1
|
Zhao YX, Yao MJ, Shen JW, Zhang WX, Zhou YX. Electroacupuncture attenuates nociceptive behaviors in a mouse model of cancer pain. Mol Pain 2024; 20:17448069241240692. [PMID: 38443317 PMCID: PMC11010748 DOI: 10.1177/17448069241240692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| | - Ming-Jiang Yao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Jian-Wu Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
- Urology Department of Xiyuan Hospital, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xi Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| | - Yuan-Xi Zhou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
| |
Collapse
|
2
|
Trouvilliez S, Lagadec C, Toillon RA. TrkA Co-Receptors: The Janus Face of TrkA? Cancers (Basel) 2023; 15:cancers15071943. [PMID: 37046604 PMCID: PMC10093326 DOI: 10.3390/cancers15071943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Larotrectinib and Entrectinib are specific pan-Trk tyrosine kinase inhibitors (TKIs) approved by the Food and Drug Administration (FDA) in 2018 for cancers with an NTRK fusion. Despite initial enthusiasm for these compounds, the French agency (HAS) recently reported their lack of efficacy. In addition, primary and secondary resistance to these TKIs has been observed in the absence of other mutations in cancers with an NTRK fusion. Furthermore, when TrkA is overexpressed, it promotes ligand-independent activation, bypassing the TKI. All of these clinical and experimental observations show that genetics does not explain all therapeutic failures. It is therefore necessary to explore new hypotheses to explain these failures. This review summarizes the current status of therapeutic strategies with TrkA inhibitors, focusing on the mechanisms potentially involved in these failures and more specifically on the role of TrkA.
Collapse
Affiliation(s)
- Sarah Trouvilliez
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Chann Lagadec
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
- GdR2082 APPICOM-«Approche Intégrative Pour Une Compréhension Multi-Échelles de la Fonction des Protéines Membranaires», 75016 Paris, France
| |
Collapse
|
3
|
Li H, Liu T, Sun J, Zhao S, Wang X, Luo W, Luo R, Shen W, Luo C, Fu D. Up-Regulation of ProBDNF/p75 NTR Signaling in Spinal Cord Drives Inflammatory Pain in Male Rats. J Inflamm Res 2023; 16:95-107. [PMID: 36643954 PMCID: PMC9838215 DOI: 10.2147/jir.s387127] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The spinal cord expresses brain-derived neurotrophic factor precursor (proBDNF) and its receptor pan neurotrophin receptor 75 (p75NTR). However, the role of spinal proBDNF signaling in the pathogenesis of inflammatory pain remains unknown. Methods Rats were locally injected with complete Freund's adjuvant (CFA) to induce inflammatory pain. The proBDNF signal expression was detected by double-labeled immunofluorescence. ProBDNF protein, p75NTR extracellular domain (p75NTR-ECD), or monoclonal anti-proBDNF (McAb-proB) were administrated by intrathecal injection to investigate their effects on pain behavior. Paw withdrawal thermal latency (PWL) and paw withdrawal mechanical threshold (PWT) were performed to evaluate pain behavior. Immunoblotting, immunohistochemistry, and immunofluorescence were used to assess inflammation-induced biochemical changes. Results CFA induced a rapid increase in proBDNF in the ipsilateral spinal cord, and immunofluorescence revealed that CFA-enhanced proBDNF was expressed in NeuN positive neurons and GFAP positive astrocytes. The administration of furin cleavage-resistant proBDNF via intrathecal injection (I.t.) significantly decreased the PWT and PWL, whereas McAb-proB by I.t. alleviated CFA-induced pain-like hypersensitivity in rats. Meanwhile, CFA administration triggered the activation of p75NTR and its downstream signaling extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor (NF)-kappaB p65 in the spinal cord. I.t. administration of p75NTR-ECD suppressed CFA-induced pain and neuroinflammation, including the expression of p-ERK1/2, p-p65, and the gene expression of tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). Conclusion Our study reveals that the activated proBDNF/p75NTRsignaling in the spinal cord contributes to the development of CFA-induced inflammatory pain. McAb-proB and p75NTR-ECD appear to be promising therapeutic agents for inflammatory pain.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Tao Liu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Jingjing Sun
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Shuai Zhao
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Wei Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Ruyi Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Weiyun Shen
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Cong Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Di Fu
- Department of Anesthesiology, the XiangYa Hospital, Central South University, ChangSha, People’s Republic of China,Correspondence: Di Fu, Department of Anesthesiology, the XiangYa Hospital, Central South University, Xiangya Road No. 86, Changsha, Hunan Province, 410011, People’s Republic of China, Tel/Fax +86 85295987, Email
| |
Collapse
|
4
|
Sugimoto J, Satoyoshi H, Takahata K, Muraoka S. Fabry disease-associated globotriaosylceramide induces mechanical allodynia via activation of signaling through proNGF-p75 NTR but not mature NGF-TrkA. Eur J Pharmacol 2021; 895:173882. [PMID: 33482180 DOI: 10.1016/j.ejphar.2021.173882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
Fabry disease (FD) is an X-linked metabolic storage disorder arising from the deficiency of lysosomal α-galactosidase A, which leads to the gradual accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), throughout the body. Pain in the extremities is an early symptom of FD; however, the underlying pathophysiological mechanisms remain unknown. α-Galactosidase A knockout animals exhibit nociceptive behaviors, with enhanced expression levels of several ion channels. These characteristics are observed in animals treated with nerve growth factor (NGF). Here, we aimed to elucidate the potential of NGF signaling as a cause of FD-associated pain, using intraplantar Gb3-treated mice displaying mechanical allodynia. Treatment with a neutralizing antibody against a precursor of NGF (proNGF) or its receptor, p75 neurotrophin receptor (p75NTR), resulted in the recovery from Gb3-induced pain. Conversely, anti-NGF and anti-tropomyosin receptor kinase A antibodies failed to exert analgesic effects. Gb3 injection had no effects on the expression levels of proNGF and p75NTR in the plantar skin and dorsal root ganglia, suggesting that Gb3 activates the pain pathway, possibly mediated through functional up-regulation of proNGF-p75NTR signaling. Furthermore, by pharmacological approaches using a protein kinase A (PKA) inhibitor and a cholesterol-removing agent, we found that p75NTR-phosphorylating PKA and lipid rafts for phosphorylated p75NTR translocation were required for Gb3-induced pain. These results suggest that acute exposure to Gb3 induces mechanical allodynia via activation of the proNGF-p75NTR pathway, which involves lipid rafts and PKA. Our findings provide new pathological insights into FD-associated pain, and suggest the need to develop therapeutic interventions targeting proNGF-p75NTR signaling.
Collapse
Affiliation(s)
- Junya Sugimoto
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| | - Kazue Takahata
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan.
| | - Shizuko Muraoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka, 580-8503, Japan
| |
Collapse
|
5
|
Yang W, Sung K, Xu W, Rodriguez MJ, Wu AC, Santos SA, Fang S, Uber RK, Dong SX, Guillory BC, Orain X, Raus J, Jolivalt C, Calcutt N, Rissman RA, Ding J, Wu C. A missense point mutation in nerve growth factor (NGF R100W) results in selective peripheral sensory neuropathy. Prog Neurobiol 2020; 194:101886. [PMID: 32693191 DOI: 10.1016/j.pneurobio.2020.101886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 01/15/2023]
Abstract
The R100W mutation in nerve growth factor is associated with hereditary sensory autonomic neuropathy V in a Swedish family. These patients develop severe loss of perception to deep pain but with apparently normal cognitive functions. To better understand the disease mechanism, we examined a knockin mouse model of HSAN V. The homozygous mice showed significant structural deficits in intra-epidermal nerve fibers (IENFs) at birth. These mice had a total loss of pain perception at ∼2 months of age and often failed to survive to adulthood. Heterozygous mutant mice developed a progressive degeneration of small sensory fibers both behaviorally and functionally: they showed a progressive loss of IENFs starting at the age of 9 months accompanied with progressive loss of perception to painful stimuli such as noxious temperature. Quantitative analysis of lumbar 4/5 dorsal root ganglia revealed a significant reduction in small size neurons, while analysis of sciatic nerve fibers revealed the heterozygous mutant mice had no reduction in myelinated nerve fibers. Significantly, the amount of NGF secreted from mouse embryonic fibroblasts were reduced from both heterozygous and homozygous mice compared to their wild-type littermates. Interestingly, the heterozygous mice showed no apparent structural alteration in the brain: neither the anterior cingulate cortex nor the medial septum including NGF-dependent basal forebrain cholinergic neurons. Accordingly, these animals did not develop appreciable deficits in tests for brain function. Our study has thus demonstrated that the NGFR100W mutation likely affects the structure and function of peripheral sensory neurons.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Neurology, Zhuijiang Hospital, Southern Medical University, Guangzhou, China
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria J Rodriguez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Andrew C Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Sarai A Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Rebecca K Uber
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephanie X Dong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brandon C Guillory
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Xavier Orain
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jordan Raus
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Corrine Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Liu Z, Murphy SF, Huang J, Zhao L, Hall CC, Schaeffer AJ, Schaeffer EM, Thumbikat P. A novel immunocompetent model of metastatic prostate cancer-induced bone pain. Prostate 2020; 80:782-794. [PMID: 32407603 PMCID: PMC7375026 DOI: 10.1002/pros.23993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over 70% to 85% of men with advanced prostate cancer (PCa) develop bone metastases characterized by severe bone pain and increased likelihood of bone fracture. These clinical features result in decreased quality of life and act as a predictor of higher mortality. Mechanistically, the skeletal pathologies such as osteolytic lesions and abnormal osteoblastic activity drive these symptoms. The role of immune cells in bone cancer pain remains understudied, here we sought to recapitulate this symptomology in a murine model. METHODS The prostate cancer bone metastasis-induced pain model (CIBP) was established by transplanting a mouse prostate cancer cell line into the femur of immunocompetent mice. Pain development, gait dynamics, and the changes in emotional activities like depression and anxiety were evaluated. Animal tissues including femurs, dorsal root ganglion (DRG), and spinal cord were collected at killing and microcomputed tomography (μCT), histology/immunohistochemistry, and quantitative immunofluorescent analysis were performed. RESULTS Mice receiving prostate cancer cells showed a significantly lower threshold for paw withdrawal responses induced by mechanical stimulation compared with their control counterparts. Zero maze and DigiGait analyses indicated reduced and aberrant movement associated emotional activity compared with sham control at 8-weeks postinjection. The μCT analysis showed osteolytic and osteoblastic changes and a 50% reduction of the trabecular volumes within the prostate cancer group. Neurologically we demonstrated, increased calcitonin gene-related peptide (CGRP) and neuronal p75NTR immune-reactivities in both the projected terminals of the superficial dorsal horn and partial afferent neurons in DRG at L2 to L4 level in tumor-bearing mice. Furthermore, our data show elevated nerve growth factor (NGF) and TrkA immunoreactivities in the same segment of the superficial dorsal horn that were, however, not colocalized with CGRP and p75NTR . CONCLUSIONS This study describes a novel immunocompetent model of CIBP and demonstrates the contribution of NGF and p75NTR to chronic pain in bone metastasis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen F. Murphy
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Christel C. Hall
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Anthony J. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward M. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Praveen Thumbikat
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
7
|
Gorantla VR, Thomas SE, Millis RM. Environmental Enrichment and Brain Neuroplasticity in the Kainate Rat Model of Temporal Lobe Epilepsy. J Epilepsy Res 2019; 9:51-64. [PMID: 31482057 PMCID: PMC6706649 DOI: 10.14581/jer.19006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Environmental enrichment (EE) improves brain function and ameliorates cognitive impairments; however, whether EE can reverse the learning and memory deficits seen following seizures remains unknown. Methods We tested the hypothesis that EE augments neurogenesis and attenuates the learning and memory deficits in rats subjected to kainate-induced seizures in hippocampus, amygdala and motor cortex. EE consisted of daily exposures immediately after KA lesioning (early EE) and after a 60-day period (late EE). Morphometric counting of neuron numbers (NN), dendritic branch-points and intersections (DDBPI) were performed. Spatial learning in a T-maze test was described as percent correct responses and memory in a passive-avoidance test was calculated as time spent in the small compartment where they were previously exposed to an aversive stimulus. Results EE increased NN and DDBPI in the normal control and in the KA-lesioned rats in all brain areas studied, after both early and late exposure to EE. Late EE resulted in significantly fewer surviving neurons than early EE in all brain areas (p < 0.0001). EE increased the percent correct responses and decreased time spent in the small compartment, after both early and late EE. The timing of EE (early vs. late) had no effect on the behavioral measurements. Conclusions These findings demonstrate that, after temporal lobe and motor cortex epileptic seizures in rats, EE improves neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the EE treatment is delayed for 60 days. Future studies should determine whether EE is a useful therapeutic strategy for patients affected by seizures.
Collapse
Affiliation(s)
- Vasavi R Gorantla
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Sneha E Thomas
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Richard M Millis
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda.,Department of Medical Physiology, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| |
Collapse
|
8
|
Sung K, Ferrari LF, Yang W, Chung C, Zhao X, Gu Y, Lin S, Zhang K, Cui B, Pearn ML, Maloney MT, Mobley WC, Levine JD, Wu C. Swedish Nerve Growth Factor Mutation (NGF R100W) Defines a Role for TrkA and p75 NTR in Nociception. J Neurosci 2018; 38:3394-3413. [PMID: 29483280 PMCID: PMC5895035 DOI: 10.1523/jneurosci.1686-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.
Collapse
Affiliation(s)
| | - Luiz F Ferrari
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Wanlin Yang
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea
| | | | - Yingli Gu
- Department of Neurosciences
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China 150001
| | - Suzhen Lin
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - Kai Zhang
- Department of Chemistry
- Department of Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093
- V.A. San Diego Healthcare System, San Diego, California 92161
| | - Michael T Maloney
- Department of Neurosciences, Stanford University, Stanford, California 94305
| | | | - Jon D Levine
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Chengbiao Wu
- Department of Neurosciences,
- V.A. San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
9
|
Long X, Li M, Li LX, Sun YY, Zhang WX, Zhao DY, Li YQ. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol Motil 2018; 30:e13227. [PMID: 29052293 DOI: 10.1111/nmo.13227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Altered visceral sensation is common in irritable bowel syndrome (IBS) and nerve growth factor (NGF) participates in visceral pain development. Sodium butyrate (NaB) could induce colonic hypersensitivity via peripheral up-regulation of NGF in animals. Enteric glial cells (EGCs) appear to be an important source of NGF. Whether butyrate could induce visceral hypersensitivity via increased EGC-derived NGF is still unknown. METHODS CRL-2690 cells were used for transcriptome analyses after butyrate treatment. Rats received butyrate enemas to induce colonic hypersensitivity. Colorectal distention test was performed to assess visceral sensitivity. Immunofluorescence studies were used to evaluate the co-expression of glial fibrillary acidic protein (GFAP) and NGF or growth associated protein 43 in animal model. NGF expression in rat colon was also investigated. In vitro, CRL-2690 cells were stimulated with NaB or trichostatin A (TSA). NGF or GFAP expression was also examined. KEY RESULTS Transcriptome analyses showed that butyrate induced marked changes of genes expression related to neurotrophic signaling pathways. NaB-treated rats showed increased visceral sensitivity. An improved NGF expression level was observed in NaB-treated rats. Meanwhile, a 2.1-fold increase in co-expression of GFAP and NGF was also determined in rats received NaB enemas. In cultured cells, both NaB and TSA treatment could cause obvious NGF expression. Thus, butyrate might regulate EGC function via histone deacetylase inhibition. CONCLUSIONS & INFERENCES Butyrate-EGC interplay may play a pivotal role in regulation of NGF expression and the development of colonic hypersensitivity in IBS-like animal model.
Collapse
Affiliation(s)
- X Long
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - M Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - L-X Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Y-Y Sun
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - W-X Zhang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - D-Y Zhao
- Department of Gastroenterology, General Hospital of Puyang Oilfield, Puyang, China
| | - Y-Q Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Lucchesi M, Lanzetta G, Antonuzzo A, Rozzi A, Sardi I, Favre C, Ripamonti CI, Santini D, Armento G. Developing drugs in cancer-related bone pain. Crit Rev Oncol Hematol 2017; 119:66-74. [PMID: 28893462 DOI: 10.1016/j.critrevonc.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 08/19/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Cancer-related bone pain is a frequent and important key problem for metastatic patients that may reduce quality of life, with related limitations in daily activities and morbidity. Often traditional approach to pain may fail given the complex pathophysiology of this phenomenon. METHODS The aim of this review is to describe promising therapies for cancer-related bone pain, from the pathophysiology to the clinical trials currently ongoing. Moreover, any new evidence for better approach to cancer-related bone pain with the traditional drugs is also considered. CONCLUSIONS In clinical practice opioids remain the most important pharmacologic treatment for severe pain related to bone cancer. Regard developing drugs, anti-NGF and anti-TrkA are the most investigated new drug in this setting, but a future role in clinical practice is still uncertain.
Collapse
Affiliation(s)
- Maurizio Lucchesi
- Thoracic Cancer Centre, Pulmonology Unit, University Hospital of Pisa, Pisa, Italy; Department of Pediatric Oncology and Hematology, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Gaetano Lanzetta
- Medical Oncology Unit, IRCCS Neuromed, Pozzilli, Italy; Medical Oncology Unit, Italian Neuro-Traumatology Institute, Grottaferrata, Italy.
| | - Andrea Antonuzzo
- Medical Oncology Unit 1 SSN, Pisa University Hospital, Pisa, Italy.
| | - Antonio Rozzi
- Medical Oncology Unit, Italian Neuro-Traumatology Institute, Grottaferrata, Italy.
| | - Iacopo Sardi
- Department of Pediatric Oncology and Hematology, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Claudio Favre
- Department of Pediatric Oncology and Hematology, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Carla Ida Ripamonti
- Supportive Care in Cancer Unit, IRCCS National Cancer Institute, Milan, Italy.
| | - Daniele Santini
- Medical Oncology Unit, Campus Biomedico University Hospital, Rome, Italy.
| | - Grazia Armento
- Medical Oncology Unit, Campus Biomedico University Hospital, Rome, Italy.
| |
Collapse
|
11
|
Yao P, Ding Y, Han Z, Mu Y, Hong T, Zhu Y, Li H. Suppression of asparaginyl endopeptidase attenuates breast cancer-induced bone pain through inhibition of neurotrophin receptors. Mol Pain 2017; 13:1744806917708127. [PMID: 28554249 PMCID: PMC5453632 DOI: 10.1177/1744806917708127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023] Open
Abstract
Objective Cancer-induced bone pain is a common clinical problem in breast cancer patients with bone metastasis. However, the mechanisms driving cancer-induced bone pain are poorly known. Recent studies show that a novel protease, asparaginyl endopeptidase (AEP) plays crucial roles in breast cancer metastasis and progression. We aim to determine the functions and targeted suppress of AEP in a mouse model of breast cancer-induced bone pain. Methods Breast cancer cells with AEP knocked-down or overexpression were constructed and implanted into the intramedullary space of the femur to induce pain-like behavior in mice. AEP-specific inhibitors or purified AEP proteins were further used in animal model. The histological characters of femur and pain ethological changes were measured. The expressions of AEP and neurotrophin receptors (p75NTR and TrkA) in dorsal root ganglion and spinal cord were examined. Results Femur radiographs and histological analysis revealed that cells with AEP knocked-down reduced bone destruction and pain behaviors. However, cells with AEP overexpression elevated bone damage and pain behaviors. Further, Western blot results found that the expressions of p75NTR and TrkA in dorsal root ganglions and spinal cords were reduced in mice inoculated with AEP knocked-down cells. Targeted suppression of AEP with specific small compounds significantly reduced the bone pain while purified recombinant AEP proteins increased bone pain. Conclusions AEP aggravate the development of breast cancer bone metastasis and bone pain by increasing the expression of neurotrophin receptors. AEP might be an effective target for treatment of breast cancerinduced bone pain.
Collapse
Affiliation(s)
- Peng Yao
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenkai Han
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Mu
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Hong
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongqiang Zhu
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxi Li
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy. Cardiovasc Psychiatry Neurol 2016; 2016:3915767. [PMID: 27313873 PMCID: PMC4893441 DOI: 10.1155/2016/3915767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/24/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed.
Collapse
|
13
|
Kobayashi T, Yamauchi K, Matsuura Y, Kuniyoshi K, Takahashi K, Ohtori S. The Effects of Generally Administered Anti-Nerve Growth Factor Receptor (p75NTR) Antibody on Pain-Related Behavior, Dorsal Root Ganglia, and Spinal Glia Activation in a Rat Model of Brachial Plexus Avulsion. J Hand Surg Am 2015; 40:2017-25. [PMID: 26321458 DOI: 10.1016/j.jhsa.2015.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effect of intraperitoneal administration of an anti-p75 neurotrophin receptor (p75NTR) antibody on reducing neuropathic pain in a rat model of brachial plexus avulsion (BPA). METHODS We randomly assigned 40 male Wistar rats to 4 groups. In the BPA group, the C8-T1 roots were avulsed from the spinal cord at the lower trunk level, and saline was administered intraperitoneally. In the anti-p75NTR groups, 1 μL or 50 μL anti-p75NTR antibody was administered intraperitoneally after avulsion. In the sham-operated group, the lower trunk level was exposed, and saline was administered intraperitoneally. Mechanical hyperalgesia and pain-induced walking patterns were measured using von Frey filaments and CatWalk gait analysis at various time points until 15 days after administration. At 3 and 15 days after administration, sensory neurons involved in pain perception and satellite glial cells in the ipsilateral C7 dorsal root ganglia were immunolabeled with antibodies against calcitonin gene-related peptide and glial fibrillary acidic protein (GFAP), respectively. At both time points, microglial and astrocyte activation, indicative of spinal pain transmission, were immunohistochemically examined in the ipsilateral dorsal horn of the spinal cord (C7) using anti-ionized calcium-binding adaptor molecule 1 and anti-GFAP antibodies, respectively. RESULTS The gait pattern was significantly improved in both anti-p75NTR groups compared with the BPA group. There were significantly fewer calcitonin gene-related peptide-immunoreactive (IR) neurons, neurons encircled by GFAP-IR satellite glial cells, and GFAP-IR astrocytes in both anti-p75NTR groups compared with the BPA group at both time points. Fewer ionized calcium-binding adaptor molecule 1-IR microglia were quantified in both anti-p75NTR groups compared with the BPA group, but this was only significant at 15 days after administration. CONCLUSIONS Systemic application of the p75NTR inhibitory antibody suppressed neuropathic pain after BPA. CLINICAL RELEVANCE p75NTR may be a potential therapeutic target for the clinical treatment of neuropathic pain in BPA injury.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kazuyo Yamauchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Kuniyoshi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
Omae T, Nakamura J, Ohtori S, Orita S, Yamauchi K, Miyamoto S, Hagiwara S, Kishida S, Takahashi K. A novel rat model of hip pain by intra-articular injection of nerve growth factor-characteristics of sensory innervation and inflammatory arthritis. Mod Rheumatol 2015; 25:931-6. [PMID: 25736365 DOI: 10.3109/14397595.2015.1023977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine the direct effects of intra-articular injection of nerve growth factor (NGF) into normal rat hips and the time course of pain-related mediator appearance. METHODS Using 36 numbers of 8-week-old male Sprague-Dawley rats, 30 μl of 1% Fluoro-Gold solution (FG) (Sham-operated group; n = 12), 30 μl of 1% FG with 50 μg/ml NGF (NGF50 group; n = 12), and 30 μl of 1% FG with 100 μg/ml NGF (NGF100 group; n = 12) were injected into the left hip joints. Neurons in the dorsal root ganglion (DRG) labeled with FG, and FG and calcitonin gene-related peptide-immunoreactivity (CGRP-IR) were counted. The synovia in the left hip joint was examined histologically. RESULTS The NGF50 and NGF100 groups showed evidence of synovitis without cartilage degeneration compared with the Sham-operated group. At 7 days, the proportions of CGRP-IR FG-labeled to total FG-labeled neurons were 12%, 18%, and 36% in the Sham-operated, NGF50, and NGF100 groups, respectively. At 14 days, the proportions were 13%, 22%, and 35% in the Sham-operated, NGF50, and NGF100 groups, respectively. At 7 and 14 days, the NGF50 and NGF100 groups showed a significantly higher proportion of CGRP-IR FG-labeled neurons than the Sham-operated group. CONCLUSIONS Intra-articular administration of NGF into the hip joint produces a novel rat model for hip pain.
Collapse
Affiliation(s)
- Takanori Omae
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Junichi Nakamura
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Seiji Ohtori
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Sumihisa Orita
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Kazuyo Yamauchi
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Shuichi Miyamoto
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Shigeo Hagiwara
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Shunji Kishida
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| | - Kazuhisa Takahashi
- a Department of Orthopaedic Surgery , Graduate School of Medicine, Chiba University , Chiba City , Chiba , Japan
| |
Collapse
|
15
|
Cao S, Qin Y, Chen J, Shen S. Effects of pinacidil on changes to the microenvironment around the incision site, of a skin/muscle incision and retraction, in a rat model of postoperative pain. Mol Med Rep 2015; 12:829-36. [PMID: 25760986 PMCID: PMC4438946 DOI: 10.3892/mmr.2015.3465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 07/23/2014] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to evaluate the influence of the microenvironment around an incision site, on peripheral and central sensitization. The effects of pinacidil activation of ATP-sensitive potassium (KATP) channels prior to skin/muscle incision and retraction (SMIR) surgery were assessed. A total of 24 male Sprague Dawley rats were randomly assigned to four groups: Control, sham (incision operation), SMIR (incision plus retraction 1 h after the skin/muscle incision) and pinacidil (SMIR plus pinacidil). The rats in the pinacidil group were intraperitoneally injected with pinacidil prior to the SMIR procedure. The mechanical withdrawal threshold (MWT) was determined at each time point. The microvessel density (MVD) value was determined by immunohistochemistry, and western blotting was performed to analyze the relative protein expression levels of nerve growth factor (NGF), glucose transporter protein-1 (GLUT1) and C-jun N-terminal kinases. There was a significant reduction in the levels of MVD, GLUT1 and MWT following SMIR surgery as compared with the incision alone, and a significant increase in the NGF protein expression levels. In the SMIR group, the MVD value was significantly increased seven days after surgery, as compared with three days after surgery. Additionally, intraperitoneal administration of pinacidil prior to the SMIR surgery inhibited the SMIR-induced reduction in MWT and MVD and attenuated the SMIR-induced GLUT1 reduction. The results of the present study suggest that the microenvironment around an incision site may affect the development of peripheral and central sensitization. In addition, pinacidil had an inhibitory effect on the formation of the inflammatory microenvironment around the incision site through activation of KATP channels, thereby inhibiting peripheral and central sensitization.
Collapse
Affiliation(s)
- Su Cao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yinbin Qin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junjie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shiren Shen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
16
|
Nociceptive and histomorphometric evaluation of neural mobilization in experimental injury of the median nerve. ScientificWorldJournal 2013; 2013:476890. [PMID: 23935419 PMCID: PMC3725901 DOI: 10.1155/2013/476890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/03/2013] [Indexed: 01/25/2023] Open
Abstract
The carpal tunnel syndrome is the most common peripheral neuropathy in the upper limb, but its treatment with conservative therapies such as neural mobilization (NM) is still controversial. The aim of this study was to investigate the efficacy of the NM as treatment in a model of median nerve compression. 18 Wistar rats were subjected to compression of the median nerve in the right elbow proximal region. Were randomly divided into G1 (untreated), G2 (NM for 1 minute), and G3 (NM for 3 minutes). For treatment, the animals were anesthetized and the right forelimb received mobilization adapted to humans, on alternated days, from the 3rd to the 13th day postoperatively (PO), totaling six days of therapy. Nociception was assessed by withdrawal threshold, and after euthanasia histomorphometric analysis of the median nerve was performed. The nociceptive evaluation showed in G2 and G3 delay in return to baseline. Histomorphometric analysis showed no significant differences in the variables analyzed. It is concluded that the NM was not effective in reducing nociceptive sensation and did not alter the course of nerve regeneration.
Collapse
|
17
|
The effect of Anti-NGF receptor (p75 Neurotrophin Receptor) antibodies on nociceptive behavior and activation of spinal microglia in the rat brachial plexus avulsion model. Spine (Phila Pa 1976) 2013; 38:E332-8. [PMID: 23324933 DOI: 10.1097/brs.0b013e318285ee20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We measured the response of the behavior and spinal glial activation to anti-nerve growth factor receptor (p75 neurotrophin receptor [p75NTR]) antibodies in the rat brachial plexus avulsion (BPA) model. OBJECTIVE The aim of this study was to investigate the effect of anti-p75NTR antibodies on nociceptive behavior and activation of spinal microglia in the rat BPA model. SUMMARY OF BACKGROUND DATA Tanezumab (anti-nerve growth factor antibody) treatment is associated with pain reduction and improvement in function, but with several complications. METHODS Thirty male Wistar rats were used. In the BPA group, the C8-T1 roots were avulsed from the spinal cord with forceps at the lower trunk level and 10 μL of saline was applied locally (n = 10). In the anti-p75NTR group, the C8-T1 roots were avulsed and 10 μL of anti-p75NTR antibody was applied locally (n = 10). In a sham-operated group, the lower trunk was simply exposed (n = 10). Mechanical hyperalgesia and pain-induced walking patterns were measured using von Frey filaments (Stoelting, Wood Dale, IL) and the CatWalk gait analysis (Noldus Information Technology, the Netherlands) system every third day for 3 weeks. Activation of astrocytes and microglia was immunohistochemically examined in the spinal cord using anti-glial fibrillary acidic protein (GFAP) and anti-Iba1 antibodies both 7 and 21 days after surgery. RESULTS Animals in the BPA group displayed significant mechanical hyperalgesia that continued through day 21 compared with animals in the sham-operated group, and mechanical hyperalgesia in the anti-p75NTR group was significantly improved 6 days after the operation. Regarding pain-induced gait analysis via CatWalk, animals in the BPA group displayed a significantly greater pain-like gait pattern than the p75 group for up to 3 weeks. Levels of GFAP-immunoreactive astrocytes and Iba1-immunoreactive microglia in the anti-p75NTR group were significantly reduced compared with the BPA group. CONCLUSION Our results suggest that p75NTR contributes to neuropathic pain associated with BPA, and that inhibition of p75NTR reduces neuropathic pain. LEVEL OF EVIDENCE N/A.
Collapse
|
18
|
McKelvey L, Shorten GD, O'Keeffe GW. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem 2013; 124:276-89. [PMID: 23157347 DOI: 10.1111/jnc.12093] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/16/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target-derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, lead to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect one's ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti-NGF therapy for the clinical management of pain.
Collapse
Affiliation(s)
- Laura McKelvey
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
19
|
Cidral-Filho F, Martins D, Moré A, Mazzardo-Martins L, Silva M, Cargnin-Ferreira E, Santos A. Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor-α levels after sciatic nerve crush in mice. Eur J Pain 2013; 17:1193-204. [DOI: 10.1002/j.1532-2149.2012.00280.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | - E. Cargnin-Ferreira
- Laboratório de Marcadores Histológicos; Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina - Campus Lages; Lages; Brazil
| | | |
Collapse
|
20
|
Hoffman EM, Zhang Z, Anderson MB, Schechter R, Miller KE. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation. Neuroscience 2011; 193:452-65. [PMID: 21802499 DOI: 10.1016/j.neuroscience.2011.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self-harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception-related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined (1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, (2) IENF density, and (3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm(2)) and small neurons (<400 μm(2)), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception-related protein expression are potential mechanisms for tanezumab-induced hypoalgesia.
Collapse
Affiliation(s)
- E M Hoffman
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | | | | | | | | |
Collapse
|
21
|
Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, Lucas G. Differential expression of microRNAs in mouse pain models. Mol Pain 2011; 7:17. [PMID: 21385380 PMCID: PMC3060138 DOI: 10.1186/1744-8069-7-17] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 03/07/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that inhibit translation of target genes by binding to their mRNAs. The expression of numerous brain-specific miRNAs with a high degree of temporal and spatial specificity suggests that miRNAs play an important role in gene regulation in health and disease. Here we investigate the time course gene expression profile of miR-1, -16, and -206 in mouse dorsal root ganglion (DRG), and spinal cord dorsal horn under inflammatory and neuropathic pain conditions as well as following acute noxious stimulation. RESULTS Quantitative real-time polymerase chain reaction analyses showed that the mature form of miR-1, -16 and -206, is expressed in DRG and the dorsal horn of the spinal cord. Moreover, CFA-induced inflammation significantly reduced miRs-1 and -16 expression in DRG whereas miR-206 was downregulated in a time dependent manner. Conversely, in the spinal dorsal horn all three miRNAs monitored were upregulated. After sciatic nerve partial ligation, miR-1 and -206 were downregulated in DRG with no change in the spinal dorsal horn. On the other hand, axotomy increases the relative expression of miR-1, -16, and 206 in a time-dependent fashion while in the dorsal horn there was a significant downregulation of miR-1. Acute noxious stimulation with capsaicin also increased the expression of miR-1 and -16 in DRG cells but, on the other hand, in the spinal dorsal horn only a high dose of capsaicin was able to downregulate miR-206 expression. CONCLUSIONS Our results indicate that miRNAs may participate in the regulatory mechanisms of genes associated with the pathophysiology of chronic pain as well as the nociceptive processing following acute noxious stimulation. We found substantial evidence that miRNAs are differentially regulated in DRG and the dorsal horn of the spinal cord under different pain states. Therefore, miRNA expression in the nociceptive system shows not only temporal and spatial specificity but is also stimulus-dependent.
Collapse
Affiliation(s)
- Ricardo Kusuda
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
McNamee KE, Burleigh A, Gompels LL, Feldmann M, Allen SJ, Williams RO, Dawbarn D, Vincent TL, Inglis JJ. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain 2010; 149:386-392. [PMID: 20350782 DOI: 10.1016/j.pain.2010.03.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 01/19/2023]
Abstract
The origin of pain in osteoarthritis is poorly understood, but it is generally thought to arise from inflammation within the innervated structures of the joint, such as the synovium, capsule and bone. We investigated the role of nerve growth factor (NGF) in pain development in murine OA, and the analgesic efficacy of the soluble NGF receptor, TrkAD5. OA was induced in mice by destabilisation of the medial meniscus and pain was assessed by measuring hind-limb weight distribution. RNA was extracted from joints, and NGF and TNF expressions were quantified. The effect of tumour necrosis factor (TNF) and neutrophil blockade on NGF expression and pain were also assessed. NGF was induced in the joints during both post-operative (day 3) and OA (16weeks) pain, but not in the non-painful stage of disease (8weeks post-surgery). TrkAd5 was highly effective at suppressing pain in both phases. Induction of NGF in the post-operative phase of pain was TNF-dependent as anti-TNF reduced NGF expression in the joint and abrogated pain. However, TNF was not regulated in the late OA joints, and pain was not affected by anti-TNF therapy. Fucoidan, by suppressing cellular infiltration into the joint, was able to suppress post-operative, but not late OA pain. These results indicate that NGF is an important mediator of OA pain and that TrkAd5 represents a potent novel analgesic in this condition. They also suggest that, unlike post-operative pain, induction of pain in OA may not necessarily be driven by classical inflammatory processes.
Collapse
Affiliation(s)
- Kay E McNamee
- Kennedy Institute of Rheumatology, Imperial College London, London W6 8LH, UK Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, Whitson St, University of Bristol, Bristol BS1 3NY, UK School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia 6015, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|