1
|
Meshcheryakova A, Bohdan S, Zimmermann P, Jaritz M, Pietschmann P, Mechtcheriakova D. RNA-Binding Proteins as Novel Effectors in Osteoblasts and Osteoclasts: A Systems Biology Approach to Dissect the Transcriptional Landscape. Int J Mol Sci 2024; 25:10417. [PMID: 39408753 PMCID: PMC11476634 DOI: 10.3390/ijms251910417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Bone health is ensured by the coordinated action of two types of cells-the osteoblasts that build up bone structure and the osteoclasts that resorb the bone. The loss of balance in their action results in pathological conditions such as osteoporosis. Central to this study is a class of RNA-binding proteins (RBPs) that regulates the biogenesis of miRNAs. In turn, miRNAs represent a critical level of regulation of gene expression and thus control multiple cellular and biological processes. The impact of miRNAs on the pathobiology of various multifactorial diseases, including osteoporosis, has been demonstrated. However, the role of RBPs in bone remodeling is yet to be elucidated. The aim of this study is to dissect the transcriptional landscape of genes encoding the compendium of 180 RBPs in bone cells. We developed and applied a multi-modular integrative analysis algorithm. The core methodology is gene expression analysis using the GENEVESTIGATOR platform, which is a database and analysis tool for manually curated and publicly available transcriptomic data sets, and gene network reconstruction using the Ingenuity Pathway Analysis platform. In this work, comparative insights into gene expression patterns of RBPs in osteoblasts and osteoclasts were obtained, resulting in the identification of 24 differentially expressed genes. Furthermore, the regulation patterns upon different treatment conditions revealed 20 genes as being significantly up- or down-regulated. Next, novel gene-gene associations were dissected and gene networks were reconstructed. Additively, a set of osteoblast- and osteoclast-specific gene signatures were identified. The consolidation of data and information gained from each individual analytical module allowed nominating novel promising candidate genes encoding RBPs in osteoblasts and osteoclasts and will significantly enhance the understanding of potential regulatory mechanisms directing intracellular processes in the course of (patho)physiological bone turnover.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Serhii Bohdan
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Alford AI, Hankenson KD. Thrombospondins modulate cell function and tissue structure in the skeleton. Semin Cell Dev Biol 2024; 155:58-65. [PMID: 37423854 PMCID: PMC11115190 DOI: 10.1016/j.semcdb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.
Collapse
Affiliation(s)
- Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Freitas J, Moura SR, Barbosa MA, Santos SG, Almeida MI. Long non-coding RNA CASC2 regulates osteoblasts matrix mineralization. Front Bioeng Biotechnol 2023; 11:1155596. [PMID: 37469450 PMCID: PMC10353537 DOI: 10.3389/fbioe.2023.1155596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are master regulators of gene expression and have recently emerged as potential innovative therapeutic targets. The deregulation of lncRNA expression patterns has been associated with age-related and noncommunicable diseases in the bone tissue, including osteoporosis and tumors. However, the specific role of lncRNAs in physiological or pathological conditions in the bone tissue still needs to be further clarified, for their exploitation as therapeutic tools. In the present study, we evaluate the potential of the lncRNA CASC2 as a regulator of osteogenic differentiation and mineralization. Results show that CASC2 expression is decreased during osteogenic differentiation of human bone marrow-derived Mesenchymal Stem/Stromal cells (hMSCs). CASC2 knockdown, using small interfering RNA against CASC2 (siCASC2), increases the expression of the late osteogenic marker Bone Sialoprotein (BSP), but does not impact ALP staining level nor the expression of early osteogenic transcripts, including RUNX2 and OPG. Although siCASC2 does not impact hMSC proliferation nor apoptosis, it promotes the mineralization of hMSC cultured under osteogenic-inducing conditions, as shown by the increase of calcium deposits. Mass spectrometry-based proteomic analysis revealed that 89 proteins are regulated by CASC2 at late osteogenic stages, including proteins associated with bone diseases or anthropometric and musculoskeletal traits. Specifically, the Cartilage Oligomeric Matrix Protein (COMP) is highly enhanced by CASC2 knockdown at late stages of osteogenic differentiation, at both transcriptional and protein level. On the other hand, inhibition of COMP impairs osteoblasts mineralization as well as the expression of BSP. The results indicate that lncRNA CASC2 regulates late osteogenic differentiation and mineralization in hMSC via COMP and BSP. In conclusion, this study suggests that targeting lncRNA CASC2 could be a potential approach for modulating bone mineralization.
Collapse
Affiliation(s)
- Jaime Freitas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Sara Reis Moura
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana G. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Szymański T, Semba JA, Mieloch AA, Cywoniuk P, Kempa M, Rybka JD. Hyaluronic acid and multiwalled carbon nanotubes as bioink additives for cartilage tissue engineering. Sci Rep 2023; 13:646. [PMID: 36635477 PMCID: PMC9837169 DOI: 10.1038/s41598-023-27901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Articular cartilage and meniscus injuries are prevalent disorders with insufficient regeneration responses offered by available treatment methods. In this regard, 3D bioprinting has emerged as one of the most promising new technologies, offering novel treatment options. Additionally, the latest achievements from the fields of biomaterials and tissue engineering research identified constituents facilitating the creation of biocompatible scaffolds. In this study, we looked closer at hyaluronic acid and multi-walled carbon nanotubes as bioink additives. Firstly, we assessed the minimal concentrations that stimulate cell viability, and decrease reactive oxygen species and apoptosis levels in 2D cell cultures of normal human knee articular chondrocytes (NHAC) and human adipose-derived mesenchymal stem cells (hMSC-AT). In this regard, 0.25 mg/ml of hyaluronic acid and 0.0625 mg/ml of carbon nanotubes were selected as the most optimal concentrations. In addition, we investigated the protective influence of 2-phospho-L-ascorbic acid in samples with carbon nanotubes. Tests conducted on 3D bioprinted constructs revealed that only a combination of components positively impacted cell viability throughout the whole experiment. Gene expression analysis of COL1A1, COL6A1, HIF1A, COMP, RUNX2, and POU5F1 showed significant changes in the expression of all analyzed genes with a progressive overall loss of transcriptional activity in most of them.
Collapse
Affiliation(s)
- Tomasz Szymański
- grid.5633.30000 0001 2097 3545Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland ,grid.5633.30000 0001 2097 3545Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Julia Anna Semba
- grid.5633.30000 0001 2097 3545Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland ,grid.5633.30000 0001 2097 3545Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Adam Aron Mieloch
- grid.5633.30000 0001 2097 3545Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Piotr Cywoniuk
- grid.5633.30000 0001 2097 3545Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Marcelina Kempa
- grid.5633.30000 0001 2097 3545Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland ,grid.5633.30000 0001 2097 3545Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
5
|
Direct Reprogramming of Mouse Subchondral Bone Osteoblasts into Chondrocyte-like Cells. Biomedicines 2022; 10:biomedicines10102582. [PMID: 36289842 PMCID: PMC9599480 DOI: 10.3390/biomedicines10102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of full-thickness articular cartilage defects with exposure of subchondral bone often seen in osteoarthritic conditions has long been a great challenge, especially with a focus on the feasibility of in situ cartilage regeneration through minimally invasive procedures. Osteoblasts that situate in the subchondral bone plate may be considered a potentially vital endogenous source of cells for cartilage resurfacing through direct reprogramming into chondrocytes. Microarray-based gene expression profiles were generated to compare tissue-specific transcripts between subchondral bone and cartilage of mice and to assess age-dependent differences of chondrocytes as well. On osteoblast cell lines established from mouse proximal tibial subchondral bone, sequential screening by co-transduction of transcription factor (TF) genes that distinguish chondrocytes from osteoblasts reveals a shortlist of potential reprogramming factors exhibiting combined effects in inducing chondrogenesis of subchondral bone osteoblasts. A further combinatorial approach unexpectedly identified two 3-TF combinations containing Sox9 and Sox5 that exhibit differences in reprogramming propensity with the third TF c-Myc or Plagl1, which appeared to direct the converted chondrocytes toward either a superficial or a deeper zone phenotype. Thus, our approach demonstrates the possibility of converting osteoblasts into two major chondrocyte subpopulations with two combinations of three genes (Sox9, Sox5, and c-Myc or Plagl1). The findings may have important implications for developing novel in situ regeneration strategies for the reconstruction of full-thickness cartilage defects.
Collapse
|
6
|
Liang H, Hou Y, Pang Q, Jiang Y, Wang O, Li M, Xing X, Zhu H, Xia W. Clinical, Biochemical, Radiological, Genetic and Therapeutic Analysis of Patients with COMP Gene Variants. Calcif Tissue Int 2022; 110:313-323. [PMID: 34709441 DOI: 10.1007/s00223-021-00920-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia type 1 (MED1) are two rare skeletal disorders caused by cartilage oligomeric matrix protein (COMP) variants. This study aims to analyze the genotype and phenotype of patients with COMP variants. Clinical information for 14 probands was collected; DNA was extracted from blood for COMP variant detection. Clinical manifestations and radiology scoring systems were established to evaluate the severity of each patient's condition. Serum COMP levels in PSACH patients and healthy subjects were measured. Thirty-nine patients were included, along with 12 PSACH probands and two MED1 probands. Disproportionate short stature, waddling gait, early-onset osteoarthritis and skeletal deformities were the most common features. The height Z-score of PSACH patients correlated negatively with age at evaluation (r = - 0.603, p = 0.01) and the clinical manifestation score (r = - 0.556, p = 0.039). Over 50% of the PSACH patients were overweight/obese. The median serum COMP level in PSACH patients was 16.75 ng/ml, which was significantly lower than that in healthy controls (98.53 ng/ml; p < 0.001). The condition of MED1 patients was better than that of PSACH patients. Four novel variants of COMP were detected: c.874T>C, c.1123_1134del, c.1531G>A, and c.1576G>T. Height Z-scores and serum COMP levels were significantly lower in patients carrying mutations located in calmodulin-like domains 6, 7, and 8. As the two phenotypes overlap to different degrees, PSACH and MED1 are suggested to combine to produce "spondyloepiphyseal dysplasia, COMP type". Clinical manifestations and radiology scoring systems, serum COMP levels and genotype are important for evaluating patient condition severity.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yanfang Hou
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Qianqian Pang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yan Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ou Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Mei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Weibo Xia
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Modulation of miR-204 Expression during Chondrogenesis. Int J Mol Sci 2022; 23:ijms23042130. [PMID: 35216245 PMCID: PMC8874780 DOI: 10.3390/ijms23042130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX2 and SOX9 are two pivotal transcriptional regulators of chondrogenesis. It has been demonstrated that RUNX2 and SOX9 physically interact; RUNX2 transactivation may be inhibited by SOX9. In addition, RUNX2 exerts reciprocal inhibition on SOX9 transactivity. Epigenetic control of gene expression plays a major role in the alternative differentiation fates of stem cells; in particular, it has been reported that SOX9 can promote the expression of miRNA (miR)-204. Our aim was therefore to investigate the miR-204-5p role during chondrogenesis and to identify the relationship between this miR and the transcription factors plus downstream genes involved in chondrogenic commitment and differentiation. To evaluate the role of miR-204 in chondrogenesis, we performed in vitro transfection experiments by using Mesenchymal Stem Cells (MSCs). We also evaluated miR-204-5p expression in zebrafish models (adults and larvae). By silencing miR-204 during the early differentiation phase, we observed the upregulation of SOX9 and chondrogenic related genes compared to controls. In addition, we observed the upregulation of COL1A1 (a RUNX2 downstream gene), whereas RUNX2 expression of RUNX2 was slightly affected compared to controls. However, RUNX2 protein levels increased in miR-204-silenced cells. The positive effects of miR204 silencing on osteogenic differentiation were also observed in the intermediate phase of osteogenic differentiation. On the contrary, chondrocytes’ maturation was considerably affected by miR-204 downregulation. In conclusion, our results suggest that miR-204 negatively regulates the osteochondrogenic commitment of MSCs, while it positively regulates chondrocytes’ maturation.
Collapse
|
8
|
Bundgaard L, Åhrman E, Malmström J, Auf dem Keller U, Walters M, Jacobsen S. Effective protein extraction combined with data independent acquisition analysis reveals a comprehensive and quantifiable insight into the proteomes of articular cartilage and subchondral bone. Osteoarthritis Cartilage 2022; 30:137-146. [PMID: 34547431 DOI: 10.1016/j.joca.2021.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objectives of this study was to establish a sensitive and reproducible method to map the cartilage and subchondral bone proteomes in quantitative terms, and mine the proteomes for proteins of particular interest in the pathogenesis of osteoarthritis (OA). The horse was used as a model animal. DESIGN Protein was extracted from articular cartilage and subchondral bone samples from three horses in triplicate by pressure cycling technology or ultrasonication. Digested proteins were analysed by data independent acquisition based mass spectrometry. Data was processed using a pre-established spectral library as reference database (FDR 1%). RESULTS We identified to our knowledge the hitherto most comprehensive quantitative cartilage (1758 proteins) and subchondral bone (1482 proteins) proteomes in all species presented to date. Both extraction methods were sensitive and reproducible and the high consistency of the identified proteomes (>97% overlap) indicated that both methods preserved the diversity among the extracted proteins. Proteome mining revealed a substantial number of quantifiable cartilage and bone matrix proteins and proteins involved in osteogenesis and bone remodeling, including ACAN, BGN, PRELP, FMOD, COMP, ACP5, BMP3, BMP6, BGLAP, TGFB1, IGF1, ALP, MMP3, and collagens. A number of proteins, including COMP and TNN, were identified in different protein isoforms with potential unique biological roles. CONCLUSION We have successfully developed two sensitive and reproducible non-species specific workflows enabling a comprehensive quantitative insight into the proteomes of cartilage and subchondral bone. This facilitates the prospect of investigating the molecular events at the osteochondral unit in the pathogenesis of OA in future projects.
Collapse
Affiliation(s)
- L Bundgaard
- Section of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark. Section for Protein Science and Biotherapeutics, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - E Åhrman
- Division of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, Lund 221 84, Sweden.
| | - J Malmström
- Division of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, Lund 221 84, Sweden.
| | - U Auf dem Keller
- Section for Protein Science and Biotherapeutics, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - M Walters
- Section of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark.
| | - S Jacobsen
- Section of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark.
| |
Collapse
|
9
|
Karabıyık Acar Ö, Bedir S, Kayitmazer AB, Kose GT. Chondro-inductive hyaluronic acid/chitosan coacervate-based scaffolds for cartilage tissue engineering. Int J Biol Macromol 2021; 188:300-312. [PMID: 34358603 DOI: 10.1016/j.ijbiomac.2021.07.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Injuries related to articular cartilage are among the most challenging musculoskeletal problems because of poor repair capacity of this tissue. The lack of efficient treatments for chondral defects has stimulated research on cartilage tissue engineering applications combining porous biocompatible scaffolds with stem cells in the presence of external stimuli. This work presents the role of rat bone marrow mesenchymal stem cell (BMSC) encapsulated-novel three-dimensional (3D) coacervate scaffolds prepared through complex coacervation between different chitosan salts (CHI) and sodium hyaluronate (HA). The 3D architecture of BMSC encapsulated scaffolds (HA/CHI) was shown by scanning electron microscopy (SEM) to have an interconnected structure to allow cell-cell and cell-matrix interactions. Chondrogenic induction of encapsulated BMSCs within HA/CHI coacervates demonstrated remarkable cellular viability in addition to the elevated expression levels of chondrogenic markers such as sex determining region Y-box 9 protein (SOX9), aggrecan (ACAN), cartilage oligomeric matrix protein (COMP) and collagen type II (COL2A1) by immunofluorescence staining, qPCR and ELISA test. Collectively, HA/CHI coacervates are promising candidates for future use of these scaffolds in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Özge Karabıyık Acar
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| | - Seden Bedir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
10
|
Xiong YM, Pan HT, Ding HG, He Y, Zhang J, Zhang F, Yu B, Zhang T, Huang HF. Proteomic and functional analysis of proteins related to embryonic development of decidua in patients with recurrent pregnancy loss. Biol Reprod 2021; 105:1246-1256. [PMID: 34296254 DOI: 10.1093/biolre/ioab140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/18/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is defined as the loss of two or more consecutive pregnancies before the 20 weeks of gestation. Recurrent pregnancy loss affects about 1-2% of couples trying to conceive; however, the mechanisms leading to this complication are largely unknown. Our previous studies using comparative proteomics identified 314 differentially expressed proteins (DEPs) in the placental villous. In this study, we identified 5479 proteins from a total of 34,157 peptides in decidua of patients with early recurrent pregnancy loss (Data are available via ProteomeXchange with identifier PXD023849). Further analysis identified 311 DEPs in the decidua tissue; and 159 proteins were highly expressed while 152 proteins were lowly expressed. These 311 proteins were further analyzed by using Ingenuity Pathway Analysis (IPA). The results suggested that 50 DEPs played important roles in the embryonic development. Upstream analysis of these DEPs revealed that AGT was the most important upstream regulator. Furthermore, protein - protein interaction (PPI) analysis of the embryonic development DEPs from the placental villous and decidua was performed in the STRING database. This study identified several proteins specifically associated with embryonic development in decidua of patients with early recurrent pregnancy loss. Therefore, these results provide new insights into potential biological mechanisms, that may ultimately inform recurrent pregnancy loss.
Collapse
Affiliation(s)
- Yi-Meng Xiong
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hai-Tao Pan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hai-Gang Ding
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yao He
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Bin Yu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| |
Collapse
|
11
|
Jimoh-Abdulghaffaar HO, Owoyele BV. Honey reverses disease progression, has anti-nociceptive and anti-inflammatory effects in a rat model of knee osteoarthritis induced by monosodium iodoacetate. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Carminati L, Taraboletti G. Thrombospondins in bone remodeling and metastatic bone disease. Am J Physiol Cell Physiol 2020; 319:C980-C990. [PMID: 32936697 DOI: 10.1152/ajpcell.00383.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondins (TSPs) are a family of five multimeric matricellular proteins. Through a wide range of interactions, TSPs play pleiotropic roles in embryogenesis and in tissue remodeling in adult physiology as well as in pathological conditions, including cancer development and metastasis. TSPs are active in bone remodeling, the process of bone resorption (osteolysis) and deposition (osteogenesis) that maintains bone homeostasis. TSPs are particularly involved in aberrant bone remodeling, including osteolytic and osteoblastic skeletal cancer metastasis, frequent in advanced cancers such as breast and prostate carcinoma. TSPs are major players in the bone metastasis microenvironment, where they finely tune the cross talk between tumor cells and bone resident cells in the metastatic niche. Each TSP family member has different effects on the differentiation and activity of bone cells-including the bone-degrading osteoclasts and the bone-forming osteoblasts-with different outcomes on the development and growth of osteolytic and osteoblastic metastases. Here, we overview the involvement of TSP family members in the bone tissue microenvironment, focusing on their activity on osteoclasts and osteoblasts in bone remodeling, and present the evidence to date of their roles in bone metastasis establishment and growth.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
13
|
Soluble silica stimulates osteogenic differentiation and gap junction communication in human dental follicle cells. Sci Rep 2020; 10:9923. [PMID: 32555274 PMCID: PMC7303172 DOI: 10.1038/s41598-020-66939-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Several studies have indicated that dietary silicon (Si) is beneficial for bone homeostasis and skeletal health. Furthermore, Si-containing bioactive glass biomaterials have positive effects on bone regeneration when used for repair of bone defects. Si has been demonstrated to stimulate osteoblast differentiation and bone mineralisation in vitro. However, the mechanisms underlying these effects of Si are not well understood. The aim of the present study was to investigate the effects of soluble Si on osteogenic differentiation and connexin 43 (CX43) gap junction communication in cultured pluripotent cells from human dental follicles (hDFC). Neutral Red uptake assay demonstrated that 25 μg/ml of Si significantly stimulated hDFC cell proliferation. Dosages of Si above 100 μg/ml decreased cell proliferation. Alizarin Red staining showed that osteogenic induction medium (OIM) by itself and in combination with Si (25 μg/ml) significantly increased mineralisation in hDFC cultures, although Si alone had no such effect. The expression of osteoblast-related markers in hDFC was analysed with RT-qPCR. OSX, RUNX2, BMP2, ALP, OCN, BSP and CX43 genes were expressed in hDFC cultured for 1, 7, 14 and 21 days. Expression levels of BMP-2 and BSP were significantly upregulated by OIM and Si (25 μg/ml) and were also induced by Si alone. Notably, the expression levels of OCN and CX43 on Day 21 were significantly increased only in the Si group. Flow cytometric measurements revealed that Si (50 μg/ml) significantly increased CX43 protein expression and gap junction communication in hDFC. Next-generation sequencing (NGS) and bioinformatics processing were used for the identification of differentially regulated genes and pathways. The influence of OIM over the cell differentiation profile was more prominent than the influence of Si alone. However, Si in combination with OIM increased the magnitude of expression (up or down) of the differentially regulated genes. The gene for cartilage oligomeric matrix protein (COMP) was the most significantly upregulated. Genes for the regulator of G protein signalling 4 (RGS4), regulator of G protein signalling 2 (RGS2), and matrix metalloproteinases (MMPs) 1, 8, and 10 were also strongly upregulated. Our findings reveal that soluble Si stimulates Cx43 gap junction communication in hDFC and induces gene expression patterns associated with osteogenic differentiation. Taken together, the results support the conclusion that Si is beneficial for bone health.
Collapse
|
14
|
Grevenstein D, Heilig J, Dargel J, Oppermann J, Eysel P, Brochhausen C, Niehoff A. COMP in the Infrapatellar Fat Pad-Results of a Prospective Histological, Immunohistological, and Biochemical Case-Control Study. J Orthop Res 2020; 38:747-758. [PMID: 31696983 DOI: 10.1002/jor.24514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis (OA) involves several structures and molecules in the joint, which interact in a pathophysiological process. One of these molecules is the cartilage oligomeric matrix protein (COMP). Elevated COMP levels in the synovial fluid as well as in the serum have been described in OA patients. However, this has not been described in the infrapatellar fat pad (IPFP) tissue before. In this prospective trial, we collected 14 IPFPs from patients with high-grade OA (mean age 63.8 ± 17.6 years) who underwent total knee replacement (OA group) and from 11 healthy patients (mean age 33.7 ± 14.8 years) who underwent anterior cruciate ligament reconstruction (control group). The presence of macrophages (CD68 and CD206) and proinflammatory cytokines (interleukin 1β [IL-1β] and IL-6) was analyzed. Histological and immunohistological examinations as well as immunoblotting analysis for COMP, leptin, and matrix-metalloproteinase-3 were performed. The IPFPs of both the OA and control group consisted of adipose tissue and fibrous tissue, and the fibrous tissue showed higher score values than the adipose tissue for COMP staining (intensity as well as stained area) in both groups. Although COMP could be detected in most samples, leptin expression was found only in single specimens. COMP could be detected mostly in the fibrous tissue portion of the IPFP. We speculate that it is involved in a remodeling process taking place in the IPFP during OA. Presence of leptin was irregular in immunohistology, and the control group showed higher scores in case of presence. Interestingly, immunoblotting could detect leptin in all analyzed samples. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:747-758, 2020.
Collapse
Affiliation(s)
- David Grevenstein
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Juliane Heilig
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Jens Dargel
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Departement for Orthopedic Surgery, St. Josefs-Hospital, Wiesbaden, Germany
| | - Johannes Oppermann
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Peer Eysel
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
15
|
Yin L, Agustinus AS, Yuvienco C, Minashima T, Schnabel NL, Kirsch T, Montclare JK. Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis. Biomacromolecules 2018; 19:1614-1624. [PMID: 29601728 DOI: 10.1021/acs.biomac.8b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) results from degenerative and abnormal function of joints, with localized biochemistry playing a critical role in its onset and progression. As high levels of all- trans retinoic acid (ATRA) in synovial fluid have been identified as a contributive factor to OA, the synthesis of de novo antagonists for retinoic acid receptors (RARs) has been exploited to interrupt the mechanism of ATRA action. BMS493, a pan-RAR inverse agonist, has been reported as an effective inhibitor of ATRA signaling pathway; however, it is unstable and rapidly degrades under physiological conditions. We employed an engineered cartilage oligomeric matrix protein coiled-coil (CccS) protein for the encapsulation, protection, and delivery of BMS493. In this study, we determine the binding affinity of CccS to BMS493 and the stimulator, ATRA, via competitive binding assay, in which ATRA exhibits approximately 5-fold superior association with CccS than BMS493. Interrogation of the structure of CccS indicates that ATRA causes about 10% loss in helicity, while BMS493 did not impact the structure. Furthermore, CccS self-assembles into nanofibers when bound to BMS493 or ATRA as expected, displaying 11-15 nm in diameter. Treatment of human articular chondrocytes in vitro reveals that CccS·BMS493 demonstrates a marked improvement in efficacy in reducing the mRNA levels of matrix metalloproteinase-13 (MMP-13), one of the main proteases responsible for the degradation of the extracellular cartilage matrix compared to BMS493 alone in the presence of ATRA, interleukin-1 beta (IL-1β), or IL-1 β together with ATRA. These results support the feasibility of utilizing coiled-coil proteins as drug delivery vehicles for compounds of relatively limited bioavailability for the potential treatment of OA.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Albert S Agustinus
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Nicole L Schnabel
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States.,Department of Chemistry , New York University , New York , New York 10003 , United States.,Department of Biomaterials , NYU College of Dentistry , New York , New York 10010 , United States.,Department of Biochemistry , SUNY Downstate Medical Center , Brooklyn , New York 11203 , United States
| |
Collapse
|
16
|
Proksch S, Brossart J, Vach K, Hellwig E, Altenburger MJ, Karygianni L. Evaluation of the bioactivity of fluoride-enriched mineral trioxide aggregate on osteoblasts. Int Endod J 2018; 51:912-923. [PMID: 29397012 DOI: 10.1111/iej.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
AIM To investigate whether a combination of mineral trioxide aggregate (MTA) and fluoride compounds affects bone cells. METHODOLOGY Mineral trioxide aggregate (MTA) discs (ProRoot® , Dentsply Sirona, Ballaigues, Switzerland) with and without the addition of 0.1%, 0.25% and 0.5% sodium fluoride were characterized for their surface roughness by laser scanning microscopy and for the adhesion of human alveolar osteoblasts by scanning electron microscopy. Using eluates from fluoride-enriched MTA discs, the cell proliferation was measured by monitoring the DNA incorporation of 5-bromo-2'-deoxyuridine. Further, gene expression was evaluated by qPCR arrays, extracellular matrix mineralization was quantified by absorption measurement of Alizarin red stains, and effects were calculated with repeated measures analysis and post hoc P-value adjustment. RESULTS Irrespective of fluoride addition, cell adhesion was similar on MTA discs, of which the surface roughness was comparable. Control osteoblasts had a curvilinear proliferation pattern peaking at d5, which was levelled out by incubation with MTA. The addition of fluoride partly restored the MTA-related reduction in the cellular proliferation rate in a dose-dependent manner. At the mRNA level, both fluoride and MTA modulated a number of genes involved in osteogenesis, bone mineral metabolism and extracellular matrix formation. Although MTA significantly impaired extracellular matrix mineralization, the addition of fluoride supported the formation of mineralized nodules in a dose-dependent manner. CONCLUSION The addition of fluoride modulated the biocompatibility of MTA in terms of supporting bone cell proliferation and hard tissue formation. Hence, fluoride enrichment is a trend-setting advancement for MTA-based endodontic therapies.
Collapse
Affiliation(s)
- S Proksch
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - J Brossart
- Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - K Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - E Hellwig
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - M J Altenburger
- Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - L Karygianni
- Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Clinic for Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Bertuglia A, Pagliara E, Grego E, Ricci A, Brkljaca-Bottegaro N. Pro-inflammatory cytokines and structural biomarkers are effective to categorize osteoarthritis phenotype and progression in Standardbred racehorses over five years of racing career. BMC Vet Res 2016; 12:246. [PMID: 27821120 PMCID: PMC5100096 DOI: 10.1186/s12917-016-0873-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/26/2016] [Indexed: 01/26/2023] Open
Abstract
Background Joint impact injuries initiate a progressive articular damage finally leading to post-traumatic osteoarthritis (PTOA). Racehorses represent an ideal, naturally available, animal model of the disease. Standardbred racehorses developing traumatic osteoarthritis of the fetlock joint during the first year of their career were enrolled in our study. Age-matched controls were contemporarily included. Biomarker levels of equine osteoarthritis were measured in serum and synovial fluid (SF) at baseline, and repeated yearly over the next 4 years of training (from T1 to T4). The effect of time and disease on the biomarker concentrations were analysed, and their relationship with clinical and radiographic parameters were assessed. We hypothesized that the kinetics of pro-inflammatory cytokines and structural biomarkers of joint disease would demonstrate progression of degenerative joint status during post-traumatic osteoarthritis and clarify the effect of early joint trauma. Results The concentrations of IL1-ß, IL-6, TNF-α in the SF of PTOA group peaked at T0, decreased at T1, and then progressively increased with time, reaching levels higher than those observed at baseline starting from T3. CTXII and COMP levels were similar in PTOA and control horses at baseline, and increased in serum and synovial fluid of PTOA horses starting from T2 (serum and synovial CTXII, and serum COMP) or T3 (synovial COMP). The percentual change of TNF-α in the SF of the affected joints independently contributed to explaining the radiological changes at T3 vs T2 and T4 vs T3. Conclusions Temporal changes of selected biomarkers in STBRs with an acute episode of traumatic fetlock OA demonstrated that long-term increased concentrations of inflammatory cytokines, type II collagen fragments and COMP, in the SF and serum, are related to PTOA. Based on the observed decrease in inflammatory merkers at T1, we hypothesize that the progression of PTOA could be effectively modulated by proper treatment strategies. Annual variations of synovial concentration of TNF-α can reliably predict radiographic progression of PTOA.
Collapse
Affiliation(s)
- Andrea Bertuglia
- Dipartimento di Scienze Veterinarie, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy.
| | - Eleonora Pagliara
- Dipartimento di Scienze Veterinarie, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Elena Grego
- Dipartimento di Scienze Veterinarie, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Alessandro Ricci
- Dipartimento di Scienze Veterinarie, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Nika Brkljaca-Bottegaro
- Clinic for surgery, orthopaedics and ophthalmology, Faculty of Veterinary medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| |
Collapse
|
18
|
Refaat M, Klineberg EO, Fong MC, Garcia TC, Leach JK, Haudenschild DR. Binding to COMP Reduces the BMP2 Dose for Spinal Fusion in a Rat Model. Spine (Phila Pa 1976) 2016; 41:E829-E836. [PMID: 26679888 PMCID: PMC7054986 DOI: 10.1097/brs.0000000000001408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The aim of this study is to test the effect of cartilage oligomeric matrix protein (COMP) on enhancing rhBMP-2 induced spinal fusion in a prospective 8-week interventional trial of spinal fusion in rats. OBJECTIVE To determine whether the amount of bone morphogenetic protein-2 (BMP-2) required to achieve spinal fusion in a pre-clinical model can be reduced by the addition of COMP. SUMMARY OF BACKGROUND DATA BMPs are applied clinically at supraphysiological doses to promote spinal fusion by inducing osseous growth, but dose-related limitations include ectopic bone formation and local inflammatory reactions. COMP is a matricellular BMP-binding protein expressed during endochondral ossification and fracture healing. In vitro studies demonstrate enhanced activity of BMP bound to COMP. We hypothesized that BMP bound to COMP could achieve equivalent spinal fusion rates at lower doses and with fewer complications. METHODS Posterolateral intertransverse process spinal fusion at L4 to L5 was performed in 36 Lewis rats. COMP (10 μg) was tested with or without "low-dose" rhBMP-2 (2 μg), and the results were compared with the "low-dose" (2 μg rhBMP-2) and "high-dose" (10 μg rhBMP-2) groups. All groups utilized insoluble collagen bone matrix carrier (ICBM). Fusion was evaluated by radiology, histology, and manual palpation. BMP release kinetics were evaluated in vitro. RESULTS Fusion grading of microCT images demonstrated that the fusion rate with the COMP+LoBMP was statistically equivalent to HiBMP, and significantly better than LoBMP without COMP. These results were confirmed with radiographs and manual palpation. BMP release kinetics suggest that COMP increased local concentrations of BMP due to decreased growth factor retention on the scaffold. CONCLUSION COMP enhances BMP-induced bone formation, enabling lower doses of BMP to achieve the same level of spinal fusion. COMP may function by affecting the availability and biological presentation of BMP-2. A decrease of BMP-2 required for fusion may reduce dose-related adverse effects, surgical costs, and improve clinical outcomes. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Motasem Refaat
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis
| | - Eric O. Klineberg
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis
| | - Michael C. Fong
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis
| | - Tanya C. Garcia
- J.D. Wheat Veterinary Orthopaedic Laboratory, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis CA 95616 USA
| | - J. Kent Leach
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis
- Department of Biomedical Engineering, University of California Davis
| | - Dominik R. Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis
| |
Collapse
|
19
|
Law RJ, Saynor ZL, Gabbitas J, Jones J, Kraus A, Breslin A, Maddison PJ, Thom JM. The Effects of Aerobic and Resistance Exercise on Markers of Large Joint Health in Stable Rheumatoid Arthritis Patients: A Pilot Study. Musculoskeletal Care 2015; 13:222-35. [PMID: 25962747 DOI: 10.1002/msc.1103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exercise is beneficial for people with rheumatoid arthritis (RA). However, patients and health professionals have expressed concern about the possible detrimental effects of exercise on joint health. The present study investigated the acute and chronic effects of high-intensity, low-impact aerobic and resistance exercise on markers of large joint health in RA. METHODS Eight RA patients and eight healthy, matched control (CTL) participants performed 30 minutes' high-intensity, low-impact aerobic and lower-body resistance exercise, one week apart. Primary outcome measures assessing joint health were serum cartilage oligomeric matrix protein (sCOMP) and knee joint synovial inflammation (Doppler ultrasound colour fraction; CF). These measures were taken at baseline, immediately after and 0.5, one, two, six and 24 hours post-exercise. In a separate study, nine RA patients completed eight weeks of progressive exercise training. The same outcome measures were reassessed at baseline, and at one hour post-exercise of training weeks 0, 1, 4 and 8. RESULTS RA patients showed higher overall sCOMP [RA: 1,347 ± 421, CTL: 1,189 ± 562 ng/mL; p < 0.05; effect size (ES) = 0.32] and CF when scanned longitudinally (RA: 0.489 ± 0.30 × 10(-3) , CTL: 0.101 ± 0.13 × 10(-3) ; p < 0.01; ES = 1.73) and transversely (RA: 0.938 ± 0.69 × 10(-3) , CTL: 0.199 ± 0.36 × 10(-3) ; p < 0.01; ES = 1.33) than CTL. However, no acute effects on joint health were observed post-exercise. Similarly, no chronic effects were observed over eight weeks of combined aerobic and resistance training in RA, with positive effects on physical fitness and function. CONCLUSIONS RA patients on stable treatment with low disease activity were able to perform an individually prescribed high-intensity, low-impact aerobic and resistance exercise without changes in markers of large joint health. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rebecca-Jane Law
- North Wales Centre for Primary Care Research, Bangor University, Bangor, UK.,School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Zoe L Saynor
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Julia Gabbitas
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Jeremy Jones
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK.,Peter Maddison Rheumatology Centre, Betsi Cadwaladr University Health Board, Llandudno, UK
| | - Alexandra Kraus
- Radiology Department, Betsi Cadwaladr University Health Board, Bangor, UK
| | - Anne Breslin
- Peter Maddison Rheumatology Centre, Betsi Cadwaladr University Health Board, Llandudno, UK
| | - Peter J Maddison
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Jeanette M Thom
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Gerdhem P, Topalis C, Grauers A, Stubendorff J, Ohlin A, Karlsson KM. Serum level of cartilage oligomeric matrix protein is lower in children with idiopathic scoliosis than in non-scoliotic controls. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:256-61. [DOI: 10.1007/s00586-014-3691-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022]
|
21
|
Wu P, Holguin N, Silva MJ, Fu M, Liao W, Sandell LJ. Early response of mouse joint tissue to noninvasive knee injury suggests treatment targets. Arthritis Rheumatol 2014; 66:1256-65. [PMID: 24470303 DOI: 10.1002/art.38375] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Joint trauma can lead to a spectrum of acute lesions, including cartilage degradation, ligament or meniscus tears, and synovitis, all potentially associated with osteoarthritis (OA). This study was undertaken to generate and validate a murine model of knee joint trauma following noninvasive controlled injurious compression in vivo. METHODS The right knees of 8-week-old mice were placed in a hyperflexed position and subjected to compressive joint loading at 1 of 3 peak forces (3N, 6N, or 9N) for 60 cycles in a single loading period and harvested on days 5, 9, and 14 after loading (n = 3-5 for each time point and for each loading). The left knees were not loaded and were used as the contralateral control. Histologic, immunohistochemical, and enzyme-linked immunosorbent assay analyses were performed to evaluate acute pathologic features in chondrocyte viability, cartilage matrix metabolism, synovial reaction, and serum cartilage oligomeric matrix protein (COMP) levels. RESULTS Acute joint pathology was associated with increased injurious loads. All loading regimens induced chondrocyte apoptosis, cartilage matrix degradation, disruption of cartilage collagen fibril arrangement, and increased levels of serum COMP. We also observed that 6N loading induced mild synovitis by day 5, whereas at 9N, with tearing of the anterior cruciate ligament, severe posttraumatic synovitis and ectopic cartilage formation were observed. CONCLUSION We have established a murine model of knee joint trauma with different degrees of overloading in vivo. Our results suggest that immediate therapies particularly targeted to apoptosis and synovial cell proliferation could affect the acute posttraumatic reaction to potentially limit chronic consequences and OA.
Collapse
Affiliation(s)
- P Wu
- Washington University School of Medicine, St. Louis, Missouri; First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
22
|
Furman BD, Mangiapani DS, Zeitler E, Bailey KN, Horne PH, Huebner JL, Kraus VB, Guilak F, Olson SA. Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis. Arthritis Res Ther 2014; 16:R134. [PMID: 24964765 PMCID: PMC4229982 DOI: 10.1186/ar4591] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022] Open
Abstract
Introduction Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. Methods Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. Results Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. Conclusion These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA.
Collapse
|
23
|
Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 2014; 37:69-82. [PMID: 24582666 DOI: 10.1016/j.matbio.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests critical functions of thrombospondins (TSPs) in a variety of physiological and pathological processes. With the growing understanding of the importance of these matricellular proteins, the need to understand the mechanisms of regulation of their expression and potential approaches to modulate their levels is also increasing. The regulation of TSP expression is multi-leveled, cell- and tissue-specific, and very precise. However, the knowledge of mechanisms modulating the levels of TSPs is fragmented and incomplete. This review discusses the known mechanisms of regulation of TSP levels and the gaps in our knowledge that prevent us from developing strategies to modulate the expression of these physiologically important proteins.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave NB50, Cleveland, OH 44195, United States.
| |
Collapse
|
24
|
Groma G, Xin W, Grskovic I, Niehoff A, Brachvogel B, Paulsson M, Zaucke F. Abnormal bone quality in cartilage oligomeric matrix protein and matrilin 3 double-deficient mice caused by increased tissue inhibitor of metalloproteinases 3 deposition and delayed aggrecan degradation. ACTA ACUST UNITED AC 2012; 64:2644-54. [PMID: 22378539 DOI: 10.1002/art.34435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cartilage oligomeric matrix protein (COMP) and matrilin 3 are extracellular matrix proteins that are abundant in cartilage. As adaptor molecules, both proteins bridge and stabilize macromolecular networks consisting of fibrillar collagens and proteoglycans. Mutations in the genes coding for COMP and matrilin 3 have been linked to human chondrodysplasias, while in mice, deficiency in COMP or matrilin 3 does not cause any pronounced skeletal abnormalities. Given the similar functions of COMP and matrilin 3 in the assembly and stabilization of the extracellular matrix, our aim was to determine whether these proteins could functionally compensate for each other. METHODS To assess this putative redundancy of COMP and matrilin 3, we generated COMP/matrilin 3 double-deficient mice and performed an in-depth analysis of their skeletal development. RESULTS At the newborn stage, the overall skeletal morphology of the double mutants was normal, but at 1 month of age, the long bones were shortened and the total body length reduced. Peripheral quantitative computed tomography revealed increased metaphyseal trabecular bone mineral density in the femora. Moreover, the degradation of aggrecan in the cartilage remnants in the metaphyseal trabecular bone was delayed, paralleled by increased deposition of tissue inhibitor of metalloproteinases 3 (TIMP-3). The structure and morphology of the growth plate were grossly normal, but in the center, focal closures were observed, a phenotype very similar to that described in matrix metalloproteinase 13 (MMP-13)-deficient mice. CONCLUSION We propose that a lack of COMP and matrilin 3 leads to increased deposition of TIMP-3, which causes partial inactivation of MMPs, including MMP-13, a mechanism that would explain the similarities in phenotype between COMP/matrilin 3 double-deficient and MMP-13-deficient mice.
Collapse
|
25
|
Kumm J, Tamm A, Lintrop M, Tamm A. The value of cartilage biomarkers in progressive knee osteoarthritis: cross-sectional and 6-year follow-up study in middle-aged subjects. Rheumatol Int 2012; 33:903-11. [PMID: 22821260 DOI: 10.1007/s00296-012-2463-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/07/2012] [Indexed: 01/24/2023]
Abstract
To determine the possible diagnostic and prognostic value of cartilage biomarkers in early-stage progressive and nonprogressive knee osteoarthritis (OA) in a population-based cohort of middle-aged subjects with chronic knee pain. Design tibiofemoral (TF) and patellofemoral (PF) radiographs were graded in 128 subjects (mean age at baseline, 45 ± 6.2 years) in 2002, 2005, and 2008. Cartilage degradation was assessed by urinary C-telopeptide fragments of type II collagen (uCTx-II), synthesis by serum type II A procollagen N-terminal propeptide (sPIIANP), and articular tissue turnover in general by cartilage oligomeric matrix protein (sCOMP). Several diagnostic associations were found between all studied biomarkers and progressive osteophytosis. COMP and CTx-II had a predictive value for subsequent progressive osteophytosis in multiple knee compartments and in case of CTx-II-also for progressive JSN. Over the first 3 years (2002-2005), significant associations were observed between COMP and progressive osteophytosis, whereas 3 years later (2005-2008) between CTx-II and progressive JSN. Thus, the associations between cartilage markers (COMP, CTx-II) and progression of radiographic OA features--osteophytes and JSN--were different between 2002-2005 and 2005-2008. Logistic regression revealed that for every unit increase in COMP level, there was 33 % higher risk for TF osteophyte progression. During early-stage OA, the presence and progression of osteophytosis is accompanied by increased level of cartilage biomarkers. This is the first study to demonstrate biochemical differences over the course of knee OA, illustrating a phasic nonpersistent character of OA with periods of progression and stabilization.
Collapse
Affiliation(s)
- Jaanika Kumm
- Clinic of Internal Medicine, University of Tartu, L.Puusepa 6-222, Tartu 51014, Estonia.
| | | | | | | |
Collapse
|
26
|
Lavenus S, Trichet V, Le Chevalier S, Hoornaert A, Louarn G, Layrolle P. Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine (Lond) 2012; 7:967-80. [DOI: 10.2217/nnm.11.181] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aims: We aimed to study the interactions between human mesenchymal stem cells and the bone integration of nanostructured titanium implants. Materials & methods: Nanopores of 20, 30 and 50 nm were prepared by anodization of titanium at 5, 10 and 20 V in a mixture of fluorhydric and acetic acid. Ti 30 and 50 nanostructures promoted early osteoblastic gene differentiation of the human mesenchymal stem cells without osteogenic supplements. The osseointegration of nanostructured and control titanium implants was compared by implantation in rat tibias for 1 and 3 weeks. Results: The nanostructures significantly accelerated bone apposition and bone bonding strength in vivo in correlation with in vitro results. Conclusion: These findings demonstrate that specific nanostructures controlled the differentiation of cells and, thus, the integration of implants in tissues. These nanoporous titanium surfaces may be of considerable interest for dental and orthopedic implants. Original submitted 10 September 2011; Revised submitted 11 November 2011; Published online 6 March 2012
Collapse
Affiliation(s)
- Sandrine Lavenus
- Rensselaer Polytechnic Institute, Nanotecnology Center, Troy, NY 12180-3590, USA
| | - Valérie Trichet
- Inserm U957, Laboratory Physiopathology of Bone Resorption, Faculty of Medicine, University of Nantes, France
| | | | - Alain Hoornaert
- ERT 2004, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Guy Louarn
- CNRS, Institut des Matériaux Jean Rouxel (IMN), University of Nantes, Nantes, France
| | - Pierre Layrolle
- Inserm U957, Laboratory Physiopathology of Bone Resorption, Faculty of Medicine, University of Nantes, France
| |
Collapse
|
27
|
Haleem-Smith H, Calderon R, Song Y, Tuan RS, Chen FH. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells. J Cell Biochem 2012; 113:1245-52. [PMID: 22095699 PMCID: PMC3319787 DOI: 10.1002/jcb.23455] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.
Collapse
Affiliation(s)
- Hana Haleem-Smith
- Cartilage Biology and Orthopaedics Branch, National Institutes of Health, Department of Health and Human Services Bethesda, Maryland 20892, USA
| | - Raul Calderon
- Cartilage Biology and Orthopaedics Branch, National Institutes of Health, Department of Health and Human Services Bethesda, Maryland 20892, USA
- Howard Hughes Medical Institute-National Institutes of Health Research Scholars Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services Bethesda, Maryland 20892, USA
| | - Yingjie Song
- Cartilage Biology and Orthopaedics Branch, National Institutes of Health, Department of Health and Human Services Bethesda, Maryland 20892, USA
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, National Institutes of Health, Department of Health and Human Services Bethesda, Maryland 20892, USA
- Center for Cellular and Molecular Engineering, University of Pittsburgh Department of Orthopaedic Surgery, Pittsburgh, Pennsylvania 15219 USA
| | - Faye H. Chen
- Cartilage Biology and Orthopaedics Branch, National Institutes of Health, Department of Health and Human Services Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
YU H, ZHU Y. Expression of ADAMTS-7 and ADAMTS-12 in the Nucleus Pulposus During Degeneration of Rat Caudal Intervetebral Disc. J Vet Med Sci 2012; 74:9-15. [PMID: 21869572 DOI: 10.1292/jvms.10-0556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hao YU
- Department of Orthopaedics, The First Hospital of China Medical University
- Department of Hand Surgery, Fengtian Hospital Affiliated to Shenyang Medical College
| | - Yue ZHU
- Department of Orthopaedics, The First Hospital of China Medical University
| |
Collapse
|
29
|
Ravindran S, Gao Q, Kotecha M, Magin RL, Karol S, Bedran-Russo A, George A. Biomimetic extracellular matrix-incorporated scaffold induces osteogenic gene expression in human marrow stromal cells. Tissue Eng Part A 2011; 18:295-309. [PMID: 21867449 DOI: 10.1089/ten.tea.2011.0136] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Engineering biomaterials mimicking the biofunctionality of the extracellular matrix (ECM) is important in instructing and eliciting cell response. The native ECM is highly dynamic and has been shown to support cellular attachment, migration, and differentiation. The advantage of synthesizing an ECM-based biomaterial is that it mimics the native cellular environment. However, the ECM has tissue-specific composition and patterned arrangement. In this study, we have employed biomimetic strategies to develop a novel collagen/chitosan template that is embedded with the native ECM of differentiating human marrow stromal cells (HMSCs) to facilitate osteoblast differentiation. The scaffold was characterized for substrate stiffness by magnetic resonance imaging and nanoindentation and by immunohistochemical analysis for the presence of key ECM proteins. Gene expression analysis showed that the ECM scaffold supported osteogenic differentiation of undifferentiated HMSCs as significant changes were observed in the expression levels of growth factors, transcription factors, proteases, receptors, and ECM proteins. Finally, we demonstrate that the scaffold had the ability to nucleate calcium phosphate polymorphs to form a mineralized matrix. The results from this study suggest that the three-dimensional native ECM scaffold directly controls cell behavior and supports the osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Sriram Ravindran
- Department of Oral Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Neuss S, Denecke B, Gan L, Lin Q, Bovi M, Apel C, Wöltje M, Dhanasingh A, Salber J, Knüchel R, Zenke M. Transcriptome analysis of MSC and MSC-derived osteoblasts on Resomer® LT706 and PCL: impact of biomaterial substrate on osteogenic differentiation. PLoS One 2011; 6:e23195. [PMID: 21935359 PMCID: PMC3173366 DOI: 10.1371/journal.pone.0023195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) represent a particularly attractive cell type for bone tissue engineering because of their ex vivo expansion potential and multipotent differentiation capacity. MSC are readily differentiated towards mature osteoblasts with well-established protocols. However, tissue engineering frequently involves three-dimensional scaffolds which (i) allow for cell adhesion in a spatial environment and (ii) meet application-specific criteria, such as stiffness, degradability and biocompatibility. Methodology/Principal Findings In the present study, we analysed two synthetic, long-term degradable polymers for their impact on MSC-based bone tissue engineering: PLLA-co-TMC (Resomer® LT706) and poly(ε-caprolactone) (PCL). Both polymers enhance the osteogenic differentiation compared to tissue culture polystyrene (TCPS) as determined by Alizarin red stainings, scanning electron microscopy, PCR and whole genome expression analysis. Resomer® LT706 and PCL differ in their influence on gene expression, with Resomer® LT706 being more potent in supporting osteogenic differentiation of MSC. The major trigger on the osteogenic fate, however, is from osteogenic induction medium. Conclusion This study demonstrates an enhanced osteogenic differentiation of MSC on Resomer® LT706 and PCL compared to TCPS. MSC cultured on Resomer® LT706 showed higher numbers of genes involved in skeletal development and bone formation. This identifies Resomer® LT706 as particularly attractive scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- Sabine Neuss
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Davis TA, O'Brien FP, Anam K, Grijalva S, Potter BK, Elster EA. Heterotopic ossification in complex orthopaedic combat wounds: quantification and characterization of osteogenic precursor cell activity in traumatized muscle. J Bone Joint Surg Am 2011; 93:1122-31. [PMID: 21776549 DOI: 10.2106/jbjs.j.01417] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heterotopic ossification frequently develops following high-energy blast injuries sustained in modern warfare. We hypothesized that differences in the population of progenitor cells present in a wound would correlate with the subsequent formation of heterotopic ossification. METHODS We obtained muscle biopsy specimens from military service members who had sustained high-energy wartime injuries and from patients undergoing harvest of a hamstring tendon autograft. Plastic-adherent cells were isolated in single-cell suspension and plated to assess the prevalence of colony-forming cells. Phenotypic characteristics were assessed with use of flow cytometry. Individual colony-forming units were counted after an incubation period of seven to ten days, and replicate cultures were incubated in lineage-specific induction media. Immunohistochemical staining was then performed to determine the percentage of colonies that had differentiated along an osteogenic lineage. Quantitative real-time reverse-transcription polymerase chain reaction was used to identify changes in osteogenic gene expression. RESULTS Injured patients had significantly higher numbers of muscle-derived connective-tissue progenitor cells per gram of tissue (p < 0.0001; 95% confidence interval [CI], 129,930 to 253,333), and those who developed heterotopic ossification had higher numbers of assayable osteogenic colonies (p < 0.016; 95% CI, 12,249 to 106,065). In the injured group, quantitative real-time reverse-transcription polymerase chain reaction performed on the in vitro expanded progeny of connective-tissue progenitors demonstrated upregulation of COL10A1, COL4A3, COMP, FGFR2, FLT1, IGF2, ITGAM, MMP9, PHEX, SCARB1, SOX9, and VEGFA in the patients with heterotopic ossification as compared with those without heterotopic ossification. CONCLUSIONS Our study suggests that the number of connective-tissue progenitor cells is increased in traumatized tissue. Furthermore, wounds in which heterotopic ossification eventually forms have a higher percentage of connective-tissue progenitor cells committed to osteogenic differentiation than do wounds in which heterotopic ossification does not form. The early identification of heterotopic ossification-precursor cells and target genes in severe wounds not only may be an effective prognostic tool with which to assess whether heterotopic ossification will develop in a wound, but may also guide the future development of individualized prophylactic measures.
Collapse
Affiliation(s)
- Thomas A Davis
- Regenerative Medicine Department,Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Progranulin: a promising therapeutic target for rheumatoid arthritis. FEBS Lett 2011; 585:3675-80. [PMID: 21550343 DOI: 10.1016/j.febslet.2011.04.065] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/23/2011] [Accepted: 04/27/2011] [Indexed: 01/01/2023]
Abstract
Progranulin (PGRN) is an autocrine growth factor with multiple functions. This review provides updates about the interplays of PGRN with extracellular matrix proteins, proteolytic enzymes, inflammatory cytokines, and cell surface receptors in cartilage and arthritis, with a special focus on the interaction between PGRN and TNF receptors (TNFR) and its implications in inflammatory arthritis. The paper also highlights Atsttrin, an engineered protein composed of three PGRN fragments that prevents inflammation in several inflammatory arthritis models. Identification of PGRN as a ligand of TNFR and an antagonist of TNFα signaling, together with the discovery of Atsttrin, not only betters our understanding of the pathogenesis of arthritis, but also provides new therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis.
Collapse
|
33
|
|
34
|
Granchi D, Ochoa G, Leonardi E, Devescovi V, Baglìo SR, Osaba L, Baldini N, Ciapetti G. Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion. Tissue Eng Part C Methods 2010; 16:511-24. [PMID: 19686055 DOI: 10.1089/ten.tec.2009.0405] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow is commonly used as a source of adult multipotent mesenchymal stem cells (MSCs), defined for their ability to differentiate in vitro into multiple lineages. The ex vivo-expanded MSCs are currently being evaluated as a strategy for the restoration of function in damaged skeletal tissue, both in cell therapy and tissue engineering applications. The aim of this study was to define gene expression patterns underlying the differentiation of MSCs into mature osteoblasts during the expansion in vitro, and to explore a variety of cell functions that cannot be easily evaluated using morphological, cytochemical, and biochemical assays. Cell cultures were obtained from bone marrow samples of six individuals undergoing total hip replacement, and a large-scale transcriptome analysis, using Affymetrix HG-U133A Plus 2.0 array (Affymetrix((R)), Santa Clara, CA), was performed at the occurrence of specific events, including the appearance of MSC surface markers, formation of colonies, and deposition of mineral nodules. We focused our attention on 213 differentially upregulated genes, some belonging to well-known pathways and some having one or more Gene Ontology annotations related to bone cell biology, including angiogenesis, bone-related genes, cell communication, development and morphogenesis, transforming growth factor-beta signaling, and Wnt signaling. Twenty-nine genes, whose role in bone cell pathophysiology has not been described yet, were found. In conclusion, gene expression patterns that characterize the early, intermediate, and late phases of the osteogenic differentiation process of ex vivo-expanded MSCs were defined. These signatures represent a useful tool to monitor the osteogenic process, and to analyze a broad spectrum of functions of MSCs cultured on scaffolds, especially when the constructs are conceived for releasing growth factors or other signals to promote bone regeneration.
Collapse
|
35
|
Saugspier M, Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C. The Differentiation and Gene Expression Profile of Human Dental Follicle Cells. Stem Cells Dev 2010; 19:707-17. [PMID: 20491563 DOI: 10.1089/scd.2010.0027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Saugspier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Felthaus
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Viale-Bouroncle
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Driemel
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Morsczeck
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Kong L, Tian Q, Guo F, Mucignat MT, Perris R, Sercu S, Merregaert J, Di Cesare PE, Liu CJ. Interaction between cartilage oligomeric matrix protein and extracellular matrix protein 1 mediates endochondral bone growth. Matrix Biol 2010; 29:276-86. [PMID: 20138147 DOI: 10.1016/j.matbio.2010.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/02/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
Abstract
In an effort to define the biological functions of COMP, a functional genetic screen was performed. This led to the identification of extracellular matrix protein 1 (ECM1) as a novel COMP-associated partner. COMP directly binds to ECM1 both in vitro and in vivo. The EGF domain of COMP and the C-terminus of ECM1 mediate the interaction between them. COMP and ECM1 colocalize in the growth plates invivo. ECM1 inhibits chondrocyte hypertrophy, matrix mineralization, and endochondral bone formation, and COMP overcomes the inhibition by ECM1. In addition, COMP-mediated neutralization of ECM1 inhibition depends on their interaction, since COMP largely fails to overcome the ECM1 inhibition in the presence of the EGF domain of COMP, which disturbs the association of COMP and ECM1. These findings provide the first evidence linking the association of COMP and ECM1 and the biological significance underlying the interaction between them in regulating endochondral bone growth.
Collapse
Affiliation(s)
- Li Kong
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumm J, Tamm A, Lintrop M, Tamm A. Association between ultrasonographic findings and bone/cartilage biomarkers in patients with early-stage knee osteoarthritis. Calcif Tissue Int 2009; 85:514-22. [PMID: 19862466 DOI: 10.1007/s00223-009-9302-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 09/29/2009] [Indexed: 11/30/2022]
Abstract
Little is known regarding the association between ultrasonographic (US) findings and biomarkers of bone and cartilage in individuals with knee osteoarthritis (OA). We investigated (1) US findings in early-stage knee OA and (2) the association between US findings and bone/cartilage biomarkers. A population cohort aged 35-55 years (n = 106) with early-stage knee OA was investigated. US examination was performed according to European League against Rheumatism (EULAR) guidelines using a 7.5-MHz probe. Biomarkers of bone resorption (CTx-I) and formation (PINP), cartilage resorption (U-CTx-II) and synthesis (S-PIIANP), and general bone and cartilage biomarkers (OC, COMP) were assessed. The most prevalent US findings were tendon calcification, synovial thickening, and suprapatellar effusion. In women, the presence of tendon calcification and Baker's cysts could predict 36% of the variability in U-CTx-II levels. The presence of osteophytes and tendon calcification predicted up to 38% of the variability of PIIANP concentration. Defects in subchondral bone, meniscal changes, and effusion predicted up to 29% of the variability in COMP levels. Tendon calcification was related to cartilage synthesis (based on PIIANP levels) in men and to cartilage degradation (based on U-CTx-II concentrations) in women. US signs of synovitis were reflected metabolically by markers of joint tissue metabolism. Tendon calcification, synovial thickening, and effusion were common US findings in early-stage knee OA. US-detectable findings were substantially responsible for the variability in bone and cartilage biomarkers, associations reflective of the active metabolism of soft tissues in early-stage OA.
Collapse
Affiliation(s)
- Jaanika Kumm
- Clinic of Internal Medicine, University of Tartu, L. Puusepa 6-222, Tartu, 51014, Estonia.
| | | | | | | |
Collapse
|
38
|
Leonardi E, Ciapetti G, Baglìo SR, Devescovi V, Baldini N, Granchi D. Osteogenic properties of late adherent subpopulations of human bone marrow stromal cells. Histochem Cell Biol 2009; 132:547-57. [PMID: 19711092 DOI: 10.1007/s00418-009-0633-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2009] [Indexed: 12/17/2022]
Abstract
The nonadherent (NA) population of bone-marrow-derived mononuclear cells (MNC) has been demonstrated to be a source of osteogenic precursors in addition to the plastic-adherent mesenchymal stromal cells (MSC). In the current study, two subpopulations of late adherent (LA) osteoprogenitors were obtained by subsequent replating of NA cells, and their phenotypic, functional, and molecular properties were compared with those of early adherent (EA) MSC. Approximately 35% of MNC were LA cells, and they acquired a homogeneous expression of MSC antigens later than EA cells. In EA-MSC, the alkaline phosphatase (ALP) activity increased significantly from time of seeding to the first confluence, whereas in LA cells it raised later, after the addition of mineralization medium. All subpopulations were able to produce type I collagen and to deposit extracellular matrix with organized collagen fibrils. The proportion of large colonies with more than 50% of ALP positive cells as well as the calcium content was higher in LA than in EA cells. Molecular analysis highlighted the upregulation of bone-related genes in LA-MSC, especially after the addition of mineralization medium. Our results confirm that bone marrow contains LA osteoprogenitors which exhibit a delay in the differentiation process, despite an osteogenic potential similar to or better than EA-MSC. LA cells represent a reservoir of osteoprogenitors to be recruited to gain an adequate bone tissue repair and regeneration when a depletion of the most differentiated component occurs. Bone tissue engineering and cell therapy strategies could take advantage of LA cells, since an adequate amount of osteogenic MSCs may be obtained while avoiding bone marrow manipulation and cell culture expansion.
Collapse
Affiliation(s)
- Elisa Leonardi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | |
Collapse
|
39
|
Gunasekar SK, Asnani M, Limbad C, Haghpanah JS, Hom W, Barra H, Nanda S, Lu M, Montclare JK. N-Terminal Aliphatic Residues Dictate the Structure, Stability, Assembly, and Small Molecule Binding of the Coiled-Coil Region of Cartilage Oligomeric Matrix Protein. Biochemistry 2009; 48:8559-67. [DOI: 10.1021/bi900534r] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susheel K. Gunasekar
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Mukta Asnani
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Chandani Limbad
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Jennifer S. Haghpanah
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Wendy Hom
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Hanna Barra
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Soumya Nanda
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Min Lu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | - Jin Kim Montclare
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
- Department of Biochemistry, SUNY-Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
40
|
Lisignoli G, Codeluppi K, Todoerti K, Manferdini C, Piacentini A, Zini N, Grassi F, Cattini L, Piva R, Rizzoli V, Facchini A, Giuliani N, Neri A. Gene array profile identifies collagen type XV as a novel human osteoblast-secreted matrix protein. J Cell Physiol 2009; 220:401-9. [PMID: 19365806 DOI: 10.1002/jcp.21779] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone marrow stromal cells (MSCs) and osteoblasts are the two main non-haematopoietic cellular components of human bone tissue. To identify novel osteoblast-related molecules, we performed a gene expression profiling analysis comparing MSCs and osteoblasts isolated from the same donors. Genes differentially overexpressed in osteoblasts were mainly related to the negative control of cell proliferation, pro-apoptotic processes, protein metabolism and bone remodelling. Notably, we also identified the collagen XV (COL15A1) gene as the most up-regulated gene in osteoblasts compared with MSCs, previously described as being expressed in the basement membrane in other cell types. The expression of collagen type XV was confirmed at the protein level on isolated osteoblasts and we demonstrated that it significantly increases during the osteogenic differentiation of MSCs in vitro and that free ionised extracellular calcium significantly down-modulates its expression. Moreover, light and electron microscopy showed that collagen type XV is expressed in bone tissue biopsies mainly by working osteoblasts forming new bone tissue or lining bone trabeculae. To our knowledge, these data represent the first evidence of the expression of collagen type XV in human osteoblasts, a calcium-regulated protein which correlates to a specific functional state of these cells.
Collapse
Affiliation(s)
- Gina Lisignoli
- Laboratorio di Immunologia e Genetica, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor. Mol Cell Biol 2009; 29:4201-19. [PMID: 19487464 DOI: 10.1128/mcb.00056-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ADAMTS-7, a metalloproteinase that belongs to ADAMTS family, is important for the degradation of cartilage extracellular matrix proteins in arthritis. Herein we report that ADAMTS-7 is upregulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern during skeletal development. ADAMTS-7 potently inhibits chondrocyte differentiation and endochondral bone formation, and this inhibition depends on its proteolytic activity. The cysteine-rich domain of ADAMTS-7 is required for its interaction with the extracellular matrix, and the C-terminal four-thrombospondin motifs are necessary for its full proteolytic activity and inhibition of chondrocyte differentiation. ADAMTS-7 is an important target of canonical PTHrP signaling, since (i) PTHrP induces ADAMTS-7, (ii) ADAMTS-7 is downregulated in PTHrP null mutant (PTHrP-/-) growth plate chondrocytes, and (iii) blockage of ADAMTS-7 almost abolishes PTHrP-mediated inhibition of chondrocyte hypertrophy and endochondral bone growth. ADAMTS-7 associates with granulin-epithelin precursor (GEP), an autocrine growth factor that has been implicated in tissue regeneration, tumorigenesis, and inflammation. In addition, ADAMTS-7 acts as a new GEP convertase and neutralizes GEP-stimulated endochondral bone formation. Collectively, these findings demonstrate that ADAMTS-7, a direct target of PTHrP signaling, negatively regulates endochondral bone formation by associating with and inactivating GEP chondrogenic growth factor.
Collapse
|
42
|
Mendonça G, Mendonça DBS, Simões LGP, Araújo AL, Leite ER, Duarte WR, Aragão FJL, Cooper LF. The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 2009; 30:4053-62. [PMID: 19464052 DOI: 10.1016/j.biomaterials.2009.04.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/13/2009] [Indexed: 11/28/2022]
Abstract
This study investigated the influence of nanoscale implant surface features on osteoblast differentiation. Titanium disks (20.0 x 1.0 mm) with different nanoscale materials were prepared using sol-gel-derived coatings and characterized by scanning electron microscopy, atomic force microscopy and analyzed by X-ray Photoelectron Spectrometer. Human Mesenchymal Stem Cells (hMSCs) were cultured on the disks for 3-28 days. The levels of ALP, BSP, Runx2, OCN, OPG, and OSX mRNA and a panel of 76 genes related to osteogenesis were evaluated. Topographical and chemical evaluation confirmed nanoscale features present on the coated surfaces only. Bone-specific mRNAs were increased on surfaces with superimposed nanoscale features compared to Machined (M) and Acid etched (Ac). At day 14, OSX mRNA levels were increased by 2-, 3.5-, 4- and 3-fold for Anatase (An), Rutile (Ru), Alumina (Al), and Zirconia (Zr), respectively. OSX expression levels for M and Ac approximated baseline levels. At days 14 and 28 the BSP relative mRNA expression was significantly up-regulated for all surfaces with nanoscale coated features (up to 45-fold increase for Al). The PCR array showed an up-regulation on Al coated implants when compared to M. An improved response of cells adhered to nanostructured-coated implant surfaces was represented by increased OSX and BSP expressions. Furthermore, nanostructured surfaces produced using aluminum oxide significantly enhanced the hMSC gene expression representative of osteoblast differentiation. Nanoscale features on Ti implant substrates may improve the osseointegration response by altering adherent cell response.
Collapse
Affiliation(s)
- Gustavo Mendonça
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia, SGAN Quadra 916, Módulo B, Av. W5 Norte 70.790-160-Asa Norte Brasília/DF, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tseng S, Reddi AH, Di Cesare PE. Cartilage Oligomeric Matrix Protein (COMP): A Biomarker of Arthritis. Biomark Insights 2009; 4:33-44. [PMID: 19652761 PMCID: PMC2716683 DOI: 10.4137/bmi.s645] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Arthritis is a chronic disease with a significant impact on the population. It damages the cartilage, synovium, and bone of the joints causing pain, impairment, and disability in patients. Current methods for diagnosis of and monitoring the disease are only able to detect clinical manifestations of arthritis late in the process. However, with the recent onset of successful treatments for rheumatoid arthritis and osteoarthritis, it becomes important to identify prognostic factors that can predict the evolution of arthritis. This is especially critical in the early phases of disease so that these treatments can be started as soon as possible to slow down progression of the disease. A valuable approach to monitor arthritis would be by measuring biological markers of cartilage degradation and repair to reflect variations in joint remodeling. One such potential biological marker of arthritis is cartilage oligomeric matrix protein (COMP). In various studies, COMP has shown promise as a diagnostic and prognostic indicator and as a marker of the disease severity and the effect of treatment. This review highlights the progress in the utilization of COMP as a biomarker of arthritis.
Collapse
Affiliation(s)
- Susan Tseng
- Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, California, 95817, U.S.A
| | | | | |
Collapse
|
44
|
Extracorporeal Shock Wave-Mediated Changes in Proliferation, Differentiation, and Gene Expression of Human Osteoblasts. ACTA ACUST UNITED AC 2008; 65:1402-10. [DOI: 10.1097/ta.0b013e318173e7c2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Luan Y, Kong L, Howell DR, Ilalov K, Fajardo M, Bai XH, Di Cesare PE, Goldring MB, Abramson SB, Liu CJ. Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthritis Cartilage 2008; 16:1413-20. [PMID: 18485748 PMCID: PMC2574789 DOI: 10.1016/j.joca.2008.03.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/24/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE As we previously reported, ADAMTS-7 and ADAMTS-12, two members of ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family, degrade cartilage oligomeric matrix protein (COMP) in vitro and are significantly induced in the cartilage and synovium of arthritic patients [Liu CJ, Kong W, Ilalov K, Yu S, Xu K, Prazak L, et al. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J 2006;20(7):988-90; Liu CJ, Kong W, Xu K, Luan Y, Ilalov K, Sehgal B, et al. ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem 2006;281(23):15800-8]. The purpose of this study was to determine (1) whether cleavage activity of ADAMTS-7 and ADAMTS-12 of COMP are associated with COMP degradation in osteoarthritis (OA); (2) whether alpha-2-macroglobulin (a(2)M) is a novel substrate for ADAMTS-7 and ADAMTS-12; and (3) whether a(2)M inhibits ADAMTS-7 or ADAMTS-12 cleavage of COMP. METHODS An in vitro digestion assay was used to examine the degradation of COMP by ADAMTS-7 and ADAMTS-12 in the cartilage of OA patients; in cartilage explants incubated with tumor necrosis factor-alpha (TNF-alpha) or interleukin-1-beta (IL-1beta) with or without blocking antibodies; and in human chondrocytes treated with specific small interfering RNA (siRNA) to knockdown ADAMTS-7 or/and ADAMTS-12. Digestion of a(2)M by ADAMTS-7 and ADAMTS-12 in vitro and the inhibition of ADAMTS-7 or ADAMTS-12-mediated digestion of COMP by a(2)M were also analyzed. RESULTS The molecular mass of the COMP fragments produced by either ADAMTS-7 or ADAMTS-12 were similar to those observed in OA patients. Specific blocking antibodies against ADAMTS-7 and ADAMTS-12 dramatically inhibited TNF-alpha- or IL-1beta-induced COMP degradation in the cultured cartilage explants. The suppression of ADAMTS-7 or ADAMTS-12 expression by siRNA silencing in the human chondrocytes also prevented TNF-alpha- or IL-1beta-induced COMP degradation. Both ADAMTS-7 and ADAMTS-12 were able to cleave a(2)M, giving rise to 180- and 105-kDa cleavage products, respectively. Furthermore, a(2)M inhibited both ADAMTS-7- and ADAMTS-12-mediated COMP degradation in a concentration (or dose)-dependent manner. CONCLUSION Our observations demonstrate the importance of COMP degradation by ADAMTS-7 and ADAMTS-12 in vivo. Furthermore, a(2)M is a novel substrate for ADAMTS-7 and ADAMTS-12. More significantly, a(2)M represents the first endogenous inhibitor of ADAMTS-7 and ADAMTS-12.
Collapse
Affiliation(s)
- Y Luan
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sumer EU, Schaller S, Sondergaard BC, Tankó LB, Qvist P. Application of biomarkers in the clinical development of new drugs for chondroprotection in destructive joint diseases: a review. Biomarkers 2008; 11:485-506. [PMID: 17056470 DOI: 10.1080/13547500600886115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence supports the concept that biochemical markers are clinically useful non-invasive diagnostic tools for the monitoring of changes in cartilage turnover in patients with destructive joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Epidemiological studies demonstrated that measurements of different degradation products of proteins in the extracellular matrix of hyaline cartilage in urine or serum samples are (1) increased in OA or RA patients compared with healthy individuals, (2) correlate with disease activity, and (3) are predictive for the rate of changes in radiographic measures of cartilage loss. The present review provides an updated list of available biomarkers and summarize the research data arguing for their clinical utility. In addition, it addresses the question whether or not the monitoring of biomarkers during different treatment modalities could be a useful approach to characterize the chondro-protective effects of approved and candidate drugs. Finally, it briefly reviews the in vitro/ex vivo experimental settings - isolated chondrocyte cultures and articular cartilage explants - that can assist in the verification of novel markers, but also studies assessing direct effects of drug candidates on chondrocytes. Collectively, biomarkers may acquire a function as established efficacy parameters in the clinical development of novel chondro-protective agents.
Collapse
Affiliation(s)
- E U Sumer
- Nordic Bioscience A/S, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Bian L, Lima EG, Angione SL, Ng KW, Williams DY, Xu D, Stoker AM, Cook JL, Ateshian GA, Hung CT. Mechanical and biochemical characterization of cartilage explants in serum-free culture. J Biomech 2008; 41:1153-9. [PMID: 18374344 DOI: 10.1016/j.jbiomech.2008.01.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Allografts of articular cartilage are both used clinically for tissue-transplantation procedures and experimentally as model systems to study the physiological behavior of chondrocytes in their native extracellular matrix. Long-term maintenance of allograft tissue is challenging. Chemical mediators in poorly defined culture media can stimulate cells to quickly degrade their surrounding extracellular matrix. This is particularly true of juvenile cartilage which is generally more responsive to chemical stimuli than mature tissue. By carefully modulating the culture media, however, it may be possible to preserve allograft tissue over the long-term while maintaining its original mechanical and biochemical properties. In this study juvenile bovine cartilage explants (both chondral and osteochondral) were cultured in both chemically defined medium and serum-supplemented medium for up to 6 weeks. The mechanical properties and biochemical content of explants cultured in chemically defined medium were enhanced after 2 weeks in culture and thereafter remained stable with no loss of cell viability. In contrast, the mechanical properties of explants in serum-supplemented medium were degraded by ( approximately 70%) along with a concurrent loss of biochemical content (30-40% GAG). These results suggest that long-term maintenance of allografts can be extended significantly by the use of a chemically defined medium.
Collapse
Affiliation(s)
- L Bian
- Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. ACTA ACUST UNITED AC 2008; 84:228-44. [DOI: 10.1002/bdrc.20130] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 2008; 22:351-84. [PMID: 18455690 DOI: 10.1016/j.berh.2008.02.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The preservation of articular cartilage depends on keeping the cartilage architecture intact. Cartilage strength and function depend on both the properties of the tissue and on their structural parameters. The main structural macromolecules are collagen and proteoglycans (aggrecan). During life, cartilage matrix turnover is mediated by a multitude of complex autocrine and paracrine anabolic and catabolic factors. These act on the chondrocytes and can lead to repair, remodeling or catabolic processes like those that occur in osteoarthritis. Osteoarthritis is characterized by degradation and loss of articular cartilage, subchondral bone remodeling, and, at the clinical stage of the disease, inflammation of the synovial membrane. The alterations in osteoarthritic cartilage are numerous and involve morphologic and metabolic changes in chondrocytes, as well as biochemical and structural alterations in the extracellular matrix macromolecules.
Collapse
|
50
|
Trabecular bone deterioration in col9a1+/- mice associated with enlarged osteoclasts adhered to collagen IX-deficient bone. J Bone Miner Res 2008; 23:837-49. [PMID: 18251701 PMCID: PMC2677084 DOI: 10.1359/jbmr.080214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Short collagen IX, the exclusive isoform expressed by osteoblasts, is synthesized through alternative transcription of the col9a1 gene. The function of short collagen IX in bone was characterized in col9a1-null mutant mice. MATERIALS AND METHODS Trabecular bone morphometry of lumbar bones and tibias was evaluated by muCT and nondecalcified histology. Osteoblastic and osteoclastic activities were evaluated by PCR- and microarray-based gene expression assays and TRACP-5b and C-terminal telopeptide (CTX) assays, as well as in vitro using bone marrow stromal cells and splenocytes. The effect of col9a1(+/-) mutation on osteoclast morphology was evaluated using RAW264.7-derived osteoclastic cells cultured on the mutant or wildtype calvarial bone substrates. RESULTS Col9a1 knockout mutation caused little effects on the skeletal development; however, young adult female col9a1(-/-) and col9a1(+/-) mice exhibited significant loss of trabecular bone. The trabecular bone architecture was progressively deteriorated in both male and female heterozygous col9a1(+/-) mice while aging. The aged mutant mice also exhibited signs of thoracic kyphosis and weight loss, resembling the clinical signs of osteoporosis. The col9a1(+/-) osteoblasts synthesized short col9a1 transcripts at decreased rates. Whereas bone formation activities in vitro and in vivo were not affected, the mutant osteoblast expressed the elevated ratio of RANKL/osteoprotegerin. Increased serum TRACP-5b and CTX levels were found in col9a1(+/-) mice, whose bone surface was associated with osteoclastic cells that were abnormally flattened and enlarged. The mutant and wildtype splenocytes underwent similar osteoclastogenesis in vitro; however, RAW264.7-derived osteoclastic cells, when cultured on the col9a1(+/-) calvaria, widely spread over the bone surface and formed large resorption pits. The surface of col9a1(+/-) calvaria was found to lack the typical nanotopography. CONCLUSIONS The mineralized bone matrix deficient of short collagen IX may become susceptible to osteoclastic bone resorption, possibly through a novel non-cell-autonomous mechanism. The data suggest the involvement of bone collagen IX in the pathogenesis of osteoporosis.
Collapse
|