1
|
Mineta S, Endo S, Ueno T. Optimization of decellularization methods using human small intestinal submucosa for scaffold generation in regenerative medicine. Int J Exp Pathol 2023; 104:313-320. [PMID: 37622735 PMCID: PMC10652692 DOI: 10.1111/iep.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine small intestinal submucosa, despite its successful use as a scaffold in regenerative medicine, has innate biomechanical heterogeneity. In this study, we hypothesized that human small intestinal submucosa could be a viable alternative bio-scaffold. For the first time, we characterize submucosal extraction from human small intestine and examine appropriate decellularization methods. In total, 16 human small intestinal submucosal samples were obtained and decellularized using three reported methods of porcine decellularization: Abraham, Badylak, and Luo. For each method, four specimens were decellularized. The remaining four specimens were designated as non-decellularized. We measured the amount of residual DNA and growth factors in decellularized human intestinal samples. Additionally, decellularized human small intestinal submucosa was co-cultured with mouse bone marrow-derived mesenchymal stem cells to examine mesenchymal stem cell survival and proliferation. The reference value for the amount of residual DNA deemed appropriate in decellularized tissue was established as 50 ng/mg of extracellular matrix dry weight or less. Abraham's method most successfully met this criterion. Measurement of residual growth factors revealed low levels observed in samples decellularized using the Abraham and Badylak methods. Co-culture of each small intestinal submucosal sample with mouse bone marrow-derived mesenchymal stem cells confirmed viable cell survival and proliferation in samples derived using protocols by Abraham and Badylak. Abraham's method most successfully met the criteria for efficient tissue decellularization and cell viability and proliferation. Thus, we consider this method most suitable for decellularization of human small intestinal submucosa.
Collapse
Affiliation(s)
- Shumei Mineta
- Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
| | - Shunji Endo
- Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
| | - Tomio Ueno
- Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
| |
Collapse
|
2
|
Porcine Small Intestinal Submucosa (SIS) as a Suitable Scaffold for the Creation of a Tissue-Engineered Urinary Conduit: Decellularization, Biomechanical and Biocompatibility Characterization Using New Approaches. Int J Mol Sci 2022; 23:ijms23052826. [PMID: 35269969 PMCID: PMC8910833 DOI: 10.3390/ijms23052826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients' quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients' quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.
Collapse
|
3
|
Guo X, Lv H, Fan Z, Duan K, Liang J, Zou L, Xue H, Huang D, Wang Y, Tan M. Effects of hypoxia on Achilles tendon repair using adipose tissue-derived mesenchymal stem cells seeded small intestinal submucosa. J Orthop Surg Res 2021; 16:570. [PMID: 34579755 PMCID: PMC8474963 DOI: 10.1186/s13018-021-02713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The study was performed to evaluate the feasibility of utilizing small intestinal submucosa (SIS) scaffolds seeded with adipose-derived mesenchymal stem cells (ADMSCs) for engineered tendon repairing rat Achilles tendon defects and to compare the effects of preconditioning treatments (hypoxic vs. normoxic) on the tendon healing. METHODS Fifty SD rats were randomized into five groups. Group A received sham operation (blank control). In other groups, the Achilles tendon was resected and filled with the original tendon (Group B, autograft), cell-free SIS (Group C), or SIS seeded with ADMSCs preconditioned under normoxic conditions (Group D) or hypoxic conditions (Group E). Samples were collected 4 weeks after operation and analyzed by histology, immunohistochemistry, and tensile testing. RESULTS Histologically, compared with Groups C and D, Group E showed a significant improvement in extracellular matrix production and a higher compactness of collagen fibers. Group E also exhibited a significantly higher peak tensile load than Groups D and C. Additionally, Group D had a significantly higher peak load than Group C. Immunohistochemically, Group E exhibited a significantly higher percentage of MKX + cells than Group D. The proportion of ADMSCs simultaneously positive for both MKX and CM-Dil observed from Group E was also greater than that in Group D. CONCLUSIONS In this animal model, the engineered tendon grafts created by seeding ADMSCs on SIS were superior to cell-free SIS. The hypoxic precondition further improved the expression of tendon-related genes in the seeded cells and increased the rupture load after grafting in the Achilles tendon defects.
Collapse
Affiliation(s)
- Xing Guo
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Hui Lv
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - ZhongWei Fan
- Department of Orthopaedic Surgery, The First People's Hospital of Neijiang, Neijiang, 641100, Sichuan, China
| | - Ke Duan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Jie Liang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - LongFei Zou
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Hao Xue
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - DengHua Huang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - YuanHui Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - MeiYun Tan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Steplewski A, Fertala J, Tomlinson RE, Wang ML, Donahue A, Arnold WV, Rivlin M, Beredjiklian PK, Abboud JA, Namdari S, Fertala A. Mechanisms of reducing joint stiffness by blocking collagen fibrillogenesis in a rabbit model of posttraumatic arthrofibrosis. PLoS One 2021; 16:e0257147. [PMID: 34492074 PMCID: PMC8423260 DOI: 10.1371/journal.pone.0257147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic fibrotic scarring is a significant medical problem that alters the proper functioning of injured tissues. Current methods to reduce posttraumatic fibrosis rely on anti-inflammatory and anti-proliferative agents with broad intracellular targets. As a result, their use is not fully effective and may cause unwanted side effects. Our group previously demonstrated that extracellular collagen fibrillogenesis is a valid and specific target to reduce collagen-rich scar buildup. Our previous studies showed that a rationally designed antibody that binds the C-terminal telopeptide of the α2(I) chain involved in the aggregation of collagen molecules limits fibril assembly in vitro and reduces scar formation in vivo. Here, we have utilized a clinically relevant arthrofibrosis model to study the broad mechanisms of the anti-scarring activity of this antibody. Moreover, we analyzed the effects of targeting collagen fibril formation on the quality of healed joint tissues, including the posterior capsule, patellar tendon, and subchondral bone. Our results show that blocking collagen fibrillogenesis not only reduces collagen content in the scar, but also accelerates the remodeling of healing tissues and changes the collagen fibrils’ cross-linking. In total, this study demonstrated that targeting collagen fibrillogenesis to limit arthrofibrosis affects neither the quality of healing of the joint tissues nor disturbs vital tissues and organs.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Allison Donahue
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - William V. Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Pedro K. Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Surena Namdari
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wang L, Kang Y, Yan H, Zhu X, Zhu T, Jiang J, Zhao J. Tendon regeneration induced by umbilical cord graft in a rabbit tendon defect model. J Tissue Eng Regen Med 2020; 14:1009-1018. [PMID: 32336031 DOI: 10.1002/term.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
Whether tendon regeneration can be induced using the umbilical cord as a whole-graft structure is unknown. In this study, we explored the potential for tendon regeneration induction using an umbilical cord graft in a rabbit model of patella tendon defects. In 52 of 54 New Zealand White rabbits, the central third of the patella tendons of both hind legs was removed to create tendon defects. The rabbits were randomly divided into four groups, nonfilling (empty defect), refilling (defect refilled with resected tendon portion), Wharton's jelly (WJ) outside (WJO; defect filled with umbilical cord graft, WJ side facing outward), and WJ inside (WJI; same as WJO with WJ side facing inward) groups. Four rabbits from WJO and WJI groups were sacrificed for human CD 105 evaluation 1 month after surgery. Further histological, biomechanical, and gene expression analyses were performed at 3 and 6 months after surgery. The untreated patella tendons in the remaining two rabbits were harvested as normal biomechanical controls. Histological evaluation showed that the formed tissue structure fibers in the tendon defect area were much denser and more mature in the WJI group than in all other groups. Biomechanical testing showed that the failure load of the final tissue structure was the highest in the WJI group. Real-time polymerase chain reaction indicated that the expression of most tendon-related genes was upregulated in the WJI group at 6 months after surgery. We concluded that umbilical cord grafting induces effective tendon regeneration, particularly when the WJ side faces inward.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hexin Yan
- Department of Research and Development, Shanghai Cryowise Medical Technology Co. Ltd., Shanghai, China
| | - Xuejing Zhu
- Department of Research and Development, Shanghai Cryowise Medical Technology Co. Ltd., Shanghai, China
| | - Tonghe Zhu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Abstract
In the last few decades, several techniques have been used to optimize tendon, ligament, and musculoskeletal healing. The evidence in favor of these techniques is still not proven, and level I studies are lacking. We performed an analysis of the therapeutic strategies and tissue engineering projects recently published in this field. Here, we try to give an insight into the current status of cell therapies and the latest techniques of bioengineering applied to the field of orthopedic surgery. The future areas for research in the management of musculoskeletal injuries are outlined. There are emerging technologies developing into substantial clinical treatment options that need to be critically evaluated. Mechanical stimulation of the constructs reproduces a more propitious environment for effective healing.
Collapse
|
7
|
Farraro KF, Sasaki N, Woo SLY, Kim KE, Tei MM, Speziali A, McMahon PJ. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint. J Orthop Res 2016; 34:2001-2008. [PMID: 26916011 PMCID: PMC9583724 DOI: 10.1002/jor.23210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/18/2016] [Indexed: 02/04/2023]
Abstract
A bioresorbable, mono-crystalline magnesium (Mg) ring device and suture implantation technique were designed to connect the ends of a transected anterior cruciate ligament (ACL) to restabilize the knee and load the ACL to prevent disuse atrophy of its insertion sites and facilitate its healing. To test its application, cadaveric goat stifle joints were evaluated using a robotic/universal force-moment sensor testing system in three states: Intact, ACL-deficient, and after Mg ring repair, at 30°, 60°, and 90° of joint flexion. Under a 67-N anterior tibial load simulating that used in clinical examinations, the corresponding anterior tibial translation (ATT) and in-situ forces in the ACL and medial meniscus for 0 and 100 N of axial compression were obtained and compared with a control group treated with suture repair. In all cases, Mg ring repair reduced the ATT by over 50% compared to the ACL-deficient joint, and in-situ forces in the ACL and medial meniscus were restored to near normal levels, showing significant improvement over suture repair. These findings suggest that Mg ring repair could successfully stabilize the joint and load the ACL immediately after surgery, laying the framework for future in vivo studies to assess its utility for ACL healing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2001-2008, 2016.
Collapse
Affiliation(s)
- Kathryn F. Farraro
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Norihiro Sasaki
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Savio L-Y. Woo
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Kwang E. Kim
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Matteo M. Tei
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Andrea Speziali
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Patrick J. McMahon
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| |
Collapse
|
8
|
Liang R, Yang G, Kim KE, D'Amore A, Pickering AN, Zhang C, Woo SLY. Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression. J Orthop Translat 2015; 3:114-122. [PMID: 30035048 PMCID: PMC5982358 DOI: 10.1016/j.jot.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/01/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background/Objective We have previously shown that an extracellular matrix (ECM) bioscaffold derived from porcine small intestine submucosa (SIS) enhanced the healing of a gap injury of the medial collateral ligament as well as the central third defect of the patellar tendon. With the addition of a hydrogel form of SIS, we found that a transected goat anterior cruciate ligament (ACL) could also be healed. The result begs the research question of whether SIS hydrogel has positive effects on ACL fibroblasts (ACLFs) and thus facilitates ACL healing. Methods In the study, ECM-SIS hydrogel was fabricated from the digestion of decellularised and sterilised sheets of SIS derived from αGal-deficient (GalSafe) pigs. As a comparison, a pure collagen hydrogel was also fabricated from commercial collagen type I solution. The morphometrics of hydrogels was assessed with scanning electron microscopy. The ECM-SIS and collagen hydrogels had similar fibre diameters (0.105 ± 0.010 μm vs. 0.114 ± 0.004 μm), fibre orientation (0.51 ± 0.02 vs. 0.52 ± 0.02), and pore size (0.092 ± 0.012 μm vs. 0.087 ± 0.008 μm). The preservation of bioactive properties of SIS hydrogel was assessed by detecting bioactive molecules sensitive to processing and enzyme digestion, such as growth factors fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta 1 (TGF-β1), with enzyme-linked immunosorbent assay. ACLFs were isolated and expanded in culture from explants of rat ACLs (n = 3). The cells were then seeded on the hydrogels and cultured with 0%, 1%, and 10% foetal bovine serum (FBS) for 3 days and 7 days. Cell attachment was observed using a light microscope and scanning electron microscopy, whereas cell proliferation and matrix production (collagen types I and III) were examined with bromodeoxyuridine assays and reverse transcription-polymerase chain reaction, respectively. Results The results showed that FGF-2 and TGF-β1 in the SIS hydrogel were preserved by 50% (65.9 ± 26.1 ng/g dry SIS) and 90% (4.4 ± 0.6 ng/g dry SIS) relative to their contents in ECM-SIS sheets, respectively. At Day 3 of culture, ACLFs on the SIS hydrogel were found to proliferate 39%, 31%, and 22% more than those on the pure collagen hydrogel at 0%, 1%, and 10% FBS, respectively (p < 0.05). Collagen type I mRNA expression was increased by 150%, 207%, and 100%, respectively, compared to collagen hydrogel (p < 0.05), whereas collagen type III mRNA expression was increased by 123% and 132% at 0% and 1% FBS, respectively (all p < 0.05) but not at 10% FBS. By Day 7, collagen type I mRNA expression was still elevated by 137% and 100% compared to collagen hydrogel at 1% and 10% FBS, respectively (p < 0.05). Yet, collagen type III mRNA levels were not significantly different between the two groups at any FBS concentrations. Conclusion Our data showed that the ECM-SIS hydrogel not only supported the growth of ACLFs, but also promoted their proliferation and matrix production relative to a pure collagen hydrogel. As such, ECM-SIS hydrogel has potential therapeutic value to facilitate ACL healing at the early stage after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Savio L-Y. Woo
- Corresponding author. Musculoskeletal Research Center, Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
9
|
Xing S, Liu C, Xu B, Chen J, Yin D, Zhang C. Effects of various decellularization methods on histological and biomechanical properties of rabbit tendons. Exp Ther Med 2014; 8:628-634. [PMID: 25009631 PMCID: PMC4079434 DOI: 10.3892/etm.2014.1742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/02/2014] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the effects of various decellularization methods on the histological and biomechanical properties of rabbit tendons. In total, six chemical reagents, including 1% t-octyl-phenoxypolyethoxyethanol (Triton-X 100), 0.5% sodium dodecyl sulfate (SDS), 1% tri-n-butyl phosphate (TnBP), 1% Triton-X 100 + 0.5% SDS, 1% TnBP + 0.5% SDS and 1% TnBP + 1% Triton-X 100, were used on rabbit semitendinosus muscles and flexor digitorum tendons for 24 h to remove cells. Hematoxylin and eosin staining was applied for histological observation, while tension testing was used for biomechanical studies. The effects of the various decellularization methods on the histological structure and biomechanical properties of rabbit tendons were evaluated. A group of fresh tendons treated with phosphate-buffered saline served as controls. The various decellularization methods resulted in different effects on the tendons. All the treatment groups exhibited a decrease in tendon biomechanical properties, but no statistically significant differences were observed among the experimental groups. The extensibility of the 1% TnBP-treated group was found to be greater than that of the other groups; however, the difference was not statistically significant. Histologically, the 1% TnBP + 0.5% SDS treatment was shown to have the least impact on the rabbit tendon structure, with good decellularization and no clear cellular remnants observed. The 1% Triton-X 100 + 0.5% SDS treatment had a pronounced effect on the tendon collagen structure and a number of collagen ruptures were observed. Overall, 1% TnBP + 0.5% SDS was found to be the most effective compared with the other treatments, as this treatment preserved the tendon collagen structure while completely removing the cells. Tendons treated with 1% TnBP + 0.5% SDS were histologically similar to normal tendon tissue and biomechanically similar to the tendons in the control group.
Collapse
Affiliation(s)
- Shuxing Xing
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Cong Liu
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Bing Xu
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Jianchang Chen
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Dongfeng Yin
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Chunhao Zhang
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| |
Collapse
|
10
|
Matsunaga D, Akizuki S, Takizawa T, Omae S, Kato H. Compact platelet-rich fibrin scaffold to improve healing of patellar tendon defects and for medial collateral ligament reconstruction. Knee 2013; 20:545-50. [PMID: 23731495 DOI: 10.1016/j.knee.2013.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/21/2012] [Accepted: 04/23/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Platelets are one of the most biocompatible and cost-effective sources of growth factors. Attention is being paid to autologous platelets and platelet-rich plasma. We developed a novel compact platelet-rich fibrin scaffold (CPFS) that was produced from blood and calcium gluconate only. The objective of this study was to investigate the potential of CPFS as a provisional scaffold in two rabbit models. METHODS In the first rabbit model, the central half of the patellar tendon was resected bilaterally. Allogenic CPFS was attached to the defect in the right knee, while the left knee was untreated. In the other model, the medial collateral ligament was removed bilaterally. The ligament of the right knee was reconstructed with allogenic CPFS, whereas the left knee was untreated. RESULTS After 12weeks, the ultimate failure load and stiffness were higher for the right patellar tendon than for the left patellar tendon in the former model. It was found that CPFS promoted ligament repair tissue in contrast with that on the untreated side in the latter model. The ultimate failure load of the CPFS repair tissue at 20weeks was 78% of that in healthy controls of the same age. CONCLUSIONS CPFS enhanced the healing of tendons and ligaments. CLINICAL RELEVANCE CPFS has the potential to accelerate healing of tendons and ligaments as a provisional bioscaffold or a material for graft augmentation.
Collapse
Affiliation(s)
- Daigo Matsunaga
- Department of Orthopedic Surgery, Nagano Matsushiro General Hospital, 183 Matsushiro, Nagano 381-1231 Japan.
| | | | | | | | | |
Collapse
|
11
|
Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L, Xia Z, Sabokbar A. In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering. J Tissue Eng Regen Med 2013; 10:E216-26. [PMID: 24039070 DOI: 10.1002/term.1791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/19/2013] [Accepted: 05/27/2013] [Indexed: 01/26/2023]
Abstract
In order to examine the differentiation potential of the tenocytes expanded in our defined culture medium (reported previously) and the effect of sequential combination of the two culture conditions on human tenocytes, a two-dimensional and three-dimensional experimental approach was used. Human tenocytes were sequentially exposed to 1% fetal bovine serum (FBS) + 50 ng/ml platelet-derived growth factor-BB (PDGFBB ) + 50 ng/ml basic fibroblast growth factor (bFGF) for the first 14 days (expansion phase) followed by a further 14-day culture in the presence of 10 ng/ml transforming growth factor β-3 plus 50 ng/ml insulin-like growth factor 1, but in the absence of serum (differentiation phase). The results showed that by sequential treatment of human tenocytes maintaining a long-term two-dimensional tenocyte culture in vitro for up to 28 days was possible. These findings were further verified using a three-dimensional scaffold (Bombyx silk) whereby the tendon-like constructs formed resembled macroscopically and microscopically the constructs formed in 10% FBS supplemented culture media and the human hamstring tendon. These findings were further substantiated using haematoxylin and eosin staining, scanning electron microscopy and by immunohistochemical detection of type I collagen. In addition, the mechanical properties of the three-dimensional constructs were determined to be significantly superior to that of the natural human hamstring tendon. This is the first report to demonstrate a possible approach in expanding and differentiating human tenocytes for tendon tissue engineering.
Collapse
Affiliation(s)
- Yiwei Qiu
- General Surgery Department, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Xiao Wang
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Yaonan Zhang
- Department of Orthopaedics, Beijing Hospital of Ministry of Public Health, Beijing, China
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Liwei Zhu
- General Surgery Department, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhidao Xia
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,Institute of Life Science, Swansea University, Singleton Park, Swansea, UK
| | - Afsie Sabokbar
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Huebner KD, Shrive NG, Frank CB. New surgical model of post-traumatic osteoarthritis: isolated intra-articular bone injury in the rabbit. J Orthop Res 2013; 31:914-20. [PMID: 23423824 DOI: 10.1002/jor.22284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 11/05/2012] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a leading cause of disability worldwide. We hypothesized that inflammation following isolated intra-articular bone injury can stimulate post-traumatic OA and developed a rabbit model to test that concept. Sixty female New Zealand White Rabbits were used. Twenty-six experimental animals had two holes drilled into their right femoral-notch, 18 rabbits had sham surgery, and 16 were un-operated controls. Rabbits were euthanized in subgroups at 72 h, 3, 6, 9, and 52 weeks. Knees were assessed grossly and tissues collected. Cartilage and synovium were analyzed with histology and qPCR and subgroups compared statistically. All surgical joints showed gross and histological (modified Mankin score) cartilage damage after surgery, with experimentals worsening with time (p < 0.05). Cartilage qPCR showed fivefold increases in TGFβ (p < 0.05) expression at 72 h and 3 weeks with sixfold increases in MMP13 (p < 0.025) expression at 72 h. By 6 weeks, expression of these markers was similar to baseline levels. Synovial membrane thickening with increased cellularity was seen at both 9 and 52 weeks (p < 0.05). Short-term synovial inflammatory marker (IL-1β, IL-Ra, IL-6, and IL-8) expression was three- to fourfold increase in experimentals at 72 h (p < 0.01) returning to baseline levels by 3 weeks. Intra-articular bone injury creates early joint inflammation with some chronic synovial changes and progressive cartilage damage consistent with OA in adult rabbits. This model provides an exciting new avenue to potentially explore some relevant inflammatory drivers of OA without major mechanical variables.
Collapse
Affiliation(s)
- Kyla D Huebner
- Faculty of Medicine, Department of Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
13
|
Gigante A, Busilacchi A, Lonzi B, Cecconi S, Manzotti S, Renghini C, Giuliani A, Mattioli-Belmonte M. Purified collagen I oriented membrane for tendon repair: an ex vivo morphological study. J Orthop Res 2013; 31:738-45. [PMID: 23335065 DOI: 10.1002/jor.22270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023]
Abstract
Injured tendons have limited repair ability after full-thickness lesions. Tendon regeneration properties and adverse reactions were assessed ex vivo in an experimental animal model using a new collagen I membrane. The multilamellar membrane obtained from purified equine Achilles tendon is characterized by oriented collagen I fibers and has been shown to sustain cell growth and orientation in vitro. The central third of the patellar tendon (PT) of 10 New Zealand White rabbits was sectioned and grafted with the collagen membrane; the contralateral PT was cut longitudinally (sham-operated controls). Animals were euthanized 1 or 6 months after surgery, and tendons were subjected to histological and Synchrotron Radiation-based Computed Microtomography (SRµCT) examination and 3D structure analysis. Histological and SRµCT findings showed satisfactory graft integration with native tendon. Histological examination also showed ongoing angiogenesis. Adverse side-effects (inflammation, rejection, calcification) were not observed. The multilamellar collagen I membrane can be considered as an effective tool for tendon defect repair and tendon augmentation.
Collapse
Affiliation(s)
- Antonio Gigante
- Department of Clinical and Molecular Sciences, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/60126, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schaer M, Schober M, Berger S, Boileau P, Zumstein MA. Biologically based strategies to augment rotator cuff tears. INTERNATIONAL JOURNAL OF SHOULDER SURGERY 2012; 6:51-60. [PMID: 22787334 PMCID: PMC3391785 DOI: 10.4103/0973-6042.96995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lesions of the rotator cuff (RC) are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords “tendon,” “rotator cuff,” “augmentation,” “growth factor,” “platelet-rich fibrin,” and “platelet-rich plasma” for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.
Collapse
Affiliation(s)
- M Schaer
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Fisher MB, Liang R, Jung HJ, Kim KE, Zamarra G, Almarza AJ, McMahon PJ, Woo SLY. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc 2012; 20:1357-65. [PMID: 22143425 PMCID: PMC9583725 DOI: 10.1007/s00167-011-1800-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/17/2011] [Indexed: 01/14/2023]
Abstract
PURPOSE Biological augmentation to heal a torn anterior cruciate ligament (ACL) has gained significant interest. This study examined the potential advantages of using extracellular matrix (ECM) bioscaffolds from galactosyl-α(1,3)galactose deficient pigs to heal the transected ACL. METHODS In 16 skeletally mature goats, the ACL in the right hindlimb was transected and repaired. In 9 of these animals, an ECM sheet was wrapped around the injury site and with an ECM hydrogel injected into the transected site. The remaining 7 animals were treated with suture repair only. The left hindlimb served as a sham-operated control. RESULTS After 12 weeks, the healing ACL in the ECM-treated group showed an abundance of continuous neo-tissue formation, while only limited tissue growth was found after suture repair only. The cross-sectional area of the ACL from the ECM-treated group was similar to sham-operated controls (n.s.) and was 4.5 times those of the suture repair group (P < 0.05). The stiffness of the femur-ACL-tibia complexes from the ECM-treated group was 2.4 times those of the suture repair group (P < 0.05). Furthermore, these values reached 48% of the sham-operated controls (53 ± 19 N/mm and 112 ± 21 N/mm, respectively, P < 0.05). CONCLUSIONS The application of an ECM bioscaffold and hydrogel was found to accelerate the healing of a transected ACL following suture repair in the goat model with limited tissue hypertrophy and improvement in some of its biomechanical properties. Although more work is necessary to fully restore the function of the normal ACL, these early results offer a potential new approach to aid ACL healing.
Collapse
Affiliation(s)
- Matthew B. Fisher
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Rui Liang
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Ho-Joong Jung
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA,Department of Orthopaedic Surgery, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Kwang E. Kim
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Giovanni Zamarra
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Alejandro J. Almarza
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Patrick J. McMahon
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Savio L-Y. Woo
- Department of Bioengineering, Musculoskeletal Research Center, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
16
|
Zhai W, Wang N, Qi Z, Gao Q, Yi L. Platelet-rich plasma reverses the inhibition of tenocytes and osteoblasts in tendon-bone healing. Orthopedics 2012; 35:e520-5. [PMID: 22495853 DOI: 10.3928/01477447-20120327-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate the effect of platelet-rich plasma on the proliferation of osteoblasts and tenocytes in tendon-bone healing. We cultured osteoblasts and tenocytes in an indirect coculture system with Transwell filters (Merck Millipore, Billerica, Massachusetts). The proliferation was examined using Cell Counting Kit-8 (Dojindo Chemistry Research Institute, Kumamoto, Japan).Four groups were studied: group 1, one cell type cultured without platelet-rich plasma; group 2, two cell types cultured together in an indirect coculture system without platelet-rich plasma; group 3, cells in the outer chamber and platelet-rich plasma in the inner chamber; and group 4, two different cell types in each of the 2 chambers with platelet-rich plasma in the inner chamber. The proliferation rates of groups 3 and 4 were the highest, followed by group 1 and then group 2, which was the lowest.Platelet-rich plasma abolishes the inhibition of osteoblasts or tenocytes in an indirect coculture system and improves the cell proliferation rate.
Collapse
Affiliation(s)
- Wenliang Zhai
- Department of Orthopedic Surgery, Southeast Hospital Affiliated to Xiamen University, Zhanghou, China.
| | | | | | | | | |
Collapse
|
17
|
Kishore V, Uquillas JA, Dubikovsky A, Alshehabat MA, Snyder PW, Breur GJ, Akkus O. In vivo response to electrochemically aligned collagen bioscaffolds. J Biomed Mater Res B Appl Biomater 2011; 100:400-8. [DOI: 10.1002/jbm.b.31962] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/18/2011] [Accepted: 09/05/2011] [Indexed: 01/10/2023]
|
18
|
Liang R, Fisher M, Yang G, Hall C, Woo SLY. Alpha1,3-galactosyltransferase knockout does not alter the properties of porcine extracellular matrix bioscaffolds. Acta Biomater 2011; 7:1719-27. [PMID: 21216306 DOI: 10.1016/j.actbio.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/24/2010] [Accepted: 01/03/2011] [Indexed: 02/02/2023]
Abstract
Extracellular matrix (ECM) bioscaffolds, such as porcine small intestine submucosa (SIS) and urinary bladder matrix (UBM), have been successfully used to improve soft tissue healing. Yet they contain plenty of galactose α1,3 galactose (αGal) epitopes, which cause rejection responses in pig organ transplantation to human. Recently, ECM bioscaffolds derived from genetically modified pigs that are αGal-deficient (αGal(-)) have become available. To ensure that the ECM bioscaffolds from these pigs can be used as alternatives, we examined their morphological, bioactive and biomechanical properties and compared them with those from the wild-type pigs (n=5 per group). Morphologically, the αGal(-) ECMs were found to be similar to the wild-type ECMs in gross observation and matrix appearance with hematoxylin and eosin staining. Growth factors commonly known to be present in ECM bioscaffolds, including FGF-2, TGF-β1, VEGF, IGF-1 and PDGF-BB, also showed no significant differences in terms of quantity (p>0.05) and distribution in tissue from the results of enzyme-linked immunosorbent assay, Western blot analysis and immunohistochemistry. Furthermore, a bromodeoxyuridine cell proliferation assay confirmed the bioactivity of the extracts from the αGal(-) bioscaffolds to be similar to the wild-type bioscaffolds. Under uniaxial tensile testing, no significant differences were found between the αGal(-) and wild-type bioscaffolds in terms of their viscoelastic and mechanical properties (p>0.05). These multidisciplinary results suggest that genetic modification to eliminate the αGal epitopes in the ECM bioscaffolds had not altered the properties of these ECM bioscaffolds and, as such, they should retain their performance in tissue engineering in humans.
Collapse
|
19
|
Little D, Guilak F, Ruch DS. Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A 2010; 16:2307-19. [PMID: 20406104 DOI: 10.1089/ten.tea.2009.0720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p <or= 0.05). Increased seeding density increased DNA content incrementally over 28 days in culture for LDM but not COL constructs (p <or= 0.05). These findings suggest that LDM can stimulate a ligament phenotype by hASCs, and may provide a novel scaffold material for ligament engineering applications.
Collapse
Affiliation(s)
- Dianne Little
- Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
20
|
Tovar N, Bourke S, Jaffe M, Murthy NS, Kohn J, Gatt C, Dunn MG. A comparison of degradable synthetic polymer fibers for anterior cruciate ligament reconstruction. J Biomed Mater Res A 2010; 93:738-47. [PMID: 19623532 DOI: 10.1002/jbm.a.32567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We compared mechanical properties, degradation rates, and cellular compatibilities of two synthetic polymer fibers potentially useful as ACL reconstruction scaffolds: poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate)(12,10), p(DTD DD) and poly(L-lactic acid), PLLA. The yield stress of ethylene oxide (ETO) sterilized wet fibers was 150 +/- 22 MPa and 87 +/- 12 MPa for p(DTD DD) and PLLA, respectively, with moduli of 1.7 +/- 0.1 MPa and 4.4 +/- 0.43 MPa. Strength and molecular weight retention were determined after incubation under physiological conditions at varying times. After 64 weeks strength decreased to 20 and 37% of the initial sterile fiber values and MW decreased to 41% and 36% of the initial values for p(DTD DD) and PLLA, respectively. ETO sterilization had no significant effect on mechanical properties. Differences in mechanical behavior may be due to the semicrystalline nature of PLLA and the small degree of crystallinity induced by mesogenic ordering in p(DTD DD) suggested by DSC analysis. Fibroblast growth was similar on 50-fiber scaffolds of both polymers through 16 days in vitro. These data suggest that p(DTD DD) fibers, with higher strength, lower stiffness, favorable degradation rate and cellular compatibility, may be a superior alternative to PLLA fibers for development of ACL reconstruction scaffolds.
Collapse
Affiliation(s)
- Nick Tovar
- Orthopaedic Research Laboratory, UMDNJ-RWJMS, New Brunswick, New Jersey, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nat Protoc 2010; 5:849-63. [PMID: 20431531 DOI: 10.1038/nprot.2010.14] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tendon and ligament injuries are significant contributors to musculoskeletal injuries. Unfortunately, traditional methods of repair are not uniformly successful and can require revision surgery. Our research is focused on identifying appropriate animal injury models and using tissue-engineered constructs (TECs) from bone-marrow-derived mesenchymal stem cells and collagen scaffolds. Critical to this effort has been the development of functional tissue engineering (FTE). We first determine the in vivo mechanical environment acting on the tissue and then precondition the TECs in culture with aspects of these mechanical signals to improve repair outcome significantly. We describe here a detailed protocol for conducting several complete iterations around our FTE 'road map.' The in vitro portion, from bone marrow harvest to TEC collection, takes 54 d. The in vivo portion, from TEC implantation to limb harvest, takes 84 d. One complete loop around the tissue engineering road map, as presented here, takes 138 d to complete.
Collapse
|
22
|
Hidaka C, Maher S, Packer J, Gasinu S, Cunningham ME, Rodeo S. What's new in orthopaedic research. J Bone Joint Surg Am 2009; 91:2756-70. [PMID: 19884457 DOI: 10.2106/jbjs.i.00865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chisa Hidaka
- Tissue Engineering Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10022, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Nikolaou VS, Efstathopoulos N, Sourlas I, Pilichou A, Papachristou G. Anatomic double-bundle versus single-bundle ACL reconstruction: a comparative biomechanical study in rabbits. Knee Surg Sports Traumatol Arthrosc 2009; 17:895-906. [PMID: 19290508 DOI: 10.1007/s00167-009-0754-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/06/2009] [Indexed: 01/29/2023]
Abstract
Thirty New Zealand white rabbits underwent anterior cruciate ligament (ACL) reconstruction in their right knees; 15 animals underwent a double-bundle anatomic ACL reconstruction using the medial third of the patellar tendon and the semitendinosus tendon. Additionally, 15 animals underwent ACL reconstruction, using a single-bundle semitendinosus tendon autograft. The knees of both groups were evaluated with a device similar to the KT1000 arthrometer onto which a dial indicator was attached (Mitutoyo dial indicator 2050) in 30 degrees and 90 degrees of flexion, preoperatively, after ACL resection and 3 months postoperatively. Statistical analysis of the results revealed that for 90 degrees of knee flexion, the mean estimated anterior shift for the double-bundle technique was 1.92 mm lesser than that of the single-bundle technique (P = 0.006). For 30 degrees of knee flexion, the mean anterior shift was again lesser than that of the single-bundle technique by 0.66 mm, but this difference was not statistically significant. The described double-bundle ACL reconstruction technique resulted in a more stable knee as far as the anterior tibial shift was concerned as compared to a single-bundle ACL reconstruction. This animal model may be potentially useful in the future for the study of other parameters influencing the outcome of the double-bundle ACL reconstruction.
Collapse
Affiliation(s)
- Vassilios S Nikolaou
- 2nd Academic Department of Trauma and Orthopaedics, School of Medicine, Athens University, Megalou Alexandrou 54, 15124 Maroussi, Athens, Greece.
| | | | | | | | | |
Collapse
|
24
|
Woo SLY, Liang R, Fisher MB. Future of Orthopaedic Sports Medicine and Soft Tissue Healing: The Important Role of Engineering. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
25
|
Woo SLY. Tissue engineering: use of scaffolds for ligament and tendon healing and regeneration. Knee Surg Sports Traumatol Arthrosc 2009; 17:559-60. [PMID: 19350224 DOI: 10.1007/s00167-009-0776-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Fang Q, Chen D, Yang Z, Li M. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Gigante A, Cesari E, Busilacchi A, Manzotti S, Kyriakidou K, Greco F, Di Primio R, Mattioli-Belmonte M. Collagen I membranes for tendon repair: effect of collagen fiber orientation on cell behavior. J Orthop Res 2009; 27:826-32. [PMID: 19058185 DOI: 10.1002/jor.20812] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tendons have poor spontaneous regenerative capabilities, and complete regeneration is never achieved despite intensive remodeling. In this in vitro study, we characterized two multilamellar collagen I membranes differing in the arrangement of collagen fiber deposition (oriented vs. nonoriented) and compared their mechanical properties. Human dermal fibroblasts and tenocytes were seeded on the two membranes to evaluate the effect of fiber orientation on cell viability and cytoskeletal organization. Results demonstrate that the multilamellar collagen I membrane with oriented fibers has the better mechanical properties and affords optimum cell proliferation and adhesion. Its fiber arrangement provides an instructive pattern for cell growth and may serve to guide the alignment of cells migrating from the ends of a crushed or frayed tendon to obtain a strong, correctly structured tendon, thus providing a viable clinical option for tendon repair.
Collapse
Affiliation(s)
- Antonio Gigante
- Orthopaedics Clinic, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, Ancona 60020, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jung HJ, Fisher MB, Woo SLY. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. BMC Sports Sci Med Rehabil 2009; 1:9. [PMID: 19457264 PMCID: PMC2695438 DOI: 10.1186/1758-2555-1-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/20/2009] [Indexed: 12/19/2022]
Abstract
Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis. The healing of ligament and tendon injuries varies from tissue to tissue. Tendinopathies are ubiquitous and can take up to 12 months for the pain to subside before one could return to normal activity. A ruptured medial collateral ligament (MCL) can generally heal spontaneously; however, its remodeling process takes years and its biomechanical properties remain inferior when compared to the normal MCL. It is also known that a midsubstance anterior cruciate ligament (ACL) tear has limited healing capability, and reconstruction by soft tissue grafts has been regularly performed to regain knee function. However, long term follow-up studies have revealed that 20–25% of patients experience unsatisfactory results. Thus, a better understanding of the function of ligaments and tendons, together with knowledge on their healing potential, may help investigators to develop novel strategies to accelerate and improve the healing process of ligaments and tendons. With thousands of new papers published in the last ten years that involve biomechanics of ligaments and tendons, there is an increasing appreciation of this subject area. Such attention has positively impacted clinical practice. On the other hand, biomechanical data are complex in nature, and there is a danger of misinterpreting them. Thus, in these review, we will provide the readers with a brief overview of ligaments and tendons and refer them to appropriate methodologies used to obtain their biomechanical properties. Specifically, we hope the reader will pay attention to how the properties of these tissues can be altered due to various experimental and biologic factors. Following this background material, we will present how biomechanics can be applied to gain an understanding of the mechanisms as well as clinical management of various ligament and tendon ailments. To conclude, new technology, including imaging and robotics as well as functional tissue engineering, that could form novel treatment strategies to enhance healing of ligament and tendon are presented.
Collapse
Affiliation(s)
- Ho-Joong Jung
- Musculoskeletal Research Center, Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, USA.
| | | | | |
Collapse
|
29
|
Abousleiman RI, Reyes Y, McFetridge P, Sikavitsas V. Tendon Tissue Engineering Using Cell-Seeded Umbilical Veins Cultured in a Mechanical Stimulator. Tissue Eng Part A 2009; 15:787-95. [DOI: 10.1089/ten.tea.2008.0102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Yuliana Reyes
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma
| | - Peter McFetridge
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma
- The School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| | - Vassilios Sikavitsas
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma
- The School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
30
|
Nguyen TD, Liang R, Woo SLY, Burton SD, Wu C, Almarza A, Sacks MS, Abramowitch S. Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold. Tissue Eng Part A 2009; 15:957-63. [PMID: 18783320 PMCID: PMC2787449 DOI: 10.1089/ten.tea.2007.0384] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 06/30/2008] [Indexed: 11/12/2022] Open
Abstract
The porcine small intestine submucosa, an extracellular matrix-derived bioscaffold (ECM-SIS), has been successfully used to enhance the healing of ligaments and tendons. Since the collagen fibers of ECM-SIS have an orientation of +/- 30 degrees , its application in improving the healing of the parallel-fibered ligament and tendon may not be optimal. Therefore, the objective was to improve the collagen fiber alignment of ECM-SIS in vitro with fibroblast seeding and cyclic stretch. The hypothesis was that with the synergistic effects of cell seeding and mechanical stimuli, the collagen fibers in the ECM-SIS can be remodeled and aligned, making it an improved bioscaffold with enhanced conductive properties. Three experimental groups were established: group I (n = 14), ECM-SIS was seeded with fibroblasts and cyclically stretched; group II (n = 13), ECM-SIS was seeded with fibroblasts but not cyclically stretched; and group III (n = 8), ECM-SIS was not seeded with fibroblasts but cyclically stretched. After 5 days' experiments, the scaffolds from all the three groups (n = 9 for group I; n = 8 for groups II and III) were processed for quantification of the collagen fiber orientation with a small-angle light scattering (SALS) system. For groups I and II, in which the scaffolds were seeded with fibroblasts, the cell morphology and orientation and newly produced collagen fibrils were examined with confocal fluorescent microscopy (n = 3/group) and transmission electronic microscopy (n = 2/group). The results revealed that the collagen fiber orientation in group I was more aligned closer to the stretching direction when compared to the other two groups. The mean angle decreased from 25.3 degrees to 7.1 degrees (p < 0.05), and the associated angular dispersion was also reduced (37.4 degrees vs. 18.5 degrees , p < 0.05). In contrast, groups II and III demonstrated minimal changes. The cells in group I were more aligned in the stretching direction than those in group II. Newly produced collagen fibrils could be observed along the cells in both groups I and II. This study demonstrated that a combination of fibroblast seeding and cyclic stretch could remodel and align the collagen fiber orientation in ECM-SIS bioscaffolds. The better-aligned ECM-SIS has the prospect of eliciting improved effects on enhancing the healing of ligaments and tendons.
Collapse
Affiliation(s)
- Tan D. Nguyen
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rui Liang
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Savio L-Y. Woo
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn D. Burton
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfu Wu
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alejandro Almarza
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael S. Sacks
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven Abramowitch
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Brink KS, Yang PJ, Temenoff JS. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Acta Biomater 2009; 5:570-9. [PMID: 18948068 DOI: 10.1016/j.actbio.2008.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 08/01/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Our laboratory is currently exploring synthetic oligo(poly(ethylene glycol)fumarate) (OPF)-based biomaterials as a means to deliver fibroblasts to promote regeneration of central/partial defects in tendons and ligaments. In order to further modulate the swelling and degradative characteristics of OPF-based hydrogels, OPF crosslinking via a radically initiated, mixed-mode reaction involving poly(ethylene glycol) (PEG)-diacrylate and PEG-dithiol was investigated. Results demonstrate that mixed-mode hydrogels containing OPF can be formed and that the presence of 20 wt.% PEG-dithiol increases swelling and decreases degradation time vs. 10 wt.% PEG-dithiol and non-thiol-containing hydrogels (20% thiol fold swelling 28.7+/-0.8; 10% thiol fold swelling 11.6+/-1.4; non-thiol 8.7+/-0.2; 20% thiol-containing hydrogels degrade within 15 days in vitro). After encapsulation, tendon/ligament fibroblasts remained largely viable over 8 days of static culture. While the presence of PEG-dithiol did not significantly affect cellularity or collagen production within the constructs over this time period, image analysis revealed that the 20% PEG-dithiol gels did appear to promote cell clustering, with greater values for aggregate area observed by day 8. These experiments suggest that mixed-mode OPF-based hydrogels may provide an interesting alternative as a cell carrier for engineering a variety of soft orthopedic tissues, particularly for applications when it is important to encourage cell-cell contact.
Collapse
|