1
|
Öztürk A, Karakaşlı A, Erbil G, Gökgöz MB, Yapici F. The Impact of Complex Loadings on the Structure of the L2-L3 Intervertebral Disc in a Sheep Spine Cadaver Model: A Biomechanical and Histological Evaluation. Cureus 2024; 16:e51941. [PMID: 38196992 PMCID: PMC10775825 DOI: 10.7759/cureus.51941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/11/2024] Open
Abstract
Background The human vertebral column generates movements under versatile, dynamic loads. Understanding how the spine reacts to these movements and loads is crucial for developing new spine implants and surgical treatments for intervertebral disc injuries. Mechanically uni-axial compression models have been extensively studied. However, the spine's daily loading is not limited to compression, so it is crucial to measure its behavior in all movements (flexion-extension, rotation, and axial compression). Methods This study utilized L1-L5 segments from 19 healthy adult sheep spines. The L2-L3 disc of the first spine underwent only histological evaluation without biomechanical testing to define basic histological parameters. The remaining 18 were divided into three groups of six and subjected to biomechanical tests. Different mechanisms for three groups of spinal segments were prepared, and tests were performed on Shimadzu AG-IS 10 KN (Universal Drawing Press, Kyoto, Japan). An axial load (800 N) was applied to the first group, an axial load with 15 degrees of flexion to the second group, and an axial load with 10 degrees of rotation plus 15 degrees of flexion to the third group. A biomechanical evaluation of the maximum elongation amounts (MEAs) was performed and compared between the groups. Then, the L2-L3 discs were removed from the sheep spines, and a histological examination of the discs was conducted using Hematoxylin-Eosin (HE), Alcian Blue (AB), and Masson's Trichrome (MT) staining. Results The mean MEA ± Standard Deviation (Range) was 1.39 ± 0.38 (0.91-1.94) for Group 1, 2.02 ± 0.75 (0.91-3.01) for Group 2, and 2.47 ± 1.09 (0.64-3.9) for Group 3. Biomechanically, although MEAs increased from Group 1 to Group 3 (meaning that the mean MEAs increased as the number of types of applied force increased), there was no statistically significant difference between the groups regarding the MEAs (P = 0.092). Histologically, no significant differences were observed between all groups after HE staining. In all groups, hypercellularity, edema in the connective tissue, separation between tissue layers, delamination, and signs of swelling and necrosis in the cells were observed similarly. For the AB staining, there was a decrease in the glycosaminoglycan (GAG) structure in the tissue samples compared to the control tissue, but no significant differences were observed between the groups. However, it was observed that the stratification in Group 3 was slightly more deteriorated than in the other groups. For the MT staining, collagen structure deterioration was observed in all groups. It was observed that the amount of collagen was significantly reduced compared to the control tissue. Conclusion As a result, when the axial load is applied biomechanically, there is more displacement of the vertebral discs in Group 3 with multidimensional movements. Furthermore, histological studies revealed deterioration between tissue layers when exposed to complex movements, and the degradation of stratification in group 3 compared to other loading combinations in groups 2 and 3 may indicate the role of complex loads in the formation of disc herniation.
Collapse
Affiliation(s)
- Akın Öztürk
- Orthopaedics and Traumatology, Mengücek Gazi Hospital, Erzincan, TUR
| | - Ahmet Karakaşlı
- Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, TUR
| | - Güven Erbil
- Histology and Embryology, Kyrenia University Faculty of Medicine, Girne, CYP
| | - Mehmet Burak Gökgöz
- Orthopaedics and Traumatology, Erzincan University Faculty of Medicine, Erzincan, TUR
| | - Furkan Yapici
- Orthopaedics and Traumatology, Erzincan University Faculty of Medicine, Erzincan, TUR
| |
Collapse
|
2
|
Wilke H, Betz VM, Kienle A. Biomechanical in vitro evaluation of the kangaroo spine in comparison with human spinal data. J Anat 2023; 243:128-137. [PMID: 36929138 PMCID: PMC10273331 DOI: 10.1111/joa.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
On the basis of the kangaroo's pseudo-biped locomotion and its upright position, it could be assumed that the kangaroo might be an interesting model for spine research and that it may serve as a reasonable surrogate model for biomechanical in vitro tests. The purpose of this in vitro study was to provide biomechanical properties of the kangaroo spine and compare them with human spinal data from the literature. In addition, references to already published kangaroo anatomical spinal parameters will be discussed. Thirteen kangaroo spines from C4 to S4 were sectioned into single-motion segments. The specimens were tested by a spine tester under pure moments. The range of motion and neutral zone of each segment were determined in flexion and extension, right and left lateral bending and left and right axial rotation. Overall, we found greater flexibility in the kangaroo spine compared to the human spine. Similarities were only found in the cervical, lower thoracic and lumbar spinal regions. The range of motion of the kangaroo and human spines displayed comparable trends in the cervical (C4-C7), lower thoracic and lumbar regions independent of the motion plane. In the upper and middle thoracic regions, the flexibility of the kangaroo spine was considerably larger. These results suggested that the kangaroo specimens could be considered to be a surrogate, but only in particular cases, for biomechanical in vitro tests.
Collapse
Affiliation(s)
- Hans‐Joachim Wilke
- Institute of Orthopaedic Research and BiomechanicsTrauma Research Centre Ulm, University of UlmUlmGermany
| | - Volker Michael Betz
- Institute of Orthopaedic Research and BiomechanicsTrauma Research Centre Ulm, University of UlmUlmGermany
| | | |
Collapse
|
3
|
Wilke HJ, Kienle A, Maile S, Rasche V, Berger-Roscher N. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:1363-1372. [DOI: 10.1007/s00586-016-4416-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/14/2015] [Accepted: 01/19/2016] [Indexed: 01/05/2023]
Abstract
Abstract
Purpose
The cause of disc herniation is not well understood yet. It is assumed that heavy lifting and extreme postures can cause small injuries starting either in the inner anulus or from the outside close to the endplate. Such injuries are accumulated over years until its structure is weakened and finally a single loading event leads to a sudden failure of the last few intact lamellae. This paper describes a novel, custom-developed dynamic 6-DOF disc-loading simulator that allows complex loading to provoke such disc damage and herniations.
Methods
The machine’s axes are driven by six independent servomotors providing high loads (10 kN axial compression, 2 kN shear, 100 Nm torque) up to 5 Hz. A positional accuracy test was conducted to validate the machine. Subsequently, initial experiments with lumbar ovine motion segments under complex loading were performed. After testing, the discs were examined in an ultra-high field MRI (11.7 T). A three-dimensional reconstruction was performed to visualise the internal disc lesions.
Results
Validation tests demonstrated positioning with an accuracy of ≤0.08°/≤0.026 mm at 0.5 Hz and ≤0.27°/≤0.048 mm at 3.0 Hz with amplitudes of ±17°/±2 mm. Typical failure patterns and herniations could be provoked with complex asymmetrical loading protocols. Loading with axial compression, flexion, lateral bending and torsion lead in 8 specimens to 4 herniated discs, two protrusions and two delaminations. All disc failures occurred in the posterior region of the disc.
Conclusion
This new dynamic disc-loading simulator has proven to be able to apply complex motion combinations and allows to create artificial lesions in the disc with complex loading protocols. The aim of further tests is to better understand the mechanisms by which disc failure occurs at the microstructural level under different loading conditions. Visualisation with ultra-high field MRI at different time points is a promising method to investigate the gradual development of such lesions, which may finally lead to disc failure. These kinds of experiments will help to better investigate the mechanical failure of discs to provide new insights into the initiation of intervertebral disc herniation. This device will also serve for many other applications in spine biomechanics research.
Collapse
|
4
|
Valentin S, Licka TF. Spinal Motion and Muscle Activity during Active Trunk Movements - Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures. PLoS One 2016; 11:e0146362. [PMID: 26741136 PMCID: PMC4704739 DOI: 10.1371/journal.pone.0146362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/16/2015] [Indexed: 11/23/2022] Open
Abstract
Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics.
Collapse
Affiliation(s)
- Stephanie Valentin
- Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| | - Theresia F. Licka
- Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Large Animal Hospital, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Scotland, United Kingdom
| |
Collapse
|
5
|
Alizadeh M, Kadir MRA, Fadhli MM, Fallahiarezoodar A, Azmi B, Murali MR, Kamarul T. The use of X-shaped cross-link in posterior spinal constructs improves stability in thoracolumbar burst fracture: a finite element analysis. J Orthop Res 2013; 31:1447-54. [PMID: 23640802 DOI: 10.1002/jor.22376] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/01/2013] [Indexed: 02/04/2023]
Abstract
Posterior instrumentation is a common fixation method used to treat thoracolumbar burst fractures. However, the role of different cross-link configurations in improving fixation stability in these fractures has not been established. A 3D finite element model of T11-L3 was used to investigate the biomechanical behavior of short (2 level) and long (4 level) segmental spine pedicle screw fixation with various cross-links to treat a hypothetical L1 vertebra burst fracture. Three types of cross-link configurations with an applied moment of 7.5 Nm and 200 N axial force were evaluated. The long construct was stiffer than the short construct irrespective of whether the cross-links were used (p < 0.05). The short constructs showed no significant differences between the cross-link configurations. The XL cross-link provided the highest stiffness and was 14.9% stiffer than the one without a cross-link. The long construct resulted in reduced stress to the adjacent vertebral bodies and screw necks, with 66.7% reduction in bending stress on L2 when the XL cross-link was used. Thus, the stability for L1 burst fracture fixation was best achieved by using long segmental posterior instrumentation constructs and an XL cross-link configuration. Cross-links did not improved stability when a short structure was used.
Collapse
Affiliation(s)
- Mina Alizadeh
- Medical Implant Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
6
|
Pizanis A, Holstein JH, Vossen F, Burkhardt M, Pohlemann T. Compression and contact area of anterior strut grafts in spinal instrumentation: a biomechanical study. BMC Musculoskelet Disord 2013; 14:254. [PMID: 23971712 PMCID: PMC3766234 DOI: 10.1186/1471-2474-14-254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
Background Anterior bone grafts are used as struts to reconstruct the anterior column of the spine in kyphosis or following injury. An incomplete fusion can lead to later correction losses and compromise further healing. Despite the different stabilizing techniques that have evolved, from posterior or anterior fixating implants to combined anterior/posterior instrumentation, graft pseudarthrosis rates remain an important concern. Furthermore, the need for additional anterior implant fixation is still controversial. In this bench-top study, we focused on the graft-bone interface under various conditions, using two simulated spinal injury models and common surgical fixation techniques to investigate the effect of implant-mediated compression and contact on the anterior graft. Methods Calf spines were stabilised with posterior internal fixators. The wooden blocks as substitutes for strut grafts were impacted using a “pressfit” technique and pressure-sensitive films placed at the interface between the vertebral bone and the graft to record the compression force and the contact area with various stabilization techniques. Compression was achieved either with posterior internal fixator alone or with an additional anterior implant. The importance of concomitant ligament damage was also considered using two simulated injury models: pure compression Magerl/AO fracture type A or rotation/translation fracture type C models. Results In type A injury models, 1 mm-oversized grafts for impaction grafting provided good compression and fair contact areas that were both markedly increased by the use of additional compressing anterior rods or by shortening the posterior fixator construct. Anterior instrumentation by itself had similar effects. For type C injuries, dramatic differences were observed between the techniques, as there was a net decrease in compression and an inadequate contact on the graft occurred in this model. Under these circumstances, both compression and the contact area on graft could only be maintained at high levels with the use of additional anterior rods. Conclusions Under experimental conditions, we observed that ligamentous injury following type C fracture has a negative influence on the compression and contact area of anterior interbody bone grafts when only an internal fixator is used for stabilization. Because of the loss of tension banding effects in type C injuries, an additional anterior compressing implant can be beneficial to restore both compression to and contact on the strut graft.
Collapse
Affiliation(s)
- Antonius Pizanis
- Department for Trauma-, Hand- and Reconstructive Surgery, University Medical Centre of the Saarland, Homburg, Saar, D 66421, Germany.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Surgical treatment of spinal fractures consists of postural reduction and segmental arthrodesis, together with an eventual performance of spinal canal decompression. Spinal arthrodesis consists of the combination of a hardware system for mechanical stabilisation together with a biological substance for enhancement of bone formation. To date, autologous graft is the only biological substance demonstrated to possess osteogenic properties. Cancellous bone graft has greater cellular activity than cortical graft, whereas cortical graft is stronger. Consequently, according to biological and biomechanical properties of autograft, spinal posterior arthrodesis is better enhanced by cancellous autograft, whereas anterior interbody tricortical bone is more suitable for anterior fusion. Allograft does not cause harvesting complications as autograft does, and also its amount is theoretically unlimited; nevertheless the rate of bone fusion facilitated by allograft is far from that enhanced by autograft given that allograft has no osteoprogenitor cells. There is little evidence on the efficacy of demineralised bone matrix for spinal fusion. Bone morphogenetic proteins (BMPs) are in use in spinal surgery, but their exact role with respect to type, dose, and carrier, together with their cost-effectiveness, need further clinical delineation. Calcium phosphate compounds appear to be good as carriers; however, they have no osteoinductive or osteogenic properties. Current clinical literature seem to indicate their usefulness for bony fusion in spinal surgery, when combined with bone marrow aspirate or used as an extender for autologous bone graft. Age, length of fusion, location, and concurrent diseases should be definitive for fusion outcome; papers on spinal arthrodesis should neatly stratify these variables. Unfortunately, since that is not the rule, conclusions drawn from current literature are very unreliable. Autograft remains the gold standard, and cancellous bone is advisable in posterolateral approaches, whereas tricortical iliac crest autograft appears appropriate for interbody support. In longer segments, its expansion with BMPs looks safe at least. Basic knowledge has been achieved from animal experiments, and clinical application of the findings to humans should be done very cautiously; in any case, both anterior and posterior arthrodesis must be protected with instrumentation used according to appropriate biomechanical principles. A combination of failure of the correct graft together with proper instrumentation will result in poorer outcome, even if the right graft is used.
Collapse
|
8
|
Cansever T, Civelek E, Kabatas S, Yılmaz C, Caner H, Altinörs MN. Dysfunctional segmental motion treated with dynamic stabilization in the lumbar spine. World Neurosurg 2011; 75:743-9. [PMID: 21704946 DOI: 10.1016/j.wneu.2010.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/31/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the suitability of the application of dynamic stabilization (DS) as a nonfusion technique to address dysfunctional segmental motion (DSM) in the lumbar spine. METHODS Over a 1-year period, 25 patients were treated with the same assessment and surgical protocol. Inclusion criteria were clinical presentation of DSM with or without stenosis. On preoperative and postoperative plain anteroposterior, lateral, and lateral flexion-extension radiographs, anterior and posterior disc height (DH); anteroposterior diameter of the disc; and global, segmental, apical segment, and below level lordotic angles (LAs) were measured. RESULTS The study included 9 women and 16 men with a mean age of 43.48 years ± 7.6. On average, patients had symptoms for 38.04 months ± 29.6, and mean follow-up was 12.36 months ± 3.46. The average height of anterior, posterior, and mean intervertebral discs increased significantly (P = 0.002, P = 0.003, and P < 0.0001). There were no significant differences between the preoperative and postoperative global, segmental, apical segment, and below segment LAs in flexion, extension, and neutral positions. At mid-term follow-up, no patients showed new signs of degeneration at the adjacent motion segment. CONCLUSIONS Overall, the limited radiologic data advocate DS as a nonfusion technique in the treatment of DSM in the lumbar spine. Long-term follow-up is essential, however, to investigate the long-term efficacy of DS in the surgical treatment of DSM.
Collapse
Affiliation(s)
- Tufan Cansever
- Department of Neurosurgery, Baskent University Istanbul Hospital, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
9
|
Wilke HJ, Geppert J, Kienle A. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1859-68. [PMID: 21674213 DOI: 10.1007/s00586-011-1822-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/30/2011] [Accepted: 04/15/2011] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to provide quantitative biomechanical properties of the whole porcine spine and compare them with data from the literature on the human spine. Complete spines were sectioned into single joint segments and tested in a spine tester with pure moments in the three main anatomical planes. Range of motion, neutral zone and stiffness parameters of the spine were determined in flexion/extension, right/left lateral bending and left/right axial rotation. Comparison with data of the human spine reported in the literature showed that certain regions of the porcine spine exhibit greater similarities than others. The cervical area of C1-C2 and the upper and middle thoracic sections exhibited the most similarities. The lower thoracic and the lumbar area are qualitatively similar to the human spine. The remaining cervical section from C3 to C7 appears to be less suitable as a model. Based on the biomechanical similarities of certain regions of the porcine and human spines demonstrated by this study results, it appears that the use of the porcine spine could be an alternative to human specimens in the field of in vitro research. However, it has to be emphasized that the porcine spine is not a suitable biomechanics surrogate for all regions of the human spinal column, and it should be carefully considered whether other specimens, for example from the calf or sheep spine, represent a better alternative for a specific scientific question. It should be noted that compared with human specimens each animal model always only represents a compromise.
Collapse
Affiliation(s)
- Hans-Joachim Wilke
- Center of Musculoskeletal Research (zmfu), Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstraße 14, 89081 Ulm, Germany.
| | | | | |
Collapse
|