1
|
Liu Y, Zheng L, Li S, Zhang Z, Lin Z, Ma W. Finite element study on the micromechanics of cement-augmented proximal femoral nail anti-rotation (PFNA) for intertrochanteric fracture treatment. Sci Rep 2024; 14:10322. [PMID: 38710745 DOI: 10.1038/s41598-024-61122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Blade cut-out is a common complication when using proximal femoral nail anti-rotation (PFNA) for the treatment of intertrochanteric fractures. Although cement augmentation has been introduced to overcome the cut-out effect, the micromechanics of this approach remain to be clarified. While previous studies have developed finite element (FE) models based on lab-prepared or cadaveric samples to study the cement-trabeculae interface, their demanding nature and inherent disadvantages limit their application. The aim of this study was to develop a novel 'one-step forming' method for creating a cement-trabeculae interface FE model to investigate its micromechanics in relation to PFNA with cement augmentation. A human femoral head was scanned using micro-computed tomography, and four volume of interest (VOI) trabeculae were segmented. The VOI trabeculae were enclosed within a box to represent the encapsulated region of bone cement using ANSYS software. Tetrahedral meshing was performed with Hypermesh software based on Boolean operation. Finally, four cement-trabeculae interface FE models comprising four interdigitated depths and five FE models comprising different volume fraction were established after element removal. The effects of friction contact, frictionless contact, and bond contact properties between the bone and cement were identified. The maximum micromotion and stress in the interdigitated and loading bones were quantified and compared between the pre- and post-augmentation situations. The differences in micromotion and stress with the three contact methods were minimal. Micromotion and stress decreased as the interdigitation depth increased. Stress in the proximal interdigitated bone showed a correlation with the bone volume fraction (R2 = 0.70); both micromotion (R2 = 0.61) and stress (R2 = 0.93) at the most proximal loading region exhibited a similar correlation tendency. When comparing the post- and pre-augmentation situations, micromotion reduction in the interdigitated bone was more effective than stress reduction, particularly near the cement border. The cementation resulted in a significant reduction in micromotion within the loading bone, while the decrease in stress was minimal. Noticeable gradients of displacement and stress reduction can be observed in models with lower bone volume fraction (BV/TV). In summary, cement augmentation is more effective at reducing micromotion rather than stress. Furthermore, the reinforcing impact of bone cement is particularly prominent in cases with a low BV/TV. The utilization of bone cement may contribute to the stabilization of trabecular bone and PFNA primarily by constraining micromotion and partially shielding stress.
Collapse
Affiliation(s)
- Yurui Liu
- Department of Anesthesiology, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Liqin Zheng
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaobin Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengze Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Tavakoli M, Najafinezhad A, Mirhaj M, Karbasi S, Varshosaz J, Al-Musawi MH, Madaninasab P, Sharifianjazi F, Mehrjoo M, Salehi S, Kazemi N, Nasiri-Harchegani S. Graphene oxide-encapsulated baghdadite nanocomposite improved physical, mechanical, and biological properties of a vancomycin-loaded PMMA bone cement. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:823-850. [PMID: 38300323 DOI: 10.1080/09205063.2024.2308328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Aliakbar Najafinezhad
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Pegah Madaninasab
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of GA, Tbilisi, Georgia
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saeideh Salehi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Nafise Kazemi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepideh Nasiri-Harchegani
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
3
|
Xiao C, Wang H, Lei Y, Xie M, Li S. Percutaneous kyphoplasty combined with pediculoplasty for the surgical treatment of osteoporotic thoracolumbar burst fractures. J Orthop Surg Res 2024; 19:87. [PMID: 38254114 PMCID: PMC10804617 DOI: 10.1186/s13018-024-04562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE This study introduces a minimally invasive technique for efficient three-column reconstruction, augmentation, and stabilization of osteoporotic thoracolumbar burst fractures (OTLBFs). METHODS Sixty-eight patients with OTLBFs and no neurological deficits were included from July 2019 to September 2020. The patients were divided into two groups: the simple percutaneous kyphoplasty (PKP) group (n = 32) and the percutaneous kyphoplasty combined with pediculoplasty (PKCPP) group (n = 36). The clinical and radiological outcomes were assessed during a minimum 1-year follow-up period. Clinical outcomes were assessed via the visual analog scale (VAS) and modified MacNab grading criteria. The radiological outcomes included the Cobb angle (CA), anterior wall height (AWH), and posterior wall height (PWH). The surgery duration, postoperative analgesic dosage, length of hospital stay, and complications were recorded. RESULTS Surgery duration was not significantly different between the two groups (P > 0.05). The PKCPP group had a lower analgesic dosage and shorter hospital stay (P < 0.05). Postoperatively, the PKCPP group exhibited better VAS scores and modified MacNab scale scores (P < 0.05), but the differences at the last follow-up assessment were not significant (P > 0.05). Postoperative CA, AWH, and PWH correction were not significantly different on the first postoperative day (P > 0.05). However, the PKCPP group had significantly less CA and PWH loss of correction at the last follow-up visit (P < 0.05). The PKCPP group had significantly fewer complications (P < 0.05). CONCLUSIONS The PKCPP technique complements simple PKP for OTLBFs. It quickly relieves pain, maintains the vertebral body height and Cobb angle, ensures cement stabilization, and offers more stable three-column support.
Collapse
Affiliation(s)
- Changming Xiao
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Haozhong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Lei
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mingzhong Xie
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Yu X, Shen G, Shang Q, Zhang Z, Zhao W, Zhang P, Liang D, Ren H, Jiang X. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol 2021; 193:510-518. [PMID: 34710477 DOI: 10.1016/j.ijbiomac.2021.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the effect of three-dimensional of naringin/gelatin microspheres/nano-hydroxyapatite/silk fibroin (NG/GMs/nHA/SF) scaffolds on repair of a critical-size bone defect of lumbar 6 in osteoporotic rats. In this work, a cell-free scaffold for bone-tissue engineering based on a silk fibroin (SF)/nano-hydroxyapatite (nHA) scaffold was developed. The scaffold was fabricated by lyophilization. Naringin (NG) was loaded into gelatin microspheres (GMs), which were encapsulated in the nHA/SF scaffolds. The materials were characterized using x ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. Moreover, the biomechanics, degradation, and drug-release profile of the scaffold were also evaluated. In vitro, the effect of the scaffold on the adhesion, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) was evaluated. In vivo, at 3 months after ovariectomy, a critical-size lumbar defect was indued in the rats to evaluate scaffold therapeutic potential. A 3-mm defect in L6 developed in 60 SD rats, which were randomly divided into SF scaffold, nHA/SF scaffold, NG/nHA/SF scaffold, NG/GMs/nHA/SF scaffold, and blank groups (n = 12 each). At 4, 8, 12, and 16 weeks postoperatively, osteogenesis was evaluated by X-ray, micro-computed tomography, hematoxylin-eosin staining, and fast green staining, and by analysis of BMP-2, Runx2, and Ocn protein levels at 16 weeks. In our results, NG/GM/nHA/SF scaffolds exhibited good biocompatibility, biomechanical strength, and promoted BMSC adhesion, proliferation, and calcium nodule formation in vitro. Moreover, NG/GMs/nHA/SF scaffolds showed greater osteogenic differentiation potential than the other scaffolds in vitro. In vivo, gradual new bone formation was observed, and bone defects recovered by 16 weeks in the experimental group. In the blank group, limited bone formation was observed, and the bone defect was obvious. In conclusion, NG/GMs/nHA/SF scaffolds promoted repair of a lumbar 6 defect in osteoporotic rats. Therefore, the NG/GMs/nHA/SF biocomposite scaffold has potential as a bone-defect-filling biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China..
| |
Collapse
|
5
|
Optimization of the Mechanical Properties and the Cytocompatibility for the PMMA Nanocomposites Reinforced with the Hydroxyapatite Nanofibers and the Magnesium Phosphate Nanosheets. MATERIALS 2021; 14:ma14195893. [PMID: 34640291 PMCID: PMC8510305 DOI: 10.3390/ma14195893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 12/05/2022]
Abstract
Commercial poly methyl methacrylate (PMMA)-based cement is currently used in the field of orthopedics. However, it suffers from lack of bioactivity, mechanical weakness, and monomer toxicity. In this study, a PMMA-based cement nanocomposite reinforced with hydroxyapatite (HA) nanofibers and two-dimensional (2D) magnesium phosphate MgP nanosheets was synthesized and optimized in terms of mechanical property and cytocompatibility. The HA nanofibers and the MgP nanosheets were synthesized using a hydrothermal homogeneous precipitation method and tuning the crystallization of the sodium-magnesium-phosphate ternary system, respectively. Compressive strength and MTT assay tests were conducted to evaluate the mechanical property and the cytocompatibility of the PMMA-HA-MgP nanocomposites prepared at different ratios of HA and MgP. To optimize the developed nanocomposites, the standard response surface methodology (RSM) design known as the central composite design (CCD) was employed. Two regression models generated by CCD were analyzed and compared with the experimental results, and good agreement was observed. Statistical analysis revealed the significance of both factors, namely, the HA nanofibers and the MgP nanosheets, in improving the compressive strength and cell viability of the PMMA-MgP-HA nanocomposite. Finally, it was demonstrated that the HA nanofibers of 7.5% wt and the MgP nanosheets of 6.12% wt result in the PMMA-HA-MgP nanocomposite with the optimum compressive strength and cell viability.
Collapse
|
6
|
Yoon S, Jung HJ, Knowles JC, Lee HH. Digital image correlation in dental materials and related research: A review. Dent Mater 2021; 37:758-771. [PMID: 33715864 DOI: 10.1016/j.dental.2021.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Digital image correlation (DIC) is a non-contact image processing technique for full-field strain measurement. Although DIC has been widely used in engineering and biomechanical fields, it is in the spotlight only recently in dental materials. Therefore, the purpose of this review paper is introducing the working principle of the DIC technique with some modifications and providing further potential applications in various dental materials and related fields. METHODS The accuracy of the algorithm depending on the environmental characteristics of the DIC technique, as well as the advantages and disadvantages of strain measurement using optical measurements, have been elaborated in dental materials and related fields. Applications to those researches have been classified into the following categories: shrinkage behavior of light-cured resin composite, resin-tooth interface, mechanical properties of tooth structure, crack extension and elastic properties of dental materials, and deformation of dental restoration and prosthesis. This classification and discussion were performed using literature survey and review based on numerous papers in the international journals published over the past 20 years. The future directions for predicting the precise deformation of dental materials under various environments, as well as limitations of the DIC technique, was presented in this review. RESULTS The DIC technique was demonstrated as a more effective tool to measure full-field polymerization shrinkage of composite resin, even in a simulated clinical condition over the existing methods. Moreover, the DIC combined with other technologies can be useful to evaluate the mechanical behavior of material-tooth interface, dentine structure and restorative and prosthetic materials with high accuracy. Three-dimensional DIC using two cameras extended the measurement range in-plane to out-of-plane, enabling measure of the strain directly on the surface of dental restorations or prosthesis. SIGNIFICANCE DIC technique is a potential tool for measuring and predicting the full-field deformation/strain of dental materials and actual prostheses in diverse clinical conditions. The versatility of DIC can replace the existing complex sensor devices in those studies.
Collapse
Affiliation(s)
- Sungsik Yoon
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyung-Jo Jung
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - J C Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
7
|
Zhu J, Yang S, Cai K, Wang S, Qiu Z, Huang J, Jiang G, Wang X, Fang X. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020; 10:6544-6560. [PMID: 32483469 PMCID: PMC7255031 DOI: 10.7150/thno.44428] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Poly (methyl methacrylate) (PMMA) bone cement is one of the most commonly used biomaterials for augmenting/stabilizing osteoporosis-induced vertebral compression fractures (OVCFs), such as percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP). However, its clinical applications are limited by its poor performance in high compressive modulus and weak bonding to bone. To address these issues, a bioactive composite bone cement was developed for the treatment of osteoporotic vertebral compression fractures, in which mineralized collagen (MC) was incorporated into the PMMA bone cement (MC-PMMA). Methods: The in vitro properties of PMMA and MC-PMMA composite bone cement were determined, including setting time, compressive modulus, adherence, proliferation, and osteogenic differentiation of rat bone mesenchymal stem cells. The in vivo properties of both cements were evaluated in an animal study (36 osteoporotic New Zealand female rabbits divided equally between the two bone cement groups; PVP at L5) and a small-scale and short-term clinical study (12 patients in each of the two bone cement groups; follow-up: 2 years). Results: In terms of value for PMMA bone cement, the handling properties of MC-PMMA bone cement were not significantly different. However, both compressive strength and compressive modulus were found to be significantly lower. In the rabbit model study, at 8 and 12 weeks post-surgery, bone regeneration was more significant in MC-PMMA bone cement (cortical bone thickness, osteoblast area, new bone area, and bone ingrowth %; each significantly higher). In the clinical study, at a follow-up of 2 years, both the Visual Analogue Score and Oswestry Disability Index were significantly reduced when MC-PMMA cement was used. Conclusions: MC-PMMA bone cement demonstrated good adaptive mechanical properties and biocompatibility and may be a promising alternative to commercial PMMA bone cements for the treatment of osteoporotic vertebral fractures in clinical settings. While the present results for MC-PMMA bone cement are encouraging, further study of this cement is needed to explore its viability as an ideal alternative for use in PVP and BKP.
Collapse
Affiliation(s)
- Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kaiwen Cai
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiye Qiu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junfei Huang
- Shimadzu (China) Co., Ltd. Shenzhen Branch, Shenzhen 518042, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| |
Collapse
|
8
|
Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110497. [DOI: 10.1016/j.msec.2019.110497] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
|
9
|
Chamseddine M, Breden S, Pietschmann MF, Müller PE, Chevalier Y. Periprosthetic bone quality affects the fixation of anatomic glenoids in total shoulder arthroplasty: in vitro study. J Shoulder Elbow Surg 2019; 28:e18-e28. [PMID: 30274689 DOI: 10.1016/j.jse.2018.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glenoid loosening, a common complication of shoulder arthroplasty, could relate to implant design and bone quality. However, the role of bone density has not been tested experimentally yet. In this study, tests on cadaveric specimens of varying bone density were performed to evaluate the effects of bone quality on loosening of typical anatomic glenoid implants. METHODS Cadaveric scapulae scanned with a quantitative computed tomography scanner to determine bone mineral density (BMD) were implanted with either pegged or keeled cemented glenoid components and tested under constant glenohumeral load while a humeral head component was moved cyclically in the inferior and superior directions. Implant superior and inferior edge lifting, defined as displacement from the underlying bone, was measured with linear variable differential transducers until we reached 23,000 test cycles, and statistical testing was performed for differences in edge lifting due to implant design and related to periprosthetic BMD. RESULTS Edge lifting was statistically significant at all time points, but on average, implant design had no effect. Lifting was highest in specimens in which BMD below the lifting edge was lower, with trends of increased displacement with decreased BMD. CONCLUSIONS Implant lifting was greater in glenoids of lower bone density for both implant designs. This finding suggests that fixation failure will most likely occur in bone of lower density and that the fixation design itself may play a secondary role.
Collapse
Affiliation(s)
- Mohamad Chamseddine
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Campus Grosshadern, University Hospital of Munich (Ludwig Maximilian University of Munich), Munich, Germany
| | - Sebastian Breden
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Campus Grosshadern, University Hospital of Munich (Ludwig Maximilian University of Munich), Munich, Germany
| | - Matthias F Pietschmann
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Campus Grosshadern, University Hospital of Munich (Ludwig Maximilian University of Munich), Munich, Germany
| | - Peter E Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Campus Grosshadern, University Hospital of Munich (Ludwig Maximilian University of Munich), Munich, Germany
| | - Yan Chevalier
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Campus Grosshadern, University Hospital of Munich (Ludwig Maximilian University of Munich), Munich, Germany.
| |
Collapse
|
10
|
Song Y, Zhu F, Lin F, Zhang F, Zhang S. Bone quality, and the combination and penetration of cement-bone interface: A comparative micro-CT study of osteoarthritis and rheumatoid arthritis. Medicine (Baltimore) 2018; 97:e11987. [PMID: 30170401 PMCID: PMC6392652 DOI: 10.1097/md.0000000000011987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To compare the microstructure, bone quality, and the combination and penetration of cement-bone interface in tissue specimens from patients with osteoarthritis (OA) and rheumatoid arthritis (RA).A total of 80 femoral condyle tissue specimens from 20 OA patients (40 condyles) and 20 RA patients (40 condyles) who underwent total knee arthroplasty at the Department of Orthopaedics in Tengzhou Central People's Hospital were collected between January 2017 and September 2017. According to the random number table method, 20 specimens from the OA group were defined as group A, and 20 specimens in the RA group were defined as group B. The bone quality parameters were measured by micro-CT. The remaining 20 specimens in the OA group and the remaining 20 specimens in the RA group were defined as group C and group D, the cement-bone interfaces were established by the self-made bone cement compression device, and were analyzed by micro-CT.Micro-CT measurement revealed that the bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) in group A were significantly higher than those in group B (all P < .05). The bone surface/bone volume (BS/BV), structure model index (SMI), trabecular separation (Tb.Sp), and degree of anisotropy (DA) in group A were significantly lower than those in group B (all P < .05). The penetration depth of bone cement in group D was significantly greater than those in group C via x-ray detection.The bone quality of OA patients is better than that of RA patients, but the combination and penetration of cement-bone interface of RA patients are better than that of OA patients. The findings advance our understanding of knee prosthesis and have important clinical implications, but they require validations in future studies with larger sample sizes.
Collapse
|
11
|
DANESI VALENTINA, FALDINI CESARE, CRISTOFOLINI LUCA. METHODS FOR THE CHARACTERIZATION OF THE LONG-TERM MECHANICAL PERFORMANCE OF CEMENTS FOR VERTEBROPLASTY AND KYPHOPLASTY: CRITICAL REVIEW AND SUGGESTIONS FOR TEST METHODS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519417300022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is a growing interest towards bone cements for use in vertebroplasty and kyphoplasty, as such spine procedures are becoming more and more common. Such cements feature different compositions, including both traditional acrylic cements and resorbable and bioactive materials. Due to the different compositions and intended use, the mechanical requirements of cements for spinal applications differ from those of traditional cements used in joint replacement. Because of the great clinical implications, it is very important to assess their long-term mechanical competence in terms of fatigue strength and creep. This paper aims at offering a critical overview of the methods currently adopted for such mechanical tests. The existing international standards and guidelines and the literature were searched for publications relevant to fatigue and creep of cements for vertebroplasty and kyphoplasty. While standard methods are available for traditional bone cements in general, no standard indicates specific methods or acceptance criteria for fatigue and creep of cements for vertebroplasty and kyphoplasty. Similarly, a large number of papers were published on cements for joint replacements, but only few cover fatigue and creep of cements for vertebroplasty and kyphoplasty. Furthermore, the literature was analyzed to provide some indications of tests parameters and acceptance criteria (number of cycles, duration in time, stress levels, acceptable amount of creep) for possible tests specifically relevant to cements for spinal applications.
Collapse
Affiliation(s)
- VALENTINA DANESI
- Department of Industrial Engineering, Alma Mater Studiorum — Università di Bologna, Italy
| | - CESARE FALDINI
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum — Università di Bologna, Italy
- Department of Orthopaedics and Trauma Surgery, Università di Bologna — Istituto Ortopedico Rizzoli, Bologna, Italy
| | - LUCA CRISTOFOLINI
- Department of Industrial Engineering, Alma Mater Studiorum — Università di Bologna, Italy
| |
Collapse
|
12
|
Wang X, Kou JM, Yue Y, Shao AZ, Jia XJ, Hou JW, Gao C, Qiu ZY, Wang XM, Weng XS. Clinical observations of osteoporotic vertebral compression fractures by using mineralized collagen modified polymethylmethacrylate bone cement. Regen Biomater 2017. [DOI: 10.1093/rb/rbw043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xi Wang
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Jian-Ming Kou
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Yang Yue
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - An-Ze Shao
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Xue-Jun Jia
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Jian-Wen Hou
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Chong Gao
- Department of Orthopedics, The Second People’s Hospital of Lianyungang, No. 41 Hailian East Road, Haizhou District, Lianyungang 222000, China
| | - Zhi-Ye Qiu
- Institute for Regenerative Medicine and Biomimetic Materials, Tsinghua University, Haidian District, Beijing 100084, China
| | - Xiu-Mei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, Tsinghua University, Haidian District, Beijing 100084, China
| | - Xi-Sheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
13
|
Strain shielding in trabecular bone at the tibial cement-bone interface. J Mech Behav Biomed Mater 2016; 66:181-186. [PMID: 27889526 DOI: 10.1016/j.jmbbm.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022]
Abstract
Aseptic loosening of the tibial component remains the leading cause for revision surgery in total knee arthroplasty (TKA). Understanding the mechanisms leading to loss of fixation can offer insight into preventative measures to ensure a longer survival rate. In cemented TKA, loosening occurs at the cement-trabecular interface probably due to a stress-shielding effect of the stiffer implant material in comparison with bone. Using finite element models of lab-prepared tibial cement-trabeculae interface specimens (n=4) based on micro-CT images, this study aims to investigate the micromechanics of the interlock between cement and trabecular bone. Finite element micromotion between cement and trabeculae and bone strain were compared in the interdigitated trabeculae as well as strain in the bone distal to the interface. Lab-prepared specimens and their FE models were assumed to represent the immediate post-operative situation. The cement layer was removed in the FE models while retaining the loading conditions, which resulted in FE models that represented the pre-operative situation. Results showed that micromotion and bone strain decrease when interdigitation depth increases. Bone-cement micromotion and bone strain at the distal interdigitated region showed a dependence on bone volume fraction. Comparing the immediate post-operative and pre-operative situations, trabeculae embedded deep within the cement generally showed the highest level of strain-shielding. Strain shielding of interdigitated bone, in terms of reduction in compressive strains, was found to be between 35 and 61 % for the four specimens. Strain adaptive remodeling could thus be a plausible mechanism responsible for loss of interdigitated bone.
Collapse
|
14
|
Koh I, Gombert Y, Persson C, Engqvist H, Helgason B, Ferguson SJ. Ceramic cement as a potential stand-alone treatment for bone fractures: An in vitro study of ceramic–bone composites. J Mech Behav Biomed Mater 2016; 61:519-529. [DOI: 10.1016/j.jmbbm.2016.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
15
|
Zhang CL, Shen GQ, Zhu KP, Liu DX. Biomechanical effects of morphological variations of the cortical wall at the bone-cement interface. J Orthop Surg Res 2016; 11:72. [PMID: 27369636 PMCID: PMC4929745 DOI: 10.1186/s13018-016-0405-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The integrity of bone-cement interface is very important for the stabilization and long-term sustain of cemented prosthesis. Variations in the bone-cement interface morphology may affect the mechanical response of the shape-closed interlock. METHODS Self-developed new reamer was used to process fresh pig reamed femoral canal, creating cortical grooves in the canal wall of experimental group. The biomechanical effects of varying the morphology with grooves of the bone-cement interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Micro-CT scans were used to document interlock morphology. RESULTS The contact area of the bone-cement interface was greater (P < 0.05) for the experimental group (5470 ± 265 mm(2)) when compared to the specimens of control group (5289 ± 299 mm(2)). The mechanical responses to tensile loading and anti-torsion showed that the specimens with grooves were stronger (P < 0.05) at the bone-cement interface than the specimens without grooves. There were positively significant correlation between the contact area and the tensile force (r (2) = 0.85) and the maximal torsion (r (2) = 0.77) at the bone-cement interface. The volume of cement of the experimental group (7688 ± 278 mm(3)) was greater (P < 0.05) than of the control group (5764 ± 186 mm(3)). There were positively significant correlations between the volume of cement and the tensile force (r (2) = 0.90) and the maximal torsion (r (2) = 0.97) at the bone-cement interface. The FEA results compared favorably to the tensile and torsion relationships determined experimentally. More cracks occurred in the cement than in the bone. CONCLUSIONS Converting the standard reaming process from a smooth bore cortical tube to the one with grooves permits the cement to interlock with the reamed bony wall. This would increase the strength of the bone-cement interface.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Orthopaedic Surgery, the Tenth People's Hospital Affiliated to Tongji University, #301 Yan-chang Middle Road, Shanghai, 200072, China.
| | - Guo-Qi Shen
- Department of Orthopaedic Surgery, Changshu Second People's Hospital, Changshu, 215500, China
| | - Kun-Peng Zhu
- Department of Orthopaedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Dong-Xu Liu
- Orthotek Lab, School of Mechatronics Engineering and Automation, Shanghai University, No. 149, Yanchang Rd, 200072, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Lewis GS, Brenza JB, Paul EM, Armstrong AD. Construct damage and loosening around glenoid implants: A longitudinal micro-CT study of five cadaver specimens. J Orthop Res 2016; 34:1053-60. [PMID: 26630205 PMCID: PMC5800522 DOI: 10.1002/jor.23119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/20/2015] [Indexed: 02/04/2023]
Abstract
The evolution of failure of bone and cement leading to loosening of glenoid components following shoulder arthroplasty is not well understood. The purpose of this study was to identify and visualize potential mechanisms of mechanical failure within cadavers, cemented with two types of components, and subject to cyclic loading. Five glenoid cadaver bones were implanted with either a three-pegged polyethylene component, or prototype posteriorly augmented component which addresses posterior bone loss. Specimens were loaded by constant glenohumeral compression combined with cyclic anterior-posterior displacement of the humeral head relative to the glenoid. At six time points across 100,000 cycles, implant loosening micromotions were optically measured, and specimens were imaged by micro-computed tomography. Scans were 3D registered and inspected for crack initiation and progression, and micro-CT based time-lapse movies were created. Cement cracking initiated at stress concentrations and progressed with additional cyclic loading. Failure planes within trabecular bone and the bone-cement interface were identified in four of the five specimens. Implant subsidence increased to greater than 1.0 mm in two specimens. Cemented glenoid structural failure can occur within the cement, along planes of trabecular bone, or at the bone cement interface. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1053-1060, 2016.
Collapse
Affiliation(s)
- Gregory S. Lewis
- Corresponding Author & Address for Reprints: Gregory S. Lewis, PhD, , Department of Orthopaedics & Rehabilitation, Penn State College of Medicine, 500 University Drive, Mail Code H089, Hershey PA 17033, (717) 531-5244 (phone)
| | | | | | | |
Collapse
|
17
|
Srinivasan P, Miller MA, Verdonschot N, Mann KA, Janssen D. Experimental and computational micromechanics at the tibial cement-trabeculae interface. J Biomech 2016; 49:1641-1648. [PMID: 27079621 DOI: 10.1016/j.jbiomech.2016.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/11/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023]
Abstract
Aseptic loosening of the tibial component in cemented total knee arthroplasty remains a major concern. We hypothesize that micromotion between the cement and trabeculae leads to increased circulation of interstitial fluid which in turn causes fluid-induced resorption of the trabeculae. Another mechanism for implant loosening is trabecular strain shielding. Using a newly developed experimental setup and digital image correlation (DIC) methods we were able to measure micromotion and strains in lab-prepared cement-trabeculae interface specimens (n=4). Finite element (FE) models of these specimens were developed to determine whether differences in micromotion and strain in morphologically varying specimens could be simulated accurately. Results showed that the measured micromotion and strains correlated well with FE model predictions (r(2)=0.59-0.85; r(2)=0.66-0.90). Global specimen strains measured axially matched well with the FE model strains (r(2)=0.87). FE model cement strains showed an increasing trend with distance from the cement border. The influence of loss of trabecular connectivity at the specimen edges was studied using our FE model results. Micromotion values at the outer edge of the specimens were higher than the specimen interior when considering a very thin outer edge (0.1mm). When the outer edge thickness was increased to about one trabecular length (0.8mm), there was a drop in the median and peak values. Using the experimental and modelling approach outlined in this study, we can further study the mechanisms that lead to loss of interlock between cement and trabeculae at the tibial interface.
Collapse
Affiliation(s)
- Priyanka Srinivasan
- Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands.
| | - Mark A Miller
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nico Verdonschot
- Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands; University of Twente, Laboratory for Biomechanical Engineering, Faculty of Engineering Technology, Enschede, The Netherlands
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dennis Janssen
- Radboud university medical center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Wee H, Armstrong AD, Flint WW, Kunselman AR, Lewis GS. Peri-implant stress correlates with bone and cement morphology: Micro-FE modeling of implanted cadaveric glenoids. J Orthop Res 2015; 33:1671-9. [PMID: 25929691 PMCID: PMC4591115 DOI: 10.1002/jor.22933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/24/2015] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p < 0.05). Bone with high stress was also correlated with both glenoid width and implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning.
Collapse
Affiliation(s)
- Hwabok Wee
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine 500 University Drive, Hershey, PA 17033
| | - April D. Armstrong
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine 500 University Drive, Hershey, PA 17033
| | - Wesley W. Flint
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine 500 University Drive, Hershey, PA 17033
| | - Allen R. Kunselman
- Department of Public Health Sciences, Penn State College of Medicine 500 University Drive, Hershey, PA 17033
| | - Gregory S. Lewis
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine 500 University Drive, Hershey, PA 17033
| |
Collapse
|
19
|
Mechanical Properties and Cytocompatibility Improvement of Vertebroplasty PMMA Bone Cements by Incorporating Mineralized Collagen. MATERIALS 2015. [PMCID: PMC5455539 DOI: 10.3390/ma8052616] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polymethyl methacrylate (PMMA) bone cement is a commonly used bone adhesive and filling material in percutaneous vertebroplasty and percutaneous kyphoplasty surgeries. However, PMMA bone cements have been reported to cause some severe complications, such as secondary fracture of adjacent vertebral bodies, and loosening or even dislodgement of the set PMMA bone cement, due to the over-high elastic modulus and poor osteointegration ability of the PMMA. In this study, mineralized collagen (MC) with biomimetic microstructure and good osteogenic activity was added to commercially available PMMA bone cement products, in order to improve both the mechanical properties and the cytocompatibility. As the compressive strength of the modified bone cements remained well, the compressive elastic modulus could be significantly down-regulated by the MC, so as to reduce the pressure on the adjacent vertebral bodies. Meanwhile, the adhesion and proliferation of pre-osteoblasts on the modified bone cements were improved compared with cells on those unmodified, such result is beneficial for a good osteointegration formation between the bone cement and the host bone tissue in clinical applications. Moreover, the modification of the PMMA bone cements by adding MC did not significantly influence the injectability and processing times of the cement.
Collapse
|
20
|
Caouette C, Bureau M, Vendittoli PA, Lavigne M, Nuño N. Influence of the stem fixation scenario on load transfer in a hip resurfacing arthroplasty with a biomimetic stem. J Mech Behav Biomed Mater 2015; 45:90-100. [DOI: 10.1016/j.jmbbm.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|
21
|
Wu J, Xu S, Qiu Z, Liu P, Liu H, Yu X, Cui FZ, Chunhua ZR. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation. J Biomater Appl 2015; 30:722-31. [PMID: 25899928 DOI: 10.1177/0885328215582112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Suju Xu
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhiye Qiu
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Peng Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Yu
- School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
| | - Fu-Zhai Cui
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhao Robert Chunhua
- Chinese Academy of Medical Sciences, Institute of Basic Medical Science, Beijing, China
| |
Collapse
|
22
|
Computational analysis of primary implant stability in trabecular bone. J Biomech 2015; 48:807-15. [DOI: 10.1016/j.jbiomech.2014.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/20/2022]
|
23
|
Tozzi G, Zhang QH, Tong J. Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression. J Biomech 2014; 47:3466-74. [DOI: 10.1016/j.jbiomech.2014.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/01/2014] [Accepted: 09/14/2014] [Indexed: 11/28/2022]
|
24
|
Miller MA, Terbush MJ, Goodheart JR, Izant TH, Mann KA. Increased initial cement-bone interlock correlates with reduced total knee arthroplasty micro-motion following in vivo service. J Biomech 2014; 47:2460-6. [PMID: 24795171 DOI: 10.1016/j.jbiomech.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Aseptic loosening of cemented tibial components in total knee arthroplasty (TKA) has been related to inadequate cement penetration into the trabecular bone bed during implantation. Recent postmortem retrieval work has also shown there is loss of interlock between cement and bone by resorption of trabeculae at the interface. The goal of this study was to determine if TKAs with more initial interlock between cement and bone would maintain more interlock with in vivo service (in the face of resorbing trabeculae) and have less micro-motion at the cement-bone interface. The initial (created at surgery) and current (after in vivo service) cement-bone interlock morphologies of sagittal implant sections from postmortem retrieved tibial tray constructs were measured. The implant sections were then functionally loaded in compression and the micro-motion across the cement-bone interface was quantified. Implant sections with less initial interdigitation between cement and bone and more time in service had less current cement-bone interdigitation (r(2)=0.86, p=0.0002). Implant sections with greater initial interdigitation also had less micro-motion after in vivo service (r(2)=0.36, p=0.0062). This work provides direct evidence that greater initial interlock between cement and bone in tibial components of TKA results in more stable constructs with less micro-motion with in vivo service.
Collapse
Affiliation(s)
- Mark A Miller
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, USA
| | - Matthew J Terbush
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, USA
| | - Jacklyn R Goodheart
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, USA
| | | | - Kenneth A Mann
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, 3216 IHP, 750 East Adams Street, Syracuse, NY, USA.
| |
Collapse
|
25
|
Purcell P, Tyndyk M, McEvoy F, Tiernan S, Morris S. A parametric finite element analysis of the compacted bone–cement interface following balloon kyphoplasty. Proc Inst Mech Eng H 2013; 228:89-97. [DOI: 10.1177/0954411913513575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treating fractures of the spine is a major challenge for the medical community with an estimated 1.4 million fractures per annum worldwide. While a considerable volume of study exists on the biomechanical implications of balloon kyphoplasty, which is used to treat these fractures, the influence of the compacted bone–cement region properties on stress distribution within the vertebral body remains unknown. The following article describes a novel method for modelling this compacted bone–cement region using a geometry-based approach in conjunction with the knowledge of the bone volume fractions for the native and compacted bone regions. Three variables for the compacted region were examined, as follows: (1) compacted thickness, (2) compacted region Young’s modulus and (3) friction coefficient. Results from the model indicate that the properties of the compacted bone–cement region can affect stresses in the cortical bone and cement by up to +28% and −40%, respectively. These findings demonstrate the need for further investigation into the effects of the compacted bone–cement interface using computational and experimental methods on multi-segment models.
Collapse
Affiliation(s)
- Philip Purcell
- Bioengineering Technology Centre, Institute of Technology Tallaght, Dublin, Ireland
| | - Magdalena Tyndyk
- Medical Engineering Design and Innovation Centre, Cork Institute of Technology, Cork, Ireland
| | - Fiona McEvoy
- Bioengineering Technology Centre, Institute of Technology Tallaght, Dublin, Ireland
| | - Stephen Tiernan
- Bioengineering Technology Centre, Institute of Technology Tallaght, Dublin, Ireland
| | - Seamus Morris
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
26
|
Tozzi G, Zhang QH, Lupton C, Tong J, Guillen T, Ohrndorf A, Christ HJ. Characterisation of a metallic foam-cement composite under selected loading conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2509-2518. [PMID: 23846838 DOI: 10.1007/s10856-013-5000-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
An open-cell metallic foam was employed as an analogue material for human trabecular bone to interface with polymethyl methacrylate (PMMA) bone cement to produce composite foam-cement interface specimens. The stress-displacement curves of the specimens were obtained experimentally under tension, shear, mixed tension and shear (mixed-mode), and step-wise compression loadings. In addition, under step-wise compression, an image-guided failure assessment (IGFA) was used to monitor the evolution of micro-damage of the interface. Microcomputed tomography (µCT) images were used to build a subject-specific model, which was then used to perform finite element (FE) analysis under tension, shear and compression. For tension-shear loading conditions, the strengths of the interface specimens were found to increase with the increase of the loading angle reaching the maximum under shear loading condition, and the results compare reasonably well with those from bone-cement interface. Under compression, however, the mechanical strength measured from the foam-cement interface is much lower than that from bone-cement interface. Furthermore, load transfer between the foam and the cement appears to be poor under both tension and compression, hence the use of the foam should be discouraged as a bone analogue material for cement fixation studies in joint replacements.
Collapse
Affiliation(s)
- Gianluca Tozzi
- Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, Portsmouth, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Waanders D, Janssen D, Berahmani S, Miller MA, Mann KA, Verdonschot N. Interface micromechanics of transverse sections from retrieved cemented hip reconstructions: an experimental and finite element comparison. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2023-2035. [PMID: 22678039 PMCID: PMC3400762 DOI: 10.1007/s10856-012-4626-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/17/2012] [Indexed: 06/01/2023]
Abstract
In finite element analysis (FEA) models of cemented hip reconstructions, it is crucial to include the cement-bone interface mechanics. Recently, a micromechanical cohesive model was generated which reproduces the behavior of the cement-bone interface. The goal was to investigate whether this cohesive model was directly applicable on a macro level. From transverse sections of retrieved cemented hip reconstructions, two FEA-models were generated. The cement-bone interface was modeled with cohesive elements. A torque was applied and the cement-bone interface micromotions, global stiffness and stem translation were monitored. A sensitivity analysis was performed to investigate whether the cohesive model could be improved. All results were compared with experimental findings. That the original cohesive model resulted in a too compliant macromechanical response; the motions were too large and the global stiffness too small. When the cohesive model was modified, the match with the experimental response improved considerably.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
GUEDES RUIM, NABAIS CLÁUDIA, SIMÕES JOSÉA. DAMAGE INITIATION AND PROPAGATION UNTIL FAILURE OF CEMENT–BONE INTERFACE BY THE ELEMENT-FAILURE METHOD. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519411004617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aseptic loosening of cemented hip implants frequently indicates failure by shear or tension of the cement–bone interface. An element-failure algorithm is proposed for the simulation of the mechanical behavior of the cement–bone interface until failure, under tensile and shear loading. To validate the model proposed, analysis on the cement–bone interface properties (elastic modulus, strength and thickness) and failure criteria, as well as mesh convergence analysis, were performed. Numerical results showed that the proposed element-failure method is able to determine the initiation and progression of interface failure in cemented hip replacements.
Collapse
Affiliation(s)
- RUI M. GUEDES
- Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465, Porto, Portugal
| | - CLÁUDIA NABAIS
- Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465, Porto, Portugal
| | - JOSÉ A. SIMÕES
- Departamento de Engenharia Mecânica, Universidade de Aveiro, 3850-193 Aveiro, Portugal
- Escola Superior de Artes e Design, 4460-268, Senhora da Hora, Portugal
| |
Collapse
|
29
|
Zhang QH, Tozzi G, Tong J. Micro-mechanical damage of trabecular bone-cement interface under selected loading conditions: a finite element study. Comput Methods Biomech Biomed Engin 2012; 17:230-8. [PMID: 22515517 DOI: 10.1080/10255842.2012.675057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.
Collapse
Affiliation(s)
- Qing-Hang Zhang
- a Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth , Anglesea Road, Portsmouth , PO1 3DJ , UK
| | | | | |
Collapse
|
30
|
Tozzi G, Zhang QH, Tong J. 3D real-time micromechanical compressive behaviour of bone–cement interface: Experimental and finite element studies. J Biomech 2012; 45:356-63. [DOI: 10.1016/j.jbiomech.2011.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/29/2011] [Accepted: 10/07/2011] [Indexed: 11/16/2022]
|
31
|
CHONG DESMONDYR, HANSEN ULRICHN, AMIS ANDREWA. THE INFLUENCE OF TIBIAL PROSTHESIS DESIGN FEATURES ON STRESSES RELATED TO ASEPTIC LOOSENING AND STRESS SHIELDING. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519410003666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aseptic loosening caused by mechanical factors is a recognized failure mode for tibial components of knee prostheses. This parametric study investigated the effects of prosthesis fixation design changes, which included the presence, length and diameter of a central stem, the use of fixation pegs beneath the tray, all-polyethylene versus metal-backed tray, prosthesis material stiffness, and cement mantle thickness. The cancellous bone compressive stresses and bone–cement interfacial shear stresses, plus the reduction of strain energy density in the epiphyseal cancellous bone, an indication of the likelihood of component loosening, and bone resorption secondary to stress shielding, were examined. Design features such as longer stems reduced bone and bone–cement interfacial stresses thus the risk of loosening is potentially minimized, but at the expense of an increased tendency for bone resorption. The conflicting trend suggested that bone quality and fixation stability have to be considered mutually for the optimization of prosthesis designs. By comparing the bone stresses and bone–cement shear stresses to reported fatigue strength, it was noted that fatigue of both the cancellous bone and bone–cement interface could be the driving factor for long-term aseptic loosening for metal-backed tibial trays.
Collapse
Affiliation(s)
- DESMOND Y. R. CHONG
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - ULRICH N. HANSEN
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - ANDREW A. AMIS
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
- Department of Musculoskeletal Surgery, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| |
Collapse
|
32
|
The dog as a preclinical model to evaluate interface morphology and micro-motion in cemented total knee replacement. Vet Comp Orthop Traumatol 2011; 25:1-10. [PMID: 22028048 DOI: 10.3415/vcot-11-01-0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/23/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study investigated cemented fixation of the tibial component from a canine total knee replacement preclinical model. The objective was to determine the local morphology at the material interfaces (implant, cement, bone) and the local relative micro- motion due to functional loading following in vivo service. METHODS Five skeletally mature research dogs underwent unilateral total knee replacement using a cemented implant system with a polyethylene (PE) monobloc tibial component. Use of the implanted limb was assessed by pressure-sensitive walkway analysis. At 60 weeks post-surgery, the animals were euthanatized and the tibia sectioned en bloc in the sagittal plane to create medial and lateral specimens. High resolution imaging was used to quantify the morphology under the tray and along the keel. Specimens were loaded to 50% body weight and micro- motions at the PE-cement and cement-bone interfaces were quantified. RESULTS There was significantly (p = 0.002) more cement-bone apposition and interdigitation along the central keel compared to the regions under the tray. Cavitary defects were associated with the perimeters of the implant (60 ± 25%). Interdigitation fraction was negatively correlated with cavitary defect fraction, cement crack fraction, and total micro-motion. CLINICAL SIGNIFICANCE Achieving good interdigitation of cement into subchondral bone beneath the tibial tray is associated with improved interface morphology and reduced micro-motion; features that could result in a reduced incidence of aseptic loosening. Multiple drill holes distributed over the cut tibial surface and adequate pressurization of the cement into the subchondral bone should improve fixation and reduce interface micromotion and cavitary defects.
Collapse
|
33
|
Waanders D, Janssen D, Mann KA, Verdonschot N. Morphology based cohesive zone modeling of the cement-bone interface from postmortem retrievals. J Mech Behav Biomed Mater 2011; 4:1492-503. [PMID: 21783159 DOI: 10.1016/j.jmbbm.2011.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 11/28/2022]
Abstract
In cemented total hip arthroplasty, the cement-bone interface can be considerably degenerated after less than one year in vivo service; this makes the interface much weaker relative to the direct post-operative situation. It is, however, still unknown how these degenerated interfaces behave under mixed-mode loading and how this is related to the interface morphology. In this study, we used a finite element (FE) approach to analyze the mixed-mode response of the cement-bone interface taken from postmortem retrievals. We investigated whether it was feasible to generate a fully elastic and a failure cohesive model based on only morphological input parameters. Computed tomography-based FE-models of postmortem cement-bone interfaces were generated and the interface morphology was determined. The models were loaded until failure in multiple directions by allowing cracking of the bone and cement components and including periodic boundary conditions. The resulting stiffness was related to the interface morphology. A closed form mixed-mode cohesive model that included failure was determined and related to the interface morphology. The responses of the FE-simulations compare satisfactorily with experimental observations, albeit the magnitude of the strength and stiffness are somewhat overestimated. Surprisingly, the FE-simulations predict no failure under shear loading and a considerable normal compression is generated which prevents dilation of the interface. The obtained mixed-mode stiffness response could subsequently be related to the interface morphology and subsequently be formulated into an elastic cohesive zone model. Finally, the acquired data could be used as an input for a cohesive model that also includes interface failure.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Waanders D, Janssen D, Mann KA, Verdonschot N. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement. J Biomech 2011; 44:228-34. [PMID: 21036358 PMCID: PMC3019267 DOI: 10.1016/j.jbiomech.2010.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
Abstract
In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically implemented in four different ways: (I) as infinitely stiff, (II) as infinitely strong with a constant stiffness, (III) a mixed-mode failure response with failure in tension and shear, and (IV) realistic mixed mode behavior obtained from micro-FEA models. Case II, III, and IV were analyzed using data from a stiff and a compliant micro-FEA model and their effects on cement failure were analyzed. The data used for Case IV was derived from experimental specimens that were tested previously. Although the total number of cement cracks was low for all cases, the compliant Case II resulted in twice as many cracks as Case I. All cases caused similar stress distributions at the interface. In all cases, the interface did not display interfacial softening; all stayed the elastic zone. Fatigue failure of the cement mantle resulted in a more favorable stress distribution at the cement-bone interface in terms of less tension and lower shear tractions. We conclude that immediate cement-bone interface failure is not likely to occur, but its local compliancy does affect the formation of cement cracks. This means that at a macro-level the cement-bone interface should be modeled as a compliant layer. However, implementation of interfacial post-yield softening does seems to be necessary.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Waanders D, Janssen D, Bertoldi K, Mann KA, Verdonschot N. Mixed-mode loading of the cement-bone interface: a finite element study. Comput Methods Biomech Biomed Engin 2010; 14:145-55. [PMID: 21170769 DOI: 10.1080/10255842.2010.535814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While including the cement-bone interface of complete cemented hip reconstructions is crucial to correctly capture their response, its modelling is often overly simplified. In this study, the mechanical mixed-mode response of the cement-bone interface is investigated, taking into account the effects of the well-defined microstructure that characterises the interface. Computed tomography-based plain strain finite element analyses models of the cement-bone interface are built and loaded in multiple directions. Periodic boundaries are considered and the failure of the cement and bone fractions by cracking of the bulk components are included. The results compare favourably with experimental observations. Surprisingly, the analyses reveal that under shear loading no failure occurs and considerable normal compression is generated to prevent interface dilation. Reaction forces, crack patterns and stress fields provide more insight into the mixed-mode failure process. Moreover, the cement-bone interface analyses provide details which can serve as a basis for the development of a cohesive law.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Miller MA, Race A, Waanders D, Cleary R, Janssen D, Verdonschot N, Mann KA. Multi-axial loading micromechanics of the cement-bone interface in postmortem retrievals and lab-prepared specimens. J Mech Behav Biomed Mater 2010; 4:366-74. [PMID: 21316624 DOI: 10.1016/j.jmbbm.2010.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Maintaining adequate fixation between cement and bone is important for successful long term survival of cemented total joint replacements. Mixed-mode loading conditions (combination of tension/compression and shear) are present during in vivo loading, but the micromotion response of the interface to these conditions is not fully understood. Non-destructive, multi-axial loading experiments were conducted on laboratory prepared (n=6) and postmortem (n=6) human cement-bone interfaces. Specimens were mounted in custom loading discs and loaded at 0°, 30°, 60°, and 90° relative to the interface plane where 0° represents normal loading to the interface, and 90° represents shear loading along the longitudinal axis of the femur. Axial compliance did not depend on loading angle for laboratory prepared (p=0.96) or postmortem specimens (p=0.62). The cement-bone interface was more compliant under tensile than compressive loading at the 0° loading angle only (p=0.024). The coupled transverse to axial compliance ratio, which is a measure of the coupled motion, was small for laboratory prepared (0.115 ± 0.115) and postmortem specimens (0.142 ± 0.101). There was a moderately strong inverse relationship between interface compliance and contact index (r(2)=0.65). From a computational modeling perspective, the results of the current study support the concept that the cement-bone interface could be numerically implemented as a compliant layer with the same initial stiffness in tension and shear directions. The magnitude of the compliance could be modified to simulate immediate post-operative conditions (using laboratory prepared data set) or long-term remodeling (using postmortem data set).
Collapse
|
37
|
Waanders D, Janssen D, Mann KA, Verdonschot N. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface. J Biomech 2010; 43:3028-34. [PMID: 20692663 DOI: 10.1016/j.jbiomech.2010.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 11/28/2022]
Abstract
The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: 'only creep', 'only damage' or 'creep and damage'. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Waanders D, Janssen D, Mann KA, Verdonschot N. The mechanical effects of different levels of cement penetration at the cement-bone interface. J Biomech 2010; 43:1167-75. [PMID: 20022010 DOI: 10.1016/j.jbiomech.2009.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/17/2009] [Accepted: 11/27/2009] [Indexed: 11/30/2022]
Abstract
The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the penetration of cement into the bone was varied over six levels each. The FEA models, consisting of the interdigitated cement-bone constructs with friction between cement and bone, were loaded to failure in tension and in shear. The cement and bone elements had provision for crack formation due to excessive stress. The interfacial strength showed a strong relationship with the average interdigitation (r(2)=0.97 and r(2)=0.93 in tension and shear, respectively). Also, the interface strength was strongly related with the contact area (r(2)=0.98 and r(2)=0.95 in tension and shear, respectively). The FEA results compared favorably to the stiffness-strength relationships determined experimentally. Overall, the cement-bone interface was 2.5 times stronger in shear than in tension and 1.15 times stiffer in tension than in shear, independent of the average interdigitation. More cracks occurred in the cement than in the bone, independent of the average interdigitation, consistent with the experimental results. In addition, more cracks were generated in shear than in tension. In conclusion, achieving and maintaining maximal infiltration of cement into the bone to obtain large interdigitation and contact area is key to optimizing the interfacial strength.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Abstract
Polymethylmethacrylate (PMMA) has been used in orthopaedics since the 1940s. Despite the development and popularity of new biomaterials, PMMA remains popular. Although its basic components remain the same, small proprietary and environmental changes create variations in its properties. PMMA can serve as a spacer and as a delivery vehicle for antibiotics, and it can be placed to eliminate dead space. Endogenous and exogenous variables that affect its performance include component variables, air, temperature, and handling and mixing. PMMA is used in hip arthroplasty and vertebral augmentation, notably, vertebroplasty and kyphoplasty. Cardiopulmonary complications have been reported.
Collapse
|
40
|
Hung JP, Chang FC. Computational modeling of debonding behavior at the bone/cement interface with experimental validation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Miller MA, Eberhardt AW, Cleary RJ, Verdonschot N, Mann KA. Micromechanics of postmortem-retrieved cement-bone interfaces. J Orthop Res 2010; 28:170-7. [PMID: 19658167 PMCID: PMC2796700 DOI: 10.1002/jor.20893] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cement-bone interface plays an important role in load transfer between cemented implant systems and adjacent bone, but little is known about the micromechanical behavior of this interface following in vivo service. Small samples of postmortem-retrieved cement-bone specimens from cemented total hip replacements were prepared and mechanically loaded to determine the response to tensile and compressive loading. The morphology of the cement-bone interface was quantified using a CT-based stereology approach. Laboratory-prepared specimens were used to represent immediate postoperative conditions for comparison. The stiffness and strength of the cement-bone interface from postmortem retrievals was much lower than that measured from laboratory-prepared specimens. The cement-bone interfaces from postmortem retrievals were very compliant (under tension and compression) and had a very low tensile strength (0.21 +/- 0.32 MPa). A linear regression model, including interface contact fraction and intersection fraction between cement and bone, could explain 71% (p < 0.0001) of the variability in experimental response. Bony remodeling following an arthroplasty procedure may contribute to reduced contact between cement and bone, resulting in weaker, more compliant interfaces.
Collapse
Affiliation(s)
- Mark A. Miller
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 3216 Institute for Human Performance, 750 East Adams Street, Syracuse, New York, USA
| | | | | | - Nico Verdonschot
- Radboud University, Nijmegen, The Netherlands,Univeristy of Twente, Dept. of Biomechanical Engineering, Enschede, The Netherlands
| | - Kenneth A. Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 3216 Institute for Human Performance, 750 East Adams Street, Syracuse, New York, USA
| |
Collapse
|
42
|
Choi D, Park Y, Yoon YS, Masri BA. In vitro measurement of interface micromotion and crack in cemented total hip arthroplasty systems with different surface roughness. Clin Biomech (Bristol, Avon) 2010; 25:50-5. [PMID: 19744754 DOI: 10.1016/j.clinbiomech.2009.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 08/12/2009] [Accepted: 08/12/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cemented stems with various surface roughnesses are used in total hip arthroplasty. However, it is not clear how the surface roughness of the stem affects the longevity of the implant. In this study, we investigated the effect of the stem roughness on the micromotion at the bone-cement and cement-implant interface and investigated cracks in the cement layer through in vitro measurement. METHODS Stems with the same shape and material but with different surface roughness (polished with Ra=0.05 microm and matte-finished with Ra=0.83 microm) were tested to measure the interface micromotion using custom-made sensors. The stems were implanted in five paired cadaver femurs and cyclic loading was applied to the femoral head to measure the interface micromotion. After loading, we measured the crack length and calculated the crack length density at the cement layer. FINDINGS The difference in the interface micromotion between the polished stem and the rough stem was not significant except at the distal region of the cement-bone interface. More cracks were found at the distal region of the polished stem than at the rough stem. The magnitude of the cement crack length density did not correlate with the interface micromotion. INTERPRETATION The results showed that the difference in the roughness between the polished and matte finishes did not significantly affect the micromotion and crack of the interface. However, more cement wear particles were expected in the matte-finished stem.
Collapse
Affiliation(s)
- Donok Choi
- Department of Mechanical Engineering, KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Race A, Miller MA, Mann KA. Novel methods to study functional loading micromechanics at the stem-cement and cement-bone interface in cemented femoral hip replacements. J Biomech 2009; 43:788-91. [PMID: 19906377 DOI: 10.1016/j.jbiomech.2009.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/26/2009] [Accepted: 10/07/2009] [Indexed: 11/30/2022]
Abstract
We have developed a technique to directly observe the micromechanics of the stem-cement and cement-bone interfaces of cemented femoral stems under physiologically relevant loading conditions. Thick transverse sections of a stem-cement-femur construct were fixed to the base of a test frame. Ante- and retro-verting torques were applied to the femoral stem by screwing the stem (via a pair of through holes) to an axle, which was turned using a lever arm actuated by the test frame cross-head. The surface of each transverse section was serially digitally imaged during loading. The displacements of the stem, cement and bone were determined using digital image correlation. These data were then used to calculate the relative displacements across the interfaces. This method provides a path to more thorough understanding of load-transfer from femoral stem to femur.
Collapse
Affiliation(s)
- A Race
- Musculoskeletal Science Research Center (ihp3217), SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
44
|
Janssen D, Mann KA, Verdonschot N. Finite element simulation of cement-bone interface micromechanics: a comparison to experimental results. J Orthop Res 2009; 27:1312-8. [PMID: 19340877 PMCID: PMC2802538 DOI: 10.1002/jor.20882] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recently, experiments were performed to determine the micromechanical behavior of the cement-bone interface under tension-compression loading conditions. These experiments were simulated using finite element analysis (FEA) to test whether the micromechanical response of the interface could be captured in micromodels. Models were created of experimental specimens based upon microcomputed tomography data, including the complex interdigitated bone-cement morphology and simulated frictional contact at the interface. The models were subjected to a fully reversed tension-compression load, mimicking the experimental protocol. Similar to what was found experimentally, the simulated interface was stiffer in compression than in tension, and the majority of displacement was localized to the cement-bone interface. A weak correlation was found between the FEA-predicted stiffness and the stiffness found experimentally, with average errors of 8 and 30% in tension and compression, respectively. The hysteresis behavior found experimentally was partially reproduced in the simulation by including friction at the cement-bone interface. Furthermore, stress analysis suggested that cement was more at risk of fatigue failure than bone, concurring with the experimental observation that more cracks were formed in the cement than in the bone. The current study provides information that may help explain the load transfer mechanisms taking place at the cement-bone interface.
Collapse
Affiliation(s)
- Dennis Janssen
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Nico Verdonschot
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Laboratory for Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
45
|
Waanders D, Janssen D, Miller MA, Mann KA, Verdonschot N. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study. J Biomech 2009; 42:2513-9. [PMID: 19682690 DOI: 10.1016/j.jbiomech.2009.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r(2)=0.43), but did not correlate with the simulated crack volume fraction (r(2)=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r(2)=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r(2)=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties.
Collapse
Affiliation(s)
- Daan Waanders
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Mann KA, Miller MA, Race A, Verdonschot N. Shear fatigue micromechanics of the cement-bone interface: An in vitro study using digital image correlation techniques. J Orthop Res 2009; 27:340-6. [PMID: 18846550 PMCID: PMC2790035 DOI: 10.1002/jor.20777] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Loss of fixation at the cement-bone interface is known to contribute to aseptic loosening, but little is known about the mechanical damage response of this interface. An in vitro study using cement-bone specimens subjected to shear fatigue loading was performed, and the progression of stiffness changes and creep damage at the interface was measured using digital image correlation techniques. Stiffness changes and creep damage were localized to the contact interface between cement and bone. Interface creep damage followed a three-phase response with an initial rapid increase in creep, followed by a steady-state increase, concluding in a final rapid increase in creep. The initial creep phase was accompanied by an increase in interface stiffness, suggesting an initial locking-in effect at the interface. Interface stiffness decreased as creep damage progressed. Power law models were reasonably successful in describing the creep and stiffness damage response and were a function of loading magnitude, number of loading cycles, and contact area at the interface. More microcrack damage occurred to the cement when compared to the bone, and the damage was localized along the interface. These findings indicate that damage to the cement-bone interface could be minimized by improving cement-bone contact and by strengthening the fatigue resistance of the cement.
Collapse
Affiliation(s)
- Kenneth A. Mann
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark A. Miller
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Amos Race
- Department of Orthopaedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nico Verdonschot
- Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Leung SY, New AM, Browne M. The use of complementary non-destructive evaluation methods to evaluate the integrity of the cement—bone interface. Proc Inst Mech Eng H 2008; 223:75-86. [DOI: 10.1243/09544119jeim465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The integrity of the cement—bone interface is vital to the long-term stability of cemented hip arthroplasty. Most of the previous studies investigating the interface have been confined to the continuum level, neglecting the effects of microstructure. Microscopic damage at the interface may eventually lead to macroscopic loosening of the implant. However, as the strength of the interface depends on the interlock of the cement with bone and because the properties of cancellous bone depend on its microstructure, the study of the behaviour of the interface at the microstructural level may help to gain an understanding of the factors governing initiation of loosening. In this study, two complementary non-destructive methods, acoustic emission (AE) and computed tomography (CT), have been implemented to study the initiation and progression of damage of an analogue cement—bone interface sample under four-point bending. Early failure was detected, localized, and characterized using AE. CT images of the sample before and after loading were used to visualize damage in three dimensions. Damage initiated at the interface and was found to be related to stress-raising microstructural features in the cement. These were caused by irregularities in the geometry of the bone analogue and recesses and notches formed by the flow of cement.
Collapse
Affiliation(s)
- S Y Leung
- Bioengineering Sciences Research Group, University of Southampton, Southampton, UK
| | - A M New
- Bioengineering Sciences Research Group, University of Southampton, Southampton, UK
| | - M Browne
- Bioengineering Sciences Research Group, University of Southampton, Southampton, UK
| |
Collapse
|
48
|
Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response. J Biomech 2008; 41:3158-63. [PMID: 18848699 DOI: 10.1016/j.jbiomech.2008.08.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/24/2022]
Abstract
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
Collapse
|