1
|
Takeda K, Saito H, Shoji S, Sekiguchi H, Matsumoto M, Ujihira M, Miyagi M, Inoue G, Takaso M, Uchida K. Enhancing Bone Formation Through bFGF-Loaded Mesenchymal Stromal Cell Spheroids During Fracture Healing in Mice. Bioengineering (Basel) 2024; 11:1041. [PMID: 39451415 PMCID: PMC11504918 DOI: 10.3390/bioengineering11101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to evaluate the osteogenic potential of mesenchymal stromal cell (MSC) spheroids combined with the basic fibroblast growth factor (bFGF) in a mouse femur fracture model. To begin, MSC spheroids were generated, and the expression of key trophic factors (bFGF Bmp2, and Vegfa) was assessed using quantitative PCR (qPCR). A binding assay confirmed the interaction between the bFGF and the spheroids' extracellular matrix. The spheroid cultures significantly upregulated bFGF, Bmp2, and Vegfa expression compared to the monolayers (p < 0.001), and the binding assay demonstrated effective bFGF binding to the MSC spheroids. Following these in vitro assessments, the mice were divided into five groups for the in vivo study: (1) no treatment (control), (2) spheroids alone, (3) bFGF alone, (4) bFGF-loaded spheroids (bFGF-spheroids), and (5) non-viable (frozen) bFGF-loaded spheroids (bFGF-dSpheroids). Bone formation was analyzed by a micro-CT, measuring the bone volume (BV) and bone mineral content (BMC) of the mice four weeks post-fracture. A high dose of the bFGF (10 µg) significantly promoted bone formation regardless of the presence of spheroids, as evidenced by the increases in BV (bFGF, p = 0.010; bFGF-spheroids, p = 0.006; bFGF-dSpheroids, p = 0.032) and BMC (bFGF, p = 0.023; bFGF-spheroids, p = 0.004; bFGF-dSpheroids, p = 0.014), compared to the controls. In contrast, a low dose of the bFGF (1 µg) combined with the MSC spheroids significantly increased BV and BMC compared to the control (BV, p = 0.012; BMC, p = 0.015), bFGF alone (BV, p = 0.012; BMC, p = 0.008), and spheroid (BV, p < 0.001; BMC, p < 0.001) groups. A low dose of the bFGF alone did not significantly promote bone formation (p > 0.05). The non-viable (frozen) spheroids loaded with a low dose of the bFGF resulted in a higher BV and BMC compared to the spheroids alone (BV, p = 0.003; BMC, p = 0.017), though the effect was less pronounced than in the viable spheroids. These findings demonstrate the synergistic effect of the bFGF and MSC spheroids on bone regeneration. The increased expression of the BMP-2 and VEGF observed in the initial experiments, coupled with the enhanced bone formation in vivo, highlight the therapeutic potential of this combination. Future studies will aim to elucidate the underlying molecular mechanisms and assess the long-term outcomes for bone repair strategies.
Collapse
Affiliation(s)
- Kugo Takeda
- Department of Medical Engineering and Technology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0375, Kanagawa, Japan; (K.T.); (M.U.)
| | - Hiroki Saito
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
| | - Shintaro Shoji
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
| | - Hiroyuki Sekiguchi
- Research Institute, Shonan University of Medical Sciences, Nishikubo 500, Chigasaki 253-0083, Kanagawa, Japan;
| | - Mitsuyoshi Matsumoto
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
| | - Masanobu Ujihira
- Department of Medical Engineering and Technology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0375, Kanagawa, Japan; (K.T.); (M.U.)
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara 252-0374, Kanagawa, Japan; (H.S.); (S.S.); (M.M.); (M.M.); (G.I.); (M.T.)
- Research Institute, Shonan University of Medical Sciences, Nishikubo 500, Chigasaki 253-0083, Kanagawa, Japan;
| |
Collapse
|
2
|
Novais A, Chatzopoulou E, Chaussain C, Gorin C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021; 10:932. [PMID: 33920587 PMCID: PMC8073160 DOI: 10.3390/cells10040932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Bone is a hard-vascularized tissue, which renews itself continuously to adapt to the mechanical and metabolic demands of the body. The craniofacial area is prone to trauma and pathologies that often result in large bone damage, these leading to both aesthetic and functional complications for patients. The "gold standard" for treating these large defects is autologous bone grafting, which has some drawbacks including the requirement for a second surgical site with quantity of bone limitations, pain and other surgical complications. Indeed, tissue engineering combining a biomaterial with the appropriate cells and molecules of interest would allow a new therapeutic approach to treat large bone defects while avoiding complications associated with a second surgical site. This review first outlines the current knowledge of bone remodeling and the different signaling pathways involved seeking to improve our understanding of the roles of each to be able to stimulate or inhibit them. Secondly, it highlights the interesting characteristics of one growth factor in particular, FGF-2, and its role in bone homeostasis, before then analyzing its potential usefulness in craniofacial bone tissue engineering because of its proliferative, pro-angiogenic and pro-osteogenic effects depending on its spatial-temporal use, dose and mode of administration.
Collapse
Affiliation(s)
- Anita Novais
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Eirini Chatzopoulou
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
- Département de Parodontologie, Université de Paris, UFR Odontologie-Garancière, 75006 Paris, France
| | - Catherine Chaussain
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Caroline Gorin
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| |
Collapse
|
3
|
Shoji S, Uchida K, Saito W, Sekiguchi H, Inoue G, Miyagi M, Kuroda A, Takaso M. Acceleration of Bone Healing by In Situ-Forming Dextran-Tyramine Conjugates Containing Basic Fibroblast Growth Factor in Mice. Cureus 2020; 12:e10085. [PMID: 32874816 PMCID: PMC7455394 DOI: 10.7759/cureus.10085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An enzymatic crosslinking strategy using hydrogen peroxide (H2O2) and horseradish peroxidase (HRP) has been receiving increasing attention for use with in situ-formed hydrogels (IFHs). Several studies have reported the application of IFHs in cell delivery and tissue engineering. IFHs may also be ideal carrier materials for bone repair, although their potential as a carrier for basic fibroblast growth factor (bFGF) has yet to be evaluated. Here, we examined the effect of an IFH made of dextran (Dex)-tyramine (TA) conjugates (IFH-Dex-TA) containing bFGF in promoting bone formation in a fracture model in mice. Immediately following a fracture procedure, animals either received no treatment (control) or an injection of IFH-Dex-TA/phosphate-buffered saline (IFH-Dex-TA/PBS) or IFH-Dex-TA containing 1 μg bFGF (IFH-Dex-TA/bFGF) into the fracture site (n=10, each treatment). Fracture sites injected with IFH-Dex-TA/bFGF showed significantly greater bone volume, mineral content, and bone union than sites receiving no treatment or treated with IFH-Dex-TA/PBS alone (each n=10). This Dex-TA gel may be an effective drug delivery system for optimizing bFGF therapy.
Collapse
Affiliation(s)
- Shintaro Shoji
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Kentaro Uchida
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Wataru Saito
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | | | - Gen Inoue
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masayuki Miyagi
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Akiyoshi Kuroda
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masashi Takaso
- Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| |
Collapse
|
4
|
Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front Pharmacol 2020; 11:622. [PMID: 32435200 PMCID: PMC7218105 DOI: 10.3389/fphar.2020.00622] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects caused by injury, disease, or congenital deformity remain a major health concern, and efficiently regenerating bone is a prominent clinical demand worldwide. However, bone regeneration is an intricate process that requires concerted participation of both cells and bioactive factors. Mimicking physiological bone healing procedures, the sustained release of bioactive molecules plays a vital role in creating an optimal osteogenic microenvironment and achieving promising bone repair outcomes. The utilization of biomaterial scaffolds can positively affect the osteogenesis process by integrating cells with bioactive factors in a proper way. A high water content, tunable physio-mechanical properties, and diverse synthetic strategies make hydrogels ideal cell carriers and controlled drug release reservoirs. Herein, we reviewed the current advancements in hydrogel-based drug sustained release systems that have delivered osteogenesis-inducing peptides, nucleic acids, and other bioactive molecules in bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
5
|
Zhang C, Guo H, Yang C, Chen Q, Huang J, Liu L, Zhang Y, Jin S, Song A, Yang P. The biological behavior optimization of human periodontal ligament stem cells via preconditioning by the combined application of fibroblast growth factor-2 and A83-01 in in vitro culture expansion. J Transl Med 2019; 17:66. [PMID: 30819199 PMCID: PMC6396448 DOI: 10.1186/s12967-019-1799-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As the optimal source of seed cells in periodontal tissue engineering, periodontal ligament stem cells (PDLSCs) have always been researched to improve cell expansion due to their limited resource and spontaneous differentiation in vitro cultivation. Fibroblast growth factor-2 (FGF-2) has been proven to stimulate bone marrow mesenchymal stem cells (BMMSCs) proliferation and maintain their pluripotency when being added to the culture medium. As a small molecule inhibitor of transforming growth factor-beta receptors (TGF-βRs), A83-01 can also promote cell proliferation. Therefore, the aim of this study was to verify whether the combined application of FGF-2 and A83-01 could augment cell quantity and quality during in vitro culture. METHODS PDLSCs were preconditioned with A83-01, FGF-2, or their combination. A cell counting kit-8 (CCK8) assay, cell apoptosis assay, ALP activity assay, Alizarin Red S staining assay, RT-PCR assay, Western blot assay and ELISA were used to determine the sustained effects of different preconditioning strategies on the proliferation, apoptosis, stemness, osteogenic differentiation and paracrine action of PDLSCs. RESULTS The combined application of FGF-2 and A83-01 significantly augmented cell expansion, reduced cell apoptosis, magnified stemness expression, promoted later osteogenic differentiation and mineralization and increased paracrine action of PDLSCs compared with the control. Moreover, the combination presented significant advantages in enhancing proliferation, stemness expression and paracrine action over FGF-2 alone. CONCLUSIONS The combined application of A83-01 and FGF-2 may be an improved strategy for PDLSCs biological behavior optimization in culture expansion and advantageous for reinforcing proliferation, stemness expression and cytokine secretion over FGF-2 alone.
Collapse
Affiliation(s)
- Chunshu Zhang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Hongmei Guo
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Qian Chen
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
| | - Jiahui Huang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
| | - Lianlian Liu
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
| | - Yu Zhang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
| | - Shanshan Jin
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
| | - Aimei Song
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong People’s Republic of China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
6
|
Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies. Front Med 2018; 13:160-188. [PMID: 30047029 DOI: 10.1007/s11684-018-0629-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yuelong Huang
- Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China
| | - Chi Ma
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chengai Wu
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Wei Tian
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China. .,Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China.
| |
Collapse
|
7
|
Basic Fibroblast Growth Factor Fused with Tandem Collagen-Binding Domains from Clostridium histolyticum Collagenase ColG Increases Bone Formation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8393194. [PMID: 29770338 PMCID: PMC5889866 DOI: 10.1155/2018/8393194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 11/17/2022]
Abstract
Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the Clostridium histolyticum class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly)10, induced mesenchymal cell proliferation and callus formation at fracture sites. In addition, C. histolyticum produces class I collagenase (ColG) with tandem CBDs (s3a and s3b) at the C-terminus. We therefore hypothesized that a bFGF fusion protein containing ColG-derived tandem CBDs (s3a and s3b) would show enhanced collagen-binding activity, leading to improved bone formation. Here, we examined the binding affinity of four collagen anchors derived from the two clostridial collagenases to H-Gly-Pro-Arg-Gly-(Pro-Hyp-Gly)12-NH2, a collagenous peptide, by surface plasmon resonance and found that tandem CBDs (s3a-s3b) have the highest affinity for the collagenous peptide. We also constructed four fusion proteins consisting of bFGF and s3 (bFGF-s3), s2b-s3b (bFGF-s2b-s3), s3b (bFGF-s3b), and s3a-s3b (bFGF-s3a-s3b) and compared their biological activities to those of a previous fusion construct (bFGF-s2b-s3) using a cell proliferation assay in vitro and a mouse femoral fracture model in vivo. Among these CB-bFGFs, bFGF-s3a-s3b showed the highest capacity to induce mesenchymal cell proliferation and callus formation in the mice fracture model. The poly(Pro-Hyp-Gly)10/bFGF-s3a-s3b construct may therefore have the potential to promote bone formation in clinical settings.
Collapse
|
8
|
Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:62-70. [DOI: 10.1016/j.msec.2016.08.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 11/19/2022]
|
9
|
Autologous bone grafts with MSCs or FGF-2 accelerate bone union in large bone defects. J Orthop Surg Res 2016; 11:105. [PMID: 27669690 PMCID: PMC5037630 DOI: 10.1186/s13018-016-0442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/19/2016] [Indexed: 01/09/2023] Open
Abstract
BACGROUND Although the contribution of fibroblast growth factor (FGF)-2 and mesenchymal stromal cells (MSCs) to bone formation is well known, few studies have investigated the combination of an autologous bone graft with FGF-2 or MSCs for large bone defects. METHODS We studied an atrophic non-union model with a large bone defect, created by resecting a 10-mm section from the center of each femoral shaft of 12-week-old Sprague-Dawley rats. The periosteum of the proximal and distal ends of the femur was cauterized circumferentially, and excised portions were used in the contralateral femur as autologous bone grafts. The rats were randomized to three groups and given no further treatment (group A), administered FGF-2 at 20 μg/20 μL (group B), or 1.0 × 106 MSCs (group C). Radiographs were taken every 2 weeks up to 12 weeks, with CT performed at 12 weeks. Harvested femurs were stained with toluidine blue and evaluated using radiographic and histology scores. RESULTS Radiographic and histological evaluation showed that bone union had been achieved at 12 weeks in group C, while group B showed callus formation and bridging callus but non-union, and in group A, callus formation alone was evident. Both radiographic and histological scores were significantly higher at 2, 4, 6, 8, 10, and 12 weeks in groups B and C than group A and also significantly higher in group C than group B at 12 weeks. CONCLUSIONS These data suggest that autologous bone grafts in combination with MSCs benefit difficult cases which cannot be treated with autologous bone grafts alone.
Collapse
|
10
|
Ramasamy SK, Kusumbe AP, Itkin T, Gur-Cohen S, Lapidot T, Adams RH. Regulation of Hematopoiesis and Osteogenesis by Blood Vessel-Derived Signals. Annu Rev Cell Dev Biol 2016; 32:649-675. [PMID: 27576121 DOI: 10.1146/annurev-cellbio-111315-124936] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their conventional role as a versatile transport system, blood vessels provide signals controlling organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular osteoprogenitor cells and thereby control bone formation. Blood vessels are also a critical component of niche microenvironments for hematopoietic stem cells. Here we discuss key pathways and factors controlling endothelial cell behavior in bone, the role of vessels in osteogenesis, and the nature of vascular stem cell niches in bone marrow.
Collapse
Affiliation(s)
- Saravana K Ramasamy
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Anjali P Kusumbe
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Tomer Itkin
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Shiri Gur-Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Tsvee Lapidot
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
11
|
Nagayasu-Tanaka T, Nozaki T, Miki K, Sawada K, Kitamura M, Murakami S. FGF-2 promotes initial osseointegration and enhances stability of implants with low primary stability. Clin Oral Implants Res 2016; 28:291-297. [PMID: 26919334 PMCID: PMC5347960 DOI: 10.1111/clr.12797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of basic fibroblast growth factor (FGF-2) on osseointegration of dental implants with low primary stability in a beagle dog model. MATERIALS AND METHODS Customized titanium implants that were designed to have low contact with the existing bone were installed into the edentulous mandible of beagle dogs. To degrade the primary stability of the implants, the diameters of the bone sockets exceeded the implant diameters. FGF-2 (0.3%) plus vehicle (hydroxypropyl cellulose) or vehicle alone was topically applied to the sockets in the FGF-2 and control groups, respectively. In Study 1, the new bone area and length of new bone-to-implant contact (BIC) were evaluated at 4, 8, and 12 weeks after installation using histomorphometry and scanning electron microscopy. In Study 2, the implant stability quotient (ISQ) values were sequentially measured for 16 weeks using an Osstell system. RESULTS The histomorphometric analysis revealed that the new bone area and length of BIC in the FGF-2 group were significantly larger than those in the control group at 4 weeks. Electron microscopic observation showed intimate contact between the mature lamellar bone and the implant surfaces, osseointegration, in both groups. The ISQ values in the FGF-2 group were significantly increased from 6 to 16 weeks compared with those in the control group. CONCLUSIONS Taken together, our study demonstrates that FGF-2 promoted new bone formation around the dental implants and subsequent osseointegration, resulting in promotion of stability of implants with low primary stability.
Collapse
Affiliation(s)
- Toshie Nagayasu-Tanaka
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co. Ltd., Kyoto, Japan.,Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takenori Nozaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Koji Miki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
12
|
Sekiguchi H, Uchida K, Inoue G, Matsushita O, Saito W, Aikawa J, Tanaka K, Fujimaki H, Miyagi M, Takaso M. Acceleration of bone formation during fracture healing by poly(pro-hyp-gly)10and basic fibroblast growth factor containing polycystic kidney disease and collagen-binding domains fromClostridium histolyticumcollagenase. J Biomed Mater Res A 2016; 104:1372-8. [DOI: 10.1002/jbm.a.35670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hiroyuki Sekiguchi
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Gen Inoue
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Osamu Matsushita
- Department of Bacteriology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; 2-5-1 Kita-Ku Shikata-Cho Okayama Japan
| | - Wataru Saito
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix and Protein Engineering Project; 520-11, Kuwabara Toride-Shi Ibaraki-Ken Japan
| | - Hisako Fujimaki
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-Ku, Kitasato Sagamihara City Kanagawa 252-0374 Japan
| |
Collapse
|
13
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
14
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
15
|
Uchida K, Matsushita O, Nishi N, Inoue G, Horikawa K, Takaso M. Enhancement of periosteal bone formation by basic fibroblast-derived growth factor containing polycystic kidney disease and collagen-binding domains fromClostridium histolyticumcollagenase. J Tissue Eng Regen Med 2015; 11:1165-1172. [DOI: 10.1002/term.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Kentaro Uchida
- Department of Orthopaedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Sagamihara Kanagawa Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; 2-5-1 Shikata-cho Kita-ku Okayama Japan
| | - Nozomu Nishi
- Life Science Research Centre; Kagawa University; 1750-1 Kita-gun Miki-cho Kagawa Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Sagamihara Kanagawa Japan
| | - Kyosuke Horikawa
- Okayama University Medical School; 2-5-1 Shikata-cho Kita-ku Okayama Japan
| | - Masashi Takaso
- Department of Orthopaedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Sagamihara Kanagawa Japan
| |
Collapse
|
16
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
17
|
Gelatin Hydrogel as a Carrier of Recombinant Human Fibroblast Growth Factor-2 During Rat Mandibular Distraction. J Oral Maxillofac Surg 2014; 72:2015-31. [DOI: 10.1016/j.joms.2014.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022]
|
18
|
Tanaka T, Kumagae Y, Chazono M, Komaki H, Kitasato S, Kakuta A, Marumo K. An Injectable Complex of β-tricalcium Phosphate Granules, Hyaluronate, and rhFGF-2 on Repair of Long-bone Fractures with Large Fragments. Open Biomed Eng J 2014; 8:52-9. [PMID: 25246986 PMCID: PMC4157360 DOI: 10.2174/1874120701408010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effects of an injectable complex of β-tricalcium phosphate (β-TCP) granules, hyaluronate, and recombinant human fibroblast growth factor-2 (rhFGF-2) on repair of unstable intertrochanteric fractures in elderly patients. Twenty-five patients (range, 76-91 years) having 31.A2 fractures (AO classification) were treated with injection of the complex followed by intramedullary nails. Bone regeneration and β-TCP resorption, unions of intertrochanteric fractures and displaced lesser trochanters to the shaft, and varus deformity of the femoral neck were assessed by X-ray and CT scans. Fracture union occurred in all cases and union of the displaced lesser trochanter to the shaft was obtained in 24 cases by 12 weeks. It is of interest that β-TCP granules were completely resorbed and marked new bone formation around the lesser trochanter was observed in all cases compared to cases not treated with the complex. Based on the results of intertrochanteric fractures, we applied this technique to two patients with subtrochanteric or humeral fractures in elderly patients, and obtained bone union. This complex is a paste-like material that is easy to handle, and it may be of considerable use in treatment of both unstable intertrochanteric fractures and other cortical bone defects with minimal surgical invasion.
Collapse
Affiliation(s)
- T Tanaka
- NHO Utsunomiya National Hospital, Department of Orthopaedic Surgery, 2160 Shimo-Okamoto, Utsunomiya City, Tochigi, 329-1193, Japan
| | - Y Kumagae
- NHO Utsunomiya National Hospital, Department of Orthopaedic Surgery, 2160 Shimo-Okamoto, Utsunomiya City, Tochigi, 329-1193, Japan
| | - M Chazono
- NHO Utsunomiya National Hospital, Department of Orthopaedic Surgery, 2160 Shimo-Okamoto, Utsunomiya City, Tochigi, 329-1193, Japan
| | - H Komaki
- Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - S Kitasato
- Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - A Kakuta
- Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - K Marumo
- Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
19
|
Ueno M, Uchida K, Saito W, Matsushita O, Yogoro M, Nishi N, Ogura T, Hattori S, Inoue G, Tanaka K, Takahira N, Takaso M. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects. Biomed Mater 2014; 9:035014. [DOI: 10.1088/1748-6041/9/3/035014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Bone regeneration by the combined use of tetrapod-shaped calcium phosphate granules with basic fibroblast growth factor-binding ion complex gel in canine segmental radial defects. J Vet Med Sci 2014; 76:955-61. [PMID: 24670963 PMCID: PMC4143656 DOI: 10.1292/jvms.14-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effect of tetrapod-shaped alpha tricalcium phosphate granules (Tetrabones(®) [TB]) in combination with basic fibroblast growth factor (bFGF)-binding ion complex gel (f-IC gel) on bone defect repair was examined. Bilateral segmental defects 20-mm long were created in the radius of 5 dogs, stabilized with a plate and screws and implanted with 1 of the following: TB (TB group), TB and bFGF solution (TB/f group), and TB and f-IC gel (TB/f-IC group). Dogs were euthanized 4 weeks after surgery. Radiographs showed well-placed TB granules in the defects and equal osseous callus formation in all the groups. Histomorphometry revealed that the number of vessels and volume of new bone in the TB/f-IC group were significantly higher than those in the other groups. However, no significant differences in neovascularization and new bone formation were observed between the TB/f and TB groups. Furthermore, no significant difference in the lamellar bone volume or rate of mineral apposition was observed among groups. These results suggest that increased bone formation might have been because of the promotion of neovascularization by the f-IC gel. Therefore, the combinatorial method may provide a suitable scaffold for bone regeneration in large segmental long bone defects.
Collapse
Affiliation(s)
- Muneki Honnami
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hobbenaghi R, Mahboob P, Saifzadeh S, Javanbakht J, Manesh JYY, Mortezaee R, Touni SR, Hosseini E, Aghajanshakeri S, Moloudizargari M, Javaherypour S. Histopathological features of bone regeneration in a canine segmental ulnar defect model. Diagn Pathol 2014; 9:59. [PMID: 24636669 PMCID: PMC3995496 DOI: 10.1186/1746-1596-9-59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/07/2014] [Indexed: 11/27/2022] Open
Abstract
Background Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopaedic surgeions and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. The present study has been designed in vivo to evaluate the effects of cellular auto-transplantation of tail vertebrae on healing of experimental critical bone defect in a dog model. Methods Six indigenous breeds of dog with 32 ± 3.6 kg average weight from both sexes (5 males and 1 female) received bilateral critical-sized ulnar segmental defects. After determining the health condition, divided to 2 groups: The Group I were kept as control I (n = 1) while in Group II (experimental group; n = 5) bioactive bone implants were inserted. The defects were implanted with either autogeneic coccygeal bone grafts in dogs with 3-4 cm diaphyseal defects in the ulna. Defects were stabilized with internal plate fixation, and the control defects were not stabilized. Animals were euthanized at 16 weeks and analyzed by histopathology. Results Histological evaluation of this new bone at sixteen weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. And also reformation cortical compartment and reconstitution of marrow space were observed at the graft-host interface together with graft resorption and necrosis responses. Finally, our data were consistent with the osteoconducting function of the tail autograft. Conclusions Our results suggested that the tail vertebrae autograft seemed to be a new source of autogenous cortical bone in order to supporting segmental long bone defects in dogs. Furthermore, cellular autotransplantation was found to be a successful replacement for the tail vertebrae allograft bone at 3-4 cm segmental defects in the canine mid- ulna. Clinical application using graft expanders or bone autotransplantation should be used carefully and requires further investigation. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2028232688119271.
Collapse
Affiliation(s)
| | | | | | - Javad Javanbakht
- Department of Pathobiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Repair of rabbit segmental femoral defects by using a combination of tetrapod-shaped calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Biomaterials 2013; 34:9056-62. [DOI: 10.1016/j.biomaterials.2013.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/07/2013] [Indexed: 12/29/2022]
|
23
|
Makhdom AM, Hamdy RC. The Role of Growth Factors on Acceleration of Bone Regeneration During Distraction Osteogenesis. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:442-53. [PMID: 23582172 DOI: 10.1089/ten.teb.2012.0717] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asim M. Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reggie C. Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Influence of Acidic Fibroblast Growth Factor on Bone Regeneration in Experimental Cranial Defects Using Spongostan and Bio-Oss as Protein Carriers. J Craniofac Surg 2013; 24:1507-14. [DOI: 10.1097/scs.0b013e31828f2469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Uchida K, Matsushita O, Naruse K, Mima T, Nishi N, Hattori S, Ogura T, Inoue G, Tanaka K, Takaso M. Acceleration of periosteal bone formation by human basic fibroblast growth factor containing a collagen-binding domain from Clostridium histolyticum collagenase. J Biomed Mater Res A 2013; 102:1737-43. [PMID: 23775724 PMCID: PMC4232007 DOI: 10.1002/jbm.a.34841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 12/26/2022]
Abstract
Basic fibroblast growth factor 2 (bFGF) is a potent mitogen for mesenchymal cells, and the local application of recombinant bFGF accelerates bone union and defect repair. However, repeated dosing is required for sustained therapeutic effect as the efficacy of bFGF decreases rapidly following its diffusion from bone defect sites. Here, we attempted to develop a collagen-based bone formation system using a fusion protein (collagen binding-bFGF, CB-bFGF) consisting of bFGF and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase. The addition of the CBD to bFGF did not modify its native biological activity, as shown by the capacity of the fusion protein to promote the in vitro proliferation of periosteal mesenchymal cells. The affinity of the fusion protein towards collagen and demineralized bone matrix (DBM) was also confirmed by collagen-binding assays. Moreover, in vivo periosteal bone formation assays showed that the combination of CB-bFGF with a collagen sheet induced periosteal bone formation at protein concentrations lower than those required for bFGF alone. In addition, grafts of DBM loaded with CB-bFGF accelerated new bone formation in rat femurs compared to the same concentration of bFGF administered alone. Taken together, these properties suggest that the CB-bFGF/collagen composite is a promising material for bone repair in the clinical setting.
Collapse
Affiliation(s)
- Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Grundlagen biologischer Augmentationstechniken. ARTHROSKOPIE 2013. [DOI: 10.1007/s00142-012-0734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Bai Y, Yin G, Huang Z, Liao X, Chen X, Yao Y, Pu X. Localized delivery of growth factors for angiogenesis and bone formation in tissue engineering. Int Immunopharmacol 2013; 16:214-23. [PMID: 23587487 DOI: 10.1016/j.intimp.2013.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 01/14/2023]
Abstract
Angiogenesis is a key component of bone formation. Delivery of growth factors for both angiogenesis and osteogenesis is about to gain important potential as a future therapeutic tool. This review focuses on these growth factors that have dual functions in angiogenesis and osteogenesis, and their localized application. A major hurdle in the clinical development of growth factor therapy so far is how to assure safe and efficacious therapeutic use of such factors and avoid unwanted side effects and toxicity. It is now firmly established from the available information that the type, dose, combinations and delivery kinetics of growth factors all play a decisive role for the success of growth factor therapy. All of these parameters have to be adapted and optimized for each animal model or clinical case. In this review we discuss some important parameters associated with growth factor therapy and present an overview of selected preclinical studies, followed by a conceptual description of both established and proposed delivery strategies meeting therapeutic needs.
Collapse
Affiliation(s)
- Yan Bai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Clinical efficacy of autogenous cancellous bone and fibroblast growth factor 2 combined with frozen allografts in femoral nonunion fractures. Vet Comp Orthop Traumatol 2013; 26:123-9. [PMID: 23494141 DOI: 10.3415/vcot-11-12-0186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 09/13/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To evaluate the efficacy of cortical allograft and fibroblast growth factor 2 (FGF-2)-impregnated autogenous cancellous bone in nonunion fracture repair in dogs. METHODS From January 2000 to August 2010, seven dogs underwent cortical allograft and FGF-2-impregnated autogenous cancellous bone implantation for treatment of a femoral nonunion following fracture. Radiographic images were used to assess healing. RESULTS The average length of the implanted cortical allograft was 29.1 ± 4.4 mm. A significant improvement in the postoperative percentage of femoral shortening was observed with the experimental treatment, from 85.2 ± 8.2% to 95.0 ± 4.8%. Using radiographic scoring, we analysed the process of bone remodelling. At three months post-surgery, the proximal and distal fracture lines had begun to disappear, and a complete absence was observed after six months. Bacterial infection was detected in two of the seven cases. CLINICAL SIGNIFICANCE The findings of our study suggest that the combination of cortical allografts with FGF-2 impregnated cancellous autograft may be useful in cases of diaphyseal fracture non-union. The disappearance of the fracture line in dogs with nonunion was recognized at the same phase as the report in which healing process of allograft was evaluated in the experimental ostectomy model using the normal dog.
Collapse
|
29
|
Effect of Gelatin Hydrogel Sheet Containing Basic Fibroblast Growth Factor on Proximal Sesamoid Bone Transverse Fracture Healing in the Horse. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Tanaka T, Kitasato S, Chazono M, Kumagae Y, Iida T, Mitsuhashi M, Kakuta A, Marumo K. Use of an Injectable Complex of β-Tricalcium Phosphate Granules, Hyaluronate, and Fibroblast Growth Factor-2 on Repair of Unstable Intertrochanteric Fractures. Open Biomed Eng J 2012; 6:98-103. [PMID: 23115598 PMCID: PMC3480701 DOI: 10.2174/1874120701206010098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/22/2022] Open
Abstract
We evaluated effects of an injectable complex of β-tricalcium phosphate (β-TCP) granules, hyaluronate, and recombinant human fibroblast growth factor-2 (rhFGF-2) on repair of unstable intertrochanteric fractures in elderly patients. Twenty-five patients (range, 76-91 years) having 31.A2 fractures (AO classification) were treated with injection of the complex followed by intramedullary nails. Bone regeneration and β-TCP resorption, unions of intertrochanteric fractures and displaced lesser trochanters to the shaft, and varus deformity of the femoral neck were assessed by X-ray and CT scans. Fracture union occurred in all cases and union of the displaced lesser trochanter to the shaft was obtained in 24 cases by 12 weeks. It is of interest that β-TCP granules were completely replaced by bone and marked new bone formation around the lesser trochanter was observed in all cases compared to cases not treated with the complex. This complex is a paste-like material that is easy to handle, and it may be of considerable use in treatment of both unstable intertrochanteric fractures and other cortical bone defects with minimal surgical invasion.
Collapse
Affiliation(s)
- T Tanaka
- Department of Orthopaedic Surgery NHO, Utsunomiya National Hospital, 2160, Shimo-Okamoto, Utsunomiya City 329-1193 Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Rotator cuff repair is a common orthopedic procedure. Despite advances in surgical technique, the rotator cuff tendons often fail to heal after surgery. In recent years, a number of biologic strategies have been developed and tested to augment healing after rotator cuff repair. These strategies include allograft, extracellular matrices (ECMs), platelet rich plasma (PRP), growth factors, stem cells, and gene therapy. This chapter reviews the most current research on biologic augmentation of rotator cuff repair using these methods.
Collapse
Affiliation(s)
- Scott R Montgomery
- Orthopaedic Surgery Education Office, David Geffen School of Medicine at UCLA, Room 76-143 CHS 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
32
|
Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: a review. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:1-14. [PMID: 21707439 DOI: 10.1089/ten.teb.2011.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The anticipated growth in the aging population will drastically increase medical needs of society; of which, one of the largest components will undoubtedly be from orthopedic-related pathologies. There are several proposed solutions being investigated to cost-effectively prepare for the future--pharmaceuticals, implant devices, cell and gene therapies, or some combination thereof. Gene therapy is one of the more promising possibilities because it seeks to correct the root of the problem, thereby minimizing treatment duration and cost. Currently, viral vectors have shown the highest efficacies, but immunological concerns remain. Nonviral methods show reduced immune responses but are regarded as less efficient. The nonviral paradigms consist of mechanical and chemical approaches. While organic-based materials have been used more frequently in particle-based methods, inorganic materials capable of delivery have distinct advantages, especially advantageous in orthopedic applications. The inorganic gene therapy field is highly interdisciplinary in nature, and requires assimilation of knowledge across the broad fields of cell biology, biochemistry, molecular genetics, materials science, and clinical medicine. This review provides an overview of the role each area plays in orthopedic gene therapy as well as possible future directions for the field.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Biomedical Engineering, Colleges of Medicine and Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | |
Collapse
|
33
|
Ueno M, Urabe K, Naruse K, Uchida K, Minehara H, Yamamoto T, Steck R, Gregory L, Wullschleger ME, Schuetz MA, Itoman M. Influence of internal fixator stiffness on murine fracture healing: two types of fracture healing lead to two distinct cellular events and FGF-2 expressions. Exp Anim 2011; 60:79-87. [PMID: 21325755 DOI: 10.1538/expanim.60.79] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Angiogenesis is a key component of bone repair. New blood vessels bring oxygen and nutrients to the highly metabolically active regenerating callus and serve as a route for inflammatory cells and cartilage and bone precursor cells to reach the injury site. Angiogenesis is regulated by a variety of growth factors, notably vascular endothelial growth factor (VEGF), which are produced by inflammatory cells and stromal cells to induce blood vessel in-growth. A variety of studies with transgenic and gene-targeted mice have demonstrated the importance of angiogenesis in fracture healing, and have provided insights into regulatory processes governing fracture angiogenesis. Indeed, in animal models enhancing angiogenesis promotes bone regeneration, suggesting that modifying fracture vascularization could be a viable therapeutic approach for accelerated/improved bone regeneration clinically.
Collapse
Affiliation(s)
- Kurt D Hankenson
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104-4539, United States.
| | | | | | | |
Collapse
|
35
|
Nauth A, Ristevski B, Li R, Schemitsch EH. Growth factors and bone regeneration: how much bone can we expect? Injury 2011; 42:574-9. [PMID: 21489530 DOI: 10.1016/j.injury.2011.03.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/17/2011] [Indexed: 02/02/2023]
Abstract
A large body of research has investigated the use of growth factors for bone regeneration, as a potential alternative to autogenous bone grafting. The bone morphogenetic proteins (BMPs) represent the most extensively investigated growth factors to date, as potential therapeutic agents for bone regeneration. Despite decades of research, the ideal growth factor or combination of growth factors for bone regeneration remains undefined. This article reviews the current available evidence for the application of growth factors for bone regeneration, with a focus on the clinical evidence for BMP use. Emerging pre-clinical and clinical evidence for growth factors other than the BMPs is also discussed.
Collapse
Affiliation(s)
- Aaron Nauth
- Department of Surgery, Division of Orthopaeadics, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
36
|
Murakami S. Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontol 2000 2011; 56:188-208. [DOI: 10.1111/j.1600-0757.2010.00365.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
UENO M, UCHIDA K, TAKASO M, MINEHARA H, SUTO K, TAKAHIRA N, STECK R, SCHUETZ MA, ITOMAN M. Distribution of Bone Marrow-Derived Cells in the Fracture Callus during Plate Fixation in a Green Fluorescent Protein-Chimeric Mouse Model. Exp Anim 2011; 60:455-62. [DOI: 10.1538/expanim.60.455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Masaki UENO
- Kitasato University School of Medicine, Department of Orthopaedic Surgery
| | - Kentaro UCHIDA
- Kitasato University School of Medicine, Department of Orthopaedic Surgery
| | - Masashi TAKASO
- Kitasato University School of Medicine, Department of Orthopaedic Surgery
| | - Hiroaki MINEHARA
- Kitasato University School of Medicine, Department of Orthopaedic Surgery
| | - Kaori SUTO
- Kitasato University School of Medicine, Department of Orthopaedic Surgery
| | - Naonobu TAKAHIRA
- Kitasato University School of Medicine, Department of Orthopaedic Surgery
| | - Roland STECK
- Institute of Health and Biomedical Innovation, Queensland University of Technology
| | - Michael A. SCHUETZ
- Institute of Health and Biomedical Innovation, Queensland University of Technology
- Trauma Services, The Princess Alexandra Hospital
| | | |
Collapse
|
38
|
Kempen DH, Creemers LB, Alblas J, Lu L, Verbout AJ, Yaszemski MJ, Dhert WJ. Growth Factor Interactions in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:551-66. [DOI: 10.1089/ten.teb.2010.0176] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
| | - Lichun Lu
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Abraham J. Verbout
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
| | - Michael J. Yaszemski
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Wouter J.A. Dhert
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Kawaguchi H, Oka H, Jingushi S, Izumi T, Fukunaga M, Sato K, Matsushita T, Nakamura K. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized, placebo-controlled trial. J Bone Miner Res 2010; 25:2735-43. [PMID: 20533373 DOI: 10.1002/jbmr.146] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/01/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) is a potent mitogen for mesenchymal cells, and a local application of recombinant human FGF-2 (rhFGF-2) in a gelatin hydrogel has been reported to accelerate bone union in our animal studies and preparatory dose-escalation trial on patients with surgical osteotomy. We have performed a randomized, double-blind, placebo-controlled trial in which patients with fresh tibial shaft fractures of transverse or short oblique type were randomly assigned to three groups receiving a single injection of the gelatin hydrogel containing either placebo or 0.8 mg (low-dosage group) or 2.4 mg (high-dosage group) of rhFGF-2 into the fracture gap at the end of an intramedullary nailing surgery. Of 194 consecutive patients over 2 years, 85 met the eligibility criteria, and 70 (24 in the placebo group and 23 each in low- and high-dosage groups) completed the 24-week study. The cumulative percentages of patients with radiographic bone union were higher in the rhFGF-2-treated groups (p = .031 and .009 in low- and high-dosage group, respectively) compared with the placebo group, although there was no significant difference between low- and high-dosage groups (p = .776). At 24 weeks, 4, 1, and 0 patients in the placebo, low-dosage, and high-dosage groups, respectively, continued to show delayed union. No patient underwent a secondary intervention, and the time to full weight bearing without pain was not significantly different among the three groups (p = .567). There also was no significant difference in the profiles of adverse events among the groups. In conclusion, a local application of the rhFGF-2 hydrogel accelerated healing of tibial shaft fractures with a safety profile.
Collapse
Affiliation(s)
- Hiroshi Kawaguchi
- Sensory and Motor System Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM. Cranial bone defects: current and future strategies. Neurosurg Focus 2010; 29:E8. [DOI: 10.3171/2010.9.focus10201] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bony defects in the craniomaxillofacial skeleton remain a major and challenging health concern. Surgeons have been trying for centuries to restore functionality and aesthetic appearance using autografts, allografts, and even xenografts without entirely satisfactory results. As a result, physicians, scientists, and engineers have been trying for the past few decades to develop new techniques to improve bone growth and bone healing. In this review, the authors summarize the advantages and limitations of current animal models; describe current materials used as scaffolds, cell-based, and protein-based therapies; and lastly highlight areas for future investigation. The purpose of this review is to highlight the major scaffold-, cell-, and protein-based preclinical tools that are currently being developed to repair cranial defects.
Collapse
|
41
|
Kuroda Y, Akiyama H, Kawanabe K, Tabata Y, Nakamura T. Treatment of experimental osteonecrosis of the hip in adult rabbits with a single local injection of recombinant human FGF-2 microspheres. J Bone Miner Metab 2010; 28:608-16. [PMID: 20354742 DOI: 10.1007/s00774-010-0172-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
Basic fibroblast growth factor (FGF-2) exerts anabolic actions on bone formation. Here we investigated the potential effects of recombinant human FGF-2 (rhFGF-2) on the repair process of osteonecrosis of the femoral head (ONFH) and the development of secondary osteoarthritis (OA) in adult rabbits. ONFH was induced by intramuscular injection with methylprednisolone, and vascular occlusion of the capital femoral epiphysis by electrocoagulation, in adult Japanese white rabbits. Animals were randomized into two groups: treatment and control. The treatment group was given a single local injection into the femoral head of 100 μg rhFGF-2 in 100 μl gelatin hydrogel microspheres 8 weeks after the ONFH procedure, and the control group was given phosphate-buffered saline in 100 μl gelatin hydrogel microspheres. Morphological, histopathological, and radiologic analyses, including micro-computed tomography scans and magnetic resonance imaging, showed collapse of the femoral head and progression of articular cartilage degeneration in the control group at 16 weeks after the single local injection of rhFGF-2. In contrast, rhFGF-2 treatment resulted in new bone formation in the femoral head and prevented the femoral head from collapsing. In addition, the changes in OA, assessed by the modified Mankin score, was significantly lower in the treatment group. Our results indicate that a single local injection of rhFGF-2 microspheres promoted the repair of the osteonecrotic femoral head and inhibited femoral head collapse and OA progression. rhFGF-2 may be a promising strategy for the treatment of ONFH.
Collapse
Affiliation(s)
- Yutaka Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
42
|
Higuchi Y, Kabasawa Y, Sato M, Kikuchi T, Aoki K, Ohya K, Maruoka Y, Omura K. Effect of recombinant human fibroblast growth factor-2 on bone formation in rabbit mandibular distraction models using beta-tricalcium phosphate. Congenit Anom (Kyoto) 2010; 50:95-104. [PMID: 20156237 DOI: 10.1111/j.1741-4520.2010.00272.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was designed to evaluate the effect of recombinant human fibroblast growth factor-2 (rhFGF-2) on the amount and period of new bone formation in rabbit mandibular distraction models using beta-tricalcium phosphate (beta-TCP) as a bone graft substitute. Sixteen male Japanese White rabbits were divided into the following four experimental groups: 1, distraction alone; 2, distraction with beta-TCP granules; 3, distraction with rhFGF-2 (25 microg/50 microL) injected into beta-TCP granules; and 4, distraction with rhFGF-2 (100 microg/50 microL) injected into beta-TCP granules. The bones were harvested at 4 weeks after the operation and examined using soft radiography, micro-computed tomography (micro-CT), and peripheral quantitative computed tomography (pQCT). The dissected mandibles were stained using the Villanueva bone staining method, and the amount of new bone formed, bioresorption of beta-TCP, and new blood vessel formation were morphometrically calculated using bone histomorphometry. Radiopaque areas were observed more frequently in the distracted area of groups 3 and 4. Micro-CT analysis revealed partial new bone formation in the central region of the distracted area in groups 3 and 4. pQCT analysis revealed increased bone mineral density in groups 3 and 4. Histomorphometric analysis revealed increased newly formed bone and blood vessel areas in groups 3 and 4. In group 4, the number of osteoclasts around the beta-TCP granules had significantly increased. The present findings suggested that the combined use of rhFGF-2 and beta-TCP reduced the treatment period for distraction osteogenesis and accelerated the formation of a new high-quality bone.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010; 31:6279-308. [PMID: 20493521 DOI: 10.1016/j.biomaterials.2010.04.053] [Citation(s) in RCA: 461] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/22/2010] [Indexed: 02/06/2023]
Abstract
Inspired by physiological events that accompany the "wound healing cascade", the concept of developing a tissue either in vitro or in vivo has led to the integration of a wide variety of growth factors (GFs) in tissue engineering strategies in an effort to mimic the natural microenvironments of tissue formation and repair. Localised delivery of exogenous GFs is believed to be therapeutically effective for replication of cellular components involved in tissue development and the healing process, thus making them important factors for tissue regeneration. However, any treatment aiming to mimic the critical aspects of the natural biological process should not be limited to the provision of a single GF, but rather should release multiple therapeutic agents at an optimised ratio, each at a physiological dose, in a specific spatiotemporal pattern. Despite several obstacles, delivery of more than one GF at rates mimicking an in vivo situation has promising potential for the clinical management of severely diseased tissues. This article summarises the concept of and early approaches toward the delivery of dual or multiple GFs, as well as current efforts to develop sophisticated delivery platforms for this ambitious purpose, with an emphasis on the application of biomaterials-based deployment technologies that allow for controlled spatial presentation and release kinetics of key biological cues. Additionally, the use of platelet-rich plasma or gene therapy is addressed as alternative, easy, cost-effective and controllable strategies for the release of high concentrations of multiple endogenous GFs, followed by an update of the current progress and future directions of research utilising release technologies in tissue engineering and regenerative medicine.
Collapse
|
44
|
|
45
|
Lee J, Stavropoulos A, Susin C, Wikesjö UME. Periodontal regeneration: focus on growth and differentiation factors. Dent Clin North Am 2010; 54:93-111. [PMID: 20103474 DOI: 10.1016/j.cden.2009.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several growth and differentiation factors have shown potential as therapeutic agents to support periodontal wound healing/regeneration, although optimal dosage, release kinetics, and suitable delivery systems are still unknown. Experimental variables, including delivery systems, dose, and the common use of poorly characterized preclinical models, make it difficult to discern the genuine efficacy of each of these factors. Only a few growth and differentiation factors have reached clinical evaluation. It appears that well-defined discriminating preclinical models followed by well-designed clinical trials are needed to further investigate the true potential of these and other candidate factors. Thus, current research is focused on finding relevant growth and differentiation factors, optimal dosages, and the best approaches for delivery to develop clinically meaningful therapies in patient-centered settings.
Collapse
Affiliation(s)
- Jaebum Lee
- Laboratory for Applied Periodontal & Craniofacial Regeneration (LAPCR), Departments of Periodontics and Oral Biology, Medical College of Georgia School of Dentistry, 1120 5th Street AD1434, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
46
|
Kamo K, Miyakoshi N, Kasukawa Y, Sasaki H, Shimada Y. Effects of single and cyclical local injections of basic fibroblast growth factor on cancellous bone defects in rabbits. J Orthop Sci 2009; 14:811-9. [PMID: 19997830 DOI: 10.1007/s00776-009-1403-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 08/13/2009] [Indexed: 11/28/2022]
Abstract
BACKGROUND Local administration of basic fibroblast growth factor (bFGF) has anabolic effects on bone formation. A delivery system for local treatment is required to increase efficacy because of its short half-life. However, little is known about the effects of cyclical local injection of bFGF. We evaluated the effects of single and cyclical local injection of bFGF at a cancellous bone defect in the femoral condyle in rabbits. METHODS Using the "vehicle only" as a control, a single low dose (40 microg), single high dose (120 microg), or cyclical low dose (40 microg, three times) of bFGF was injected percutaneously into a bone defect implanted with a gelatin sponge. The rabbits were killed at 4 weeks after surgery and the femurs were harvested for evaluation. RESULTS Both single and cyclical administration of bFGF dose-dependently increased the amount of new bone formation in the bone defect using radiographs (P < 0.01) and bone mineral density (BMD) measurements (P < 0.01) compared to controls. However, only high-dose bFGF injection significantly increased the cancellous bone volume at the bone defect (P < 0.05) compared to controls, using bone histomorphometry. Cyclical injection of bFGF significantly increased the number of runt-related transcription factor-2 (Runx2)-positive cells compared to single low- and high-dose bFGF administration (P < 0.01 and P < 0.05, respectively), and single high-dose and cyclical administration significantly increased the number of osteopontin-positive cells compared to controls (P < 0.01), based on immunohistochemical analysis. CONCLUSIONS These results suggest that high-dose injection of bFGF, at the very early stage of cancellous bone healing, is more effective in increasing cancellous bone volume, and cyclical injection of bFGF may stimulate osteoprogenitor cells.
Collapse
Affiliation(s)
- Keiji Kamo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | |
Collapse
|
47
|
Ide J, Kikukawa K, Hirose J, Iyama KI, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy 2009; 25:608-16. [PMID: 19501290 DOI: 10.1016/j.arthro.2008.11.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/07/2008] [Accepted: 11/25/2008] [Indexed: 02/02/2023]
Abstract
PURPOSE Our purpose was to determine whether the local application of fibroblast growth factor (FGF) 2 accelerates regeneration and remodeling of rotator cuff tendon defects reconstructed with acellular dermal matrix (ADM) grafts in rats. METHODS Thirty adult male Sprague-Dawley rats were divided into equal groups undergoing FGF-treated and FGF-untreated repairs. All rats underwent placement of an ADM graft for the supraspinatus defect (3 x 5 mm). FGF-2 (100 microg/kg) in a fibrin sealant was applied to both shoulders in the FGF-treated group, whereas only fibrin sealant was applied in untreated group. At 2, 6, and 12 weeks after surgery, 5 rats (10 shoulders) in each group were sacrificed for histologic analysis (3 shoulders) and biomechanical testing (7 shoulders). The controls were 5 unoperated rats (3 histologic and 7 biomechanical control specimens). RESULTS Unoperated control tendons inserted into the bone by direct insertion; there was a zone of fibrocartilage between the tendon and bone. At 2 weeks, the FGF-treated group had tendon maturing scores similar to those in the untreated group (P > .05). At 6 and 12 weeks, the FGF-treated group had significantly higher scores (P < .05). At 2 weeks, specimens in both the treated and untreated groups exhibited similar strength; the ultimate tensile failure load was 6.0 +/- 4.0 N and 5.8 +/- 2.0 N, respectively (P > .05). At 6 weeks, the FGF-treated specimens were stronger, with an ultimate tensile failure load of 10.2 +/- 3.1 N compared with 7.2 +/- 2.2 N in the untreated group (P = .02). At 12 weeks, the FGF-treated specimens were stronger, with an ultimate tensile failure load of 15.9 +/- 1.6 N compared with 13.2 +/- 2.0 N in the untreated group (P = .0072), and there were no significant differences in strength compared with the controls (17.8 +/- 2.6 N) (P > .05). CONCLUSIONS The remodeling of ADM grafts placed in rat rotator cuff tendon defects was accelerated by the local administration of FGF-2. CLINICAL RELEVANCE The application of FGF-2 may result in improved histologic characteristics and biomechanical strength in ADM graft constructs in humans.
Collapse
Affiliation(s)
- Junji Ide
- Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon. J Shoulder Elbow Surg 2009; 18:391-8. [PMID: 19393930 DOI: 10.1016/j.jse.2009.01.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 12/03/2008] [Accepted: 01/13/2009] [Indexed: 02/01/2023]
Abstract
METHODS We investigated the effect of application of fibroblast growth factor (FGF)-2 on the tendon-to-bone remodeling of repaired supraspinatus tendon in rats subjected to bilateral detachment. FGF-2 (100 mg/kg) in a fibrin sealant or sealant alone was applied on the right and left shoulders, respectively. Twelve animals each at 2, 4, and 6 weeks after surgery were sacrificed for histological analysis (n = 5) and biomechanical Q1 testing (n = 7). RESULTS Histologically, at 2 weeks, FGF-treated specimens had significantly higher tendon-to-bone insertion maturing scores then untreated specimens (P < .002). At 4 and 6 weeks, the scores of FGF-treated and untreated specimens were similar (P > .05). Biomechanically, FGF-treated specimens were stronger at 2 weeks (P = .001); at 4 and 6 weeks, both specimens exhibited similar strength (P > .05). CONCLUSIONS The initial tendon-to-bone remodeling was accelerated by a local application of FGF-2. This may represent a clinically important improvement in rotator cuff repair.
Collapse
|
49
|
Takechi M, Tatehara S, Satomura K, Fujisawa K, Nagayama M. Effect of FGF-2 and melatonin on implant bone healing: a histomorphometric study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2949-2952. [PMID: 18360797 DOI: 10.1007/s10856-008-3416-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
Melatonin influences the release of growth hormone and cortisol in humans, and it was recently reported that it promoted bone formation. On the other hand, fibroblast growth factor-2 (FGF-2) was reported to facilitate the proliferation of osteoblasts. In the present study, we examined the effect of recombinant human FGF-2 and melatonin on the promotion of osteogenesis around titanium implants. Twenty-four 10-week-old female rats of the Wistar strain received titanium implants in both tibiae. In the experimental groups, 100 mg/kg body weight of melatonin was administered by intraperitoneal injection for 4 weeks after implantation and 10 microg of FGF-2 was locally injected around the implant sites 5 days after implantation. The control groups were administered saline only. In the control group, few newly formed bone could be seen around the implants. It was observed to be in direct contact with the implant surface, but otherwise unmineralized connective tissue was occasionally interposed. In the experimental group, newly formed bone was observed around the titanium implant. In addition, in contrast to the control group, abundant bone trabeculae were seen in the medullary canal region. Bone trabeculae were directly connected to existing cortical bone. These results strongly suggested that melatonin and FGF-2 have the potential to promote osseointegration.
Collapse
Affiliation(s)
- Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Division of Cervico Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3 Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | |
Collapse
|
50
|
Maus U, Andereya S, Ohnsorge JAK, Gravius S, Siebert CH, Niedhart C. A bFGF/TCP-composite inhibits bone formation in a sheep model. J Biomed Mater Res B Appl Biomater 2008; 85:87-92. [PMID: 17696156 DOI: 10.1002/jbm.b.30920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic fibroblast growth factor is a well known osteostimulative protein. The effects of basic fibroblast growth factor are dose-dependent and, when used with a carrier, influenced by the release kinetics. Aim of our study was to determine the effects of a composite of basic fibroblast growth factor and a newly developed, in situ setting tricalcium phosphate (TCP) cement. A trepanation defect in the distal femoral epiphysis of Merino-Mix sheep with a diameter of 9.4 mm and 10 mm depth was filled with the in situ setting TCP cement combined with 0 or 200 microg of bFGF/cm(3) TCP, autologous bone graft or left empty. The sheep were euthanized after 3 months. The defect and the periimplant area were examined by microradiography, histology, and histomorphometry. The data was analyzed with the help of the Wilcoxon and Kruskal-Wallis tests. Defects filled with TCP with or without bFGF showed a close bone-cement contact. The histomorphometric analysis revealed that the addition of bFGF inhibited the ingrowth of bone significantly, while the resorption of the cement was not influenced. In conclusion, the clinical application of this bFGF/TCP-composite does not seem promising. The reason for the inhibition of new bone formation will be discussed, but requires further investigation.
Collapse
Affiliation(s)
- Uwe Maus
- Department of Orthopedic Surgery, University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|