNA) levels were monitored by quantitative reverse transcriptase-polymerase chain reaction, and soluble or cartilage-associated lubricin protein was analyzed by Western blotting and immunohistochemistry. Cartilage morphology was assessed by histologic staining, and tissue functionality was assessed by friction testing. RESULTS Two days after injury, lubricin mRNA expression was up-regulated approximately 3-fold for level 1 explants and was down-regulated for level 2 explants. Lubricin expression in level 1 cartilage returned to control levels after 6 days in culture. Similarly, lubricin protein synthesis and secretion increased in response to injury for level 1 explants and decreased for level 2 cartilage. Histologic staining revealed changes in the articular surface of level 1 explants following injury, with respect to glycosaminoglycan and collagen content. Injured level 1 explants displayed an increased coefficient of friction relative to controls. CONCLUSION Our findings indicate that increased lubricin biosynthesis appears to be an early transient response of surface-layer cartilage to injurious compression. However, distinct morphologic changes occur with injury that appear to compromise the frictional properties of the tissue.
Collapse
|
46
|
Stevens AL, Wishnok JS, White FM, Grodzinsky AJ, Tannenbaum SR. Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair. Mol Cell Proteomics 2009; 8:1475-89. [PMID: 19196708 DOI: 10.1074/mcp.m800181-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objectives of this study were to perform a quantitative comparison of proteins released from cartilage explants in response to treatment with IL-1beta, TNF-alpha, or mechanical compression injury in vitro and to interpret this release in the context of anabolic-catabolic shifts known to occur in cartilage in response to these insults in vitro and their implications in vivo. Bovine calf cartilage explants from 6-12 animals were subjected to injurious compression, TNF-alpha (100 ng/ml), IL-1beta (10 ng/ml), or no treatment and cultured for 5 days in equal volumes of medium. The pooled medium from each of these four conditions was labeled with one of four iTRAQ labels and subjected to nano-2D-LC/MS/MS on a quadrupole time-of-flight instrument. Data were analysed by ProQuant for peptide identification and quantitation. k-means clustering and biological pathways analysis were used to identify proteins that may correlate with known cartilage phenotypic responses to such treatments. IL-1beta and TNF-alpha treatment caused a decrease in the synthesis of collagen subunits (p < 0.05) as well as increased release of aggrecan G2 and G3 domains to the medium (p < 0.05). MMP-1, MMP-3, MMP-9, and MMP-13 were significantly increased by all treatments compared with untreated samples (p < 0.10). Increased release of proteins involved in innate immunity and immune cell recruitment were noted following IL-1beta and TNF-alpha treatment, whereas increased release of intracellular proteins was seen most dramatically with mechanical compression injury. Proteins involved in insulin-like growth factor and TGF-beta superfamily pathway modulation showed changes in pro-anabolic pathways that may represent early repair signals. At the systems level, two principal components were sufficient to describe 97% of the covariance in the data. A strong correlation was noted between the proteins released in response to IL-1beta and TNF-alpha; in contrast, mechanical injury resulted in both similarities and unique differences in the groups of proteins released compared with cytokine treatment.
Collapse
Affiliation(s)
- Anna L Stevens
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
47
|
Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 2008; 190:395-412. [DOI: 10.1016/j.aanat.2008.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 01/13/2023]
|
48
|
Hunziker EB, Stähli A. Surgical suturing of articular cartilage induces osteoarthritis-like changes. Osteoarthritis Cartilage 2008; 16:1067-73. [PMID: 18308590 PMCID: PMC2657041 DOI: 10.1016/j.joca.2008.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/14/2008] [Indexed: 02/02/2023]
Abstract
INTRODUCTION In clinical tissue-engineering-based approaches to articular cartilage repair, various types of flap are frequently used to retain an implanted construct within the defect, and they are usually affixed by suturing. We hypothesize that the suturing of articular cartilage is associated with a loss of chondrocytes from, and osteoarthritis-like changes within, the perisutural area. MATERIALS AND METHODS We established a large, partial-thickness defect model in the femoral groove of adult goats. The defects were filled with bovine fibrinogen to support a devitalized flap of autologous synovial tissue, which was sutured to the surrounding articular cartilage with single, interrupted stitches. The perisutural and control regions were analyzed histologically, histochemically and histomorphometrically shortly after surgery and 3 weeks later. RESULTS Compared to control regions, chondrocytes were lost from the perisutural area even during the first few hours of surgery. During the ensuing 3 weeks, the numerical density of cells in the perisutural area decreased significantly. The cell losses were associated with a loss of proteoglycans from the extracellular matrix. Shortly after surgery, fissures were observed within the walls of the suture channels. By the third week, their surface density had increased significantly and they were filled with avascular mesenchymal tissue. CONCLUSIONS The suturing of articular cartilage induces severe local damage, which is progressive and reminiscent of that associated with the early stages of osteoarthritis. This damage could be most readily circumvented by adopting an alternative mode of flap affixation, such as gluing with a biological adhesive.
Collapse
Affiliation(s)
- Ernst B. Hunziker
- Corresponding author: Prof. Ernst B. Hunziker, DST Research Center, Department of Clinical Research, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland. Tel: +41 31 632 8685; Fax: +41 31 632 4955; E-mail:
| | | |
Collapse
|
49
|
Natoli RM, Scott CC, Athanasiou KA. Temporal effects of impact on articular cartilage cell death, gene expression, matrix biochemistry, and biomechanics. Ann Biomed Eng 2008; 36:780-92. [PMID: 18299988 DOI: 10.1007/s10439-008-9472-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/14/2008] [Indexed: 12/18/2022]
Abstract
Articular cartilage injury can cause post-traumatic osteoarthritis, but early processes leading to the disease are not well understood. The objective of this study was to characterize two levels of impact loading at 24 h, 1 week, and 4 weeks in terms of cell death, gene expression, extracellular matrix biochemistry, and tissue biomechanical properties. The data show cell death increased and tissue stiffness decreased by 24 h following High impact (2.8 J). These degradative changes persisted at 1 and 4 weeks, and were further accompanied by measurable changes in ECM biochemistry. Moreover, following High impact at 24 h there were specific changes in gene expression that distinguished injured tissue from adjacent tissue that was not loaded. In contrast, Low impact (1.1 J) showed little change from control specimens at 24 h or 1 week. However, at 4 weeks, a significant increase in cell death and significant decrease in tissue stiffness were present. The constellation of findings indicates Low impacted tissue exhibited a delayed biological response. The study characterizes a model system for examining the biology of articular cartilage post-impact, as well as identifies possible time points and success criteria to be used in future studies employing intervention agents.
Collapse
Affiliation(s)
- Roman M Natoli
- Department of Bioengineering, Rice University, 6100 Main Street, Keck Hall Suite 116, Houston, TX 77005, USA
| | | | | |
Collapse
|
50
|
Ling HY, Zheng YP, Patil SG. Strain dependence of ultrasound speed in bovine articular cartilage under compression in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1599-608. [PMID: 17602828 DOI: 10.1016/j.ultrasmedbio.2007.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 04/23/2007] [Accepted: 04/26/2007] [Indexed: 05/16/2023]
Abstract
The change of the ultrasound (US) speed in articular cartilage (artC) under applied strain conditions may induce significant measurement errors of the mechanical properties of the artC during both indentation and compression tests using US. In this paper, the strain dependence of the US speed in bovine artC (n = 20) under compression in vitro was investigated by virtue of using a custom-made US compression testing system. The US speed of the artC at the instant after the compression and that after a period of stress-relaxation were estimated under the applied strain ranging from 0% to 20%. Moreover, the instantaneous modulus and the modulus after the stress-relaxation of the artC were measured and correlated with the US speed. There was no significant difference (p > 0.05) between the US speed at the instant after the compression and that after the stress-relaxation, although there was a discrepancy between the instantaneous modulus and the modulus after stress-relaxation. The US speed was found to be highly correlated to the applied strain (r(2) = 0.98, p < 0.001) in a quadratic relation and changed by 7.8% (from 1581 +/- 36 m/s to 1671 +/- 56 m/s) when the applied strain reached 20%. The results suggest that the strain-dependent effect on the US speed in artC should be considered when the US is deployed for the assessment of artC using the compression or indentation test.
Collapse
Affiliation(s)
- H Y Ling
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | | | | |
Collapse
|