1
|
Deng Y, Zhou C, Fu L, Huang X, Liu Z, Zhao J, Liang W, Shao H. A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead. Front Bioeng Biotechnol 2023; 11:1191509. [PMID: 37260831 PMCID: PMC10228697 DOI: 10.3389/fbioe.2023.1191509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
An emerging application of nanotechnology in medicine currently being developed involves employing nanoparticles to deliver drugs, heat, light, or other substances to specific types of cells (such as cancer cells). As most biological molecules exist and function at the nanoscale, engineering and manipulating matter at the molecular level has many advantages in the field of medicine (nanomedicine). Although encouraging, it remains unclear how much of this will ultimately result in improved patient care. In surgical specialties, clinically relevant nanotechnology applications include the creation of surgical instruments, suture materials, imaging, targeted drug therapy, visualization methods, and wound healing techniques. Burn lesion and scar management is an essential nanotechnology application. Prevention, diagnosis, and treatment of numerous orthopedic conditions are crucial technological aspects for patients' functional recovery. Orthopedic surgery is a specialty that deals with the diagnosis and treatment of musculoskeletal disorders. In recent years, the field of orthopedics has been revolutionized by the advent of nanotechnology. Using biomaterials comprised of nanoparticles and structures, it is possible to substantially enhance the efficacy of such interactions through nanoscale material modifications. This serves as the foundation for the majority of orthopedic nanotechnology applications. In orthopedic surgery, nanotechnology has been applied to improve surgical outcomes, enhance bone healing, and reduce complications associated with orthopedic procedures. This mini-review summarizes the present state of nanotechnology in orthopedic surgery, including its applications as well as possible future directions.
Collapse
Affiliation(s)
- Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haiyan Shao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Masquelet technique: Effects of vancomycin concentration on quality of the induced membrane. Injury 2022; 53:868-877. [PMID: 34785083 DOI: 10.1016/j.injury.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to determine the effects of polymethylmetnacrylate (PMMA) spacer loaded with different concentrations of vancomycin on the proliferative, osteogenic, and angiogenic capacity of the induced membrane. METHODS Varying concentrations of vancomycin (0, 1, 2, 4, 6, 8, and 10 g) were fully mixed with bone cement powder (40 g), resulting in seven experimental groups. Hollow cylindrical PMMA spacers (10 mm height, 3 mm external diameter, and 0.8 mm internal diameter) were formed by a mold and submerged in phosphate-buffered saline for antibiotic release by spectrophotometry. Eighty-four New Zealand white rabbits were evenly randomized into seven groups, and segmental radius shaft defects (10 mm) were created. Defects were filled with cylindrical PMMA spacers containing different vancomycin concentrations, and subsequently underwent intramedullary fixation with a retrograde Kirschner's wire. Tissue toxicity was assessed and the proliferative, osteogenic, and angiogenic capacity of induced membranes were qualitatively analyzed by immunohistochemistry and real-time PCR. RESULTS No obvious toxicity was observed in the animal model. Alizarin red s staining and qualitative detection of type I collagen, CD31, Ki67, and STRO-1 by immunohistochemistry revealed an obvious decrease in the percentage of positively stained cells and in osteogenic capacity when the concentration of vancomycin was more than 6 g per cement dose. Quantitation of gene expression related to osteogenesis (Col1a, Alp, and Runx2), vascularization (Vegf, Tgfb1, and vWF), and proliferation (Oct4 and Stro-1) by real-time PCR revealed slight increases in the expression of selected genes at low vancomycin concentrations (1-4 g per cement dose), and relatively lower gene expression when the concentration of vancomycin was more than 6 g per cement dose. CONCLUSION PMMA spacers loaded with relatively low concentrations of vancomycin (1-4 g per cement dose) did not interfere with the proliferative, osteogenic, and angiogenic capacity of induced membranes, and even promoted their capacity. In contrast, spacers loaded with relatively high concentrations of vancomycin (6-10 g per cement dose) had negative effects on osteoblast viability, angiogenesis, and proliferation.
Collapse
|
3
|
Zhuo T, Xin B, Chen Z, Xu Y, Zhou X, Yu J. Enhanced thermal insulation properties of PI nanofiber membranes achieved by doping with SiO2 nanoparticles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Zhao X, Li L, Chen M, Xu Y, Zhang S, Chen W, Liang W. Nanotechnology Assisted Targeted Drug Delivery for Bone Disorders: Potentials and Clinical Perspectives. Curr Top Med Chem 2020; 20:2801-2819. [PMID: 33076808 DOI: 10.2174/1568026620666201019110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Nanotechnology and its allied modalities have brought revolution in tissue engineering and bone healing. The research on translating the findings of the basic and preclinical research into clinical practice is ongoing. Advances in the synthesis and design of nanomaterials along with advances in genomics and proteomics, and tissue engineering have opened a bright future for bone healing and orthopedic technology. Studies have shown promising outcomes in the design and fabrication of porous implant substrates that can be exploited as bone defect augmentation and drug-carrier devices. However, there are dozens of applications in orthopedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from tens 10s of nanometers to a few micrometers. Nanotechnology has made promising advances in the synthesis of scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. This study reviews the basic and translational sciences and clinical implications of the nanotechnology in tissue engineering and bone diseases. Recent advances in NPs assisted osteogenic agents, nanocomposites, and scaffolds for bone disorders are discussed.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Laifeng Li
- Department of Traumatic Orthopedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan 250132, Shandong Province, China
| | - Meikai Chen
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Songou Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Wangzhen Chen
- Department of Orthopaedics, Shaoxing People's Hospital, (Shaoxing Hospital, Zhejiang University School of Medicine), 568# Zhongxing North Road, Shaoxing 312000, Zhejiang Province, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, China
| |
Collapse
|
5
|
Intraoperative loading of calcium phosphate-coated implants with gentamicin prevents experimental Staphylococcus aureus infection in vivo. PLoS One 2019; 14:e0210402. [PMID: 30707699 PMCID: PMC6358082 DOI: 10.1371/journal.pone.0210402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Orthopedic device-related infection (ODRI) is a potentially devastating complication arising from the colonization of the device with bacteria, such as Staphylococcus aureus. The aim of this study was to determine if intraoperative loading of a clinically approved calcium phosphate (CaP) coating with gentamicin can protect from ODRI in vivo. First, CaP-coated titanium aluminium niobium (TAN) discs were used to investigate the adsorption and release kinetics of gentamicin in vitro. Gentamicin loading and subsequent release from the coating were both rapid, with maximum loading occurring following one second of immersion, and >95% gentamicin released within 15 min in aqueous solution, respectively. Second, efficacy of the gentamicin-loaded CaP coating for preventing ODRI in vivo was investigated using a CaP-coated unicortical TAN screw implanted into the proximal tibia of skeletally mature female Wistar rats, following inoculation of the implant site with S. aureus. Gentamicin-loading prevented ODRI in 7/8 animals, whereas 9/9 of the non-gentamicin treated animals were infected after 7 days. In conclusion, gentamicin can be rapidly and simply loaded onto, and released from, CaP-based implant coatings, and this is an effective strategy for preventing peri-operative S. aureus-induced ODRI in vivo.
Collapse
|
6
|
Zhang S, Xing M, Li B. Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44267-44278. [PMID: 30511568 PMCID: PMC6461212 DOI: 10.1021/acsami.8b17264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many applications using drug-carrying biomedical materials require on-demand, localized delivery of multiple therapeutic agents in precisely controlled and patient-specific time sequences, especially after assembly of the delivery vehicles; however, creating such materials has proven extremely challenging. Here, we report a novel strategy to create polypeptide multilayer films integrated with capsules as vehicles for co-delivery of multiple drugs using layer-by-layer self-assembly technology. Our approach allows the multilayered polypeptide nanofilms and preimpregnated capsules to assemble into innovative biomedical materials with high and controllable loading of multiple drugs at any time postpreparation and to achieve pH-responsive and sustained release. The resulting capsule-integrated polypeptide multilayer films effectively co-deliver various drugs with very different properties, including proteins (e.g., growth factors) and nanoparticles, achieving bovine serum albumin loading of 80 μg cm-2 and release of 2 weeks, and histone loading of 100 μg cm-2 and release of 6 weeks; which also enable Staphylococcus aureus killing efficacy of 83% while maintaining osteoblast viability of >85% with silver nanoparticle delivery; and >5-fold cell adhesion and proliferation capability with live cell percentage of >90% via human recombinant bone morphogenetic protein 2 delivery. The successful development of such fascinating materials can not only function as advanced nanocoatings to reduce two major complications of orthopedic bone injuries (i.e., infection and delayed bone regeneration) but also provide new insights into the design and development of multifunctional materials for various other biomedical applications.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
7
|
Zhang S, Xing M, Li B. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering. Int J Mol Sci 2018; 19:E1641. [PMID: 29865178 PMCID: PMC6032323 DOI: 10.3390/ijms19061641] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/05/2023] Open
Abstract
Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA.
| |
Collapse
|
8
|
Abstract
Nanotechnology has revolutionized science and consumer products for several decades. Most recently, its applications to the fields of medicine and biology have improved drug delivery, medical diagnostics, and manufacturing. Recent research of this modern technology has demonstrated its potential with novel forms of disease detection and intervention, particularly within orthopedics. Nanomedicine has transformed orthopedics through recent advances in bone tissue engineering, implantable materials, diagnosis and therapeutics, and surface adhesives. The potential for nanotechnology within the field of orthopedics is vast and much of it appears to be untapped, though not without accompanying obstacles.
Collapse
|
9
|
Brannigan K, Griffin M. An Update into the Application of Nanotechnology in Bone Healing. Open Orthop J 2016; 10:808-823. [PMID: 28217207 PMCID: PMC5299556 DOI: 10.2174/1874325001610010808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Bone differs from other organs in that it can regenerate and remodel without scar formation. There are instances of trauma, congenital bone disorder, bone disease and bone cancer where this is not possible. Without bone grafts and implants, deformity and disability would result. Human bone grafts are limited in their management of large or non-union fractures. In response, synthetic bone grafts and implants are available to the Orthopaedic Surgeon. Unfortunately these also have their limitations and associated complications. Nanotechnology involves the research, design and manufacture of materials with a grain size less than 100nm. Nano-phase materials follow the laws of quantum physics, not classical mechanics, resulting in novel behavioural differences compared to conventional counterparts. METHODS Past, present and future nanotechnology in bone healing literature is reviewed and discussed. The article highlights concepts which are likely to be instrumental to the future of nanotechnology in bone healing. RESULTS Nanotechnology in bone healing is an emerging field within Orthopaedic Surgery. There is a requirement for bone healing technologies which are biochemically and structurally similar to bone. Nanotechnology is a potential solution as the arrangement of bone includes nanoscopic collagen fibres and hydroxyapatite. This review centers on the novel field of nanotechnology in bone healing with discussion focusing on advances in bone grafts, implants, diagnostics and drug delivery. CONCLUSION The concept of nanotechnology was first introduced in 1959. Current nanoproducts for bone healing include nano-HA-paste-ostim and nano-beta-tricalcium phosphate-Vitoss. Nanophase technologies are considered to be superior bone healing solutions. Limited safety data and issues regarding cost and mass scale production require further research into this exciting field.
Collapse
Affiliation(s)
- K Brannigan
- Whiston Hospital, Warrington Road, Prescot, L35 5DR, Whiston, UK
| | - M Griffin
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
10
|
Mantripragada VP, Jayasuriya AC. Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:409-417. [PMID: 27287137 DOI: 10.1016/j.msec.2016.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 01/16/2023]
Abstract
The main aims of this manuscript are to: i) determine the effect of commonly used antibiotics to treat osteoarticular infections on osteoblast viability, ii) study the dual release of the growth factor (BMP-7) and antibiotics (vancomycin and cefazolin) from chitosan microparticles iii) demonstrate the bioactivity of the antibiotics released in vitro on Staphylococcus epidermidis. The novelty of this work is dual delivery of growth factor and antibiotic from the chitosan microparticles in a controlled manner without affecting their bioactivity. Cefazolin and vancomycin have different therapeutic concentrations for their action in vivo and therefore, two different concentrations of the drugs were used. Osteoblast cytotoxicity test concluded that cefazolin concentrations of 50 and 100μg/ml were found to have positive influence on osteoblast proliferation. A significant increase in osteoblast proliferation was observed in the presence of cefazolin and BMP-7 in comparison with BMP-7 alone group; indicating cefazolin might play a role in osteoblast proliferation. On the other hand, vancomycin concentration of 1000μg/ml was found to significantly reduce (p<0.01) osteoblast proliferation in comparison with controls. The microbial study indicated that cefazolin at a minimum concentration of 21.5μg/ml could inhibit ~85% growth of S. epidermidis, whereas vancomycin at a concentration of 30μg/ml was found to inhibit ~80% bacterial growth.
Collapse
Affiliation(s)
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807, USA; Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807, USA.
| |
Collapse
|
11
|
Chen M, Andersen MØ, Dillschneider P, Chang CC, Gao S, Le DQS, Yang C, Hein S, Bünger C, Kjems J. Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants. RSC Adv 2015. [DOI: 10.1039/c5ra23748c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumors in load bearing bones are a major clinical problem as recurrence is common after surgery. Void filling scaffolds that kill residual cancer cells by releasing chemotherapy and siRNA/chitosan nanoparticles may offer a solution to this problem.
Collapse
|
12
|
Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol 2014; 14:207. [PMID: 25059520 PMCID: PMC4116603 DOI: 10.1186/s12866-014-0207-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. RESULTS We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1-6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6-8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureus infection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. CONCLUSIONS S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells.
Collapse
Affiliation(s)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown 26506, WV, USA.
| |
Collapse
|
13
|
Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J 2014; 96-B:569-73. [PMID: 24788488 DOI: 10.1302/0301-620x.96b5.33606] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone-implant interactions. Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation. Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.
Collapse
Affiliation(s)
- M P Sullivan
- Hospital of the University of Pennsylvania, Department of Orthopaedic Surgery, 2 Silverstein, 3400 Spruce St, Philadelphia, USA
| | | | | | | |
Collapse
|
14
|
Mattioli-Belmonte M, Cometa S, Ferretti C, Iatta R, Trapani A, Ceci E, Falconi M, De Giglio E. Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym 2014; 110:173-82. [PMID: 24906744 DOI: 10.1016/j.carbpol.2014.03.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
A novel ciprofloxacin loaded chitosan nanoparticle-based coating onto titanium substrates has been developed and characterized to obtain an orthopaedic implant surface able to in situ release the antibiotic for the prevention of post-operative infections. Ciprofloxacin loaded chitosan nanoparticles were obtained using the combination of sulfobutyl ether-beta-cyclodextrin and gamma-cyclodextrin. The resulting nanoparticulate system was characterized by TEM, HPLC and XPS. Particle size was in the range 426-552 nm and zeta potential values were around +30 mV. This antibacterial coating was able to in vitro inhibit two nosocomial Staphylococcus aureus strains growth, with a reduction of about 20 times compared to controls. No impairment in MG63 osteoblast-like cells viability, adhesion and gene expression were detected at 48 h, 7 and 14 days of culture. Overall, the investigated coating represents a promising candidate for the development of a new antibiotic carrier for titanium implants.
Collapse
Affiliation(s)
- Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy.
| | | | - Concetta Ferretti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy.
| | - Roberta Iatta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. per Casamassima Km 3, Valenzano (BA), Italy.
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy.
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. per Casamassima Km 3, Valenzano (BA), Italy.
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
15
|
Konofaos P, Kashyap A, Ver Halen J. Biomedical approaches to improve bone healing in distraction osteogenesis: a current update and review. ACTA ACUST UNITED AC 2014; 59:177-83. [DOI: 10.1515/bmt-2013-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/29/2013] [Indexed: 11/15/2022]
|
16
|
Li H, Hamza T, Tidwell JE, Clovis N, Li B. Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater 2013; 2:1277-84. [PMID: 23447088 DOI: 10.1002/adhm.201200465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Indexed: 11/10/2022]
Abstract
Platelet-rich-plasma (PRP) has attracted great attention and has been increasingly used for a variety of clinical applications including orthopedic surgeries, periodontal and oral surgeries, maxillofacial surgeries, plastic surgeries, and sports medicine. However, very little is known about the antimicrobial activities of PRP. PRP is found to have antimicrobial properties both in vitro and in vivo. In vitro, the antimicrobial properties of PRP are bacterial-strain-specific and time-specific: PRP significantly (80-100 fold reduction in colony-forming units) inhibits the growth of methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Group A streptococcus, and Neisseria gonorrhoeae within the first few hours but it has no significant antimicrobial properties against E. coli and Pseudomonas. The antimicrobial properties of PRP also depend on the concentration of thrombin. In vivo, an implant-associated spinal infection rabbit model is established and used to evaluate the antimicrobial and wound-healing properties of PRP. Compared to the infection controls, PRP treatment results in significant reduction in bacterial colonies in bone samples at all time points studied (i.e. 1, 2, and 3 weeks) and significant increase in mineralized tissues (thereby better bone healing) at postoperative weeks 2 and 3. PRP therefore may be a useful adjunct strategy against postoperative implant-associated infections.
Collapse
Affiliation(s)
- Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
17
|
Li H, Johnson NR, Usas A, Lu A, Poddar M, Wang Y, Huard J. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells. Stem Cells Transl Med 2013; 2:667-77. [PMID: 23884640 DOI: 10.5966/sctm.2013-0027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle by a modified preplate technique exhibit long-term proliferation, high self-renewal, and multipotent differentiation capabilities in vitro. MDSCs retrovirally transduced to express bone morphogenetic proteins (BMPs) can differentiate into osteocytes and chondrocytes and enhance bone and articular cartilage repair in vivo, a feature that is not observed with nontransduced MDSCs. These results emphasize that MDSCs require prolonged exposure to BMPs to undergo osteogenic and chondrogenic differentiation. A sustained BMP protein delivery approach provides a viable and potentially more clinically translatable alternative to genetic manipulation of the cells. A unique growth factor delivery platform comprised of native heparin and a synthetic polycation, poly(ethylene argininylaspartate diglyceride) (PEAD), was used to bind, protect, and sustain the release of bone morphogenetic protein-2 (BMP2) in a temporally and spatially controlled manner. Prolonged exposure to BMP2 released by the PEAD:heparin delivery system promoted the differentiation of MDSCs to an osteogenic lineage in vitro and induced the formation of viable bone at an ectopic site in vivo. This new strategy represents an alternative approach for bone repair mediated by MDSCs while bypassing the need for gene therapy.
Collapse
Affiliation(s)
- Hongshuai Li
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Vancomycin containing PLLA/β-TCP controls MRSA in vitro. Clin Orthop Relat Res 2011; 469:3222-8. [PMID: 21918801 PMCID: PMC3183185 DOI: 10.1007/s11999-011-2082-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 08/31/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteomyelitis caused by Methicillin-resistant Staphylococcus aureus (MRSA) often requires surgery and prolonged systemic antibiotic treatment. Local antibiotic delivery systems of bioceramics or polymers have been developed to treat osteomyelitis. A disadvantage of biodegradable polymers is the initial burst of antibiotics into the environment; one advantage of bioceramics is its osteoconductivity. We therefore developed a vancomycin-containing poly-l-lactic acid/β-tricalcium phosphate (PLLA/β-TCP) composite to control antibiotic release and stimulate bone formation. QUESTIONS/PURPOSES We (1) characterized these composites, (2) assessed vancomycin release in inhibitory doses, and (3) determined whether they would permit cell adhesion, proliferation, and mineralization in vitro. METHODS We molded 250 vancomycin-containing (VC) and 125 vancomycin-free (VUC) composites using PLLA, β-TCP, and chloroform. One hundred twenty-five VC composites were further dip-coated with PLLA (CVC) to delay antibiotic release. Composites were characterized according to their pore structure, size, volume, density, and surface area. Vancomycin release and bioactivity were determined. Adhesion, proliferation, and mineralization were assessed for two and three replicates on Days 3 and 7 with mesenchymal stem (MSC) and Saos type 2 cells. RESULTS Pore size, volume, apparent density, and surface area of the CVC were 3.5 ± 1.9 μm, 0.005 ± 0.002 cm(3)/g, 1.18 g/cm(3) and 3.68 m(2)/g, respectively. CVC released 1.71 ± 0.13 mg (63.1%) and 2.49 ± 0.64 mg (91.9%) of its vancomycin on Day 1 and Week 6, respectively. MSC and Saos type 2 cells attached and proliferated on composites on Days 3 and 7. CONCLUSIONS Vancomycin-containing PLLA/β-TCP composites release antibiotics in inhibitory doses after dip coating and appeared biocompatible based on adhesion, proliferation, and mineralization. CLINICAL RELEVANCE Vancomycin-containing PLLA/β-TCP composites may be useful for controlling MRSA but will require in vivo confirmation.
Collapse
|
19
|
Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011; 29:1070-4. [PMID: 21567453 DOI: 10.1002/jor.21343] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/06/2010] [Indexed: 02/04/2023]
Abstract
Infection is a common complication of open fractures. Systemic antibiotics often cause adverse events before eradication of infected bone occurs. The local delivery of antibiotics and the use of implants that deliver both growth factors and antimicrobials are ways to circumvent systemic toxicity while decreasing infection and to reach extremely high levels required to treat bacterial biofilms. When choosing an antibiotic for a local delivery system, one should consider the effect that the antibiotic has on cell viability and osteogenic activity. To address this concern, osteoblasts were treated with 21 different antibiotics over 8 concentrations from 0 to 5000 µg/ml. Osteoblast deoxyribonucleic acid content and alkaline phosphatase activity (ALP) were measured to determine cell number and osteogenic activity, respectively. Antibiotics that caused the greatest decrement include rifampin, minocycline, doxycycline, nafcillin, penicillin, ciprofloxacin, colistin methanesulfonate, and gentamicin; their cell number and ALP were significantly less than control at drug concentrations ≤ 200 µg/ml. Conversely, amikacin, tobramycin, and vancomycin were the least cytotoxic and did not appreciably affect cell number and ALP until very high concentrations were used. This comprehensive evaluation of numerous antibiotics' effects on osteoblast viability and activity will enable clinicians and researchers to choose the optimal antibiotic for treatment of infection and maintenance of healthy host bone.
Collapse
Affiliation(s)
- Christopher R Rathbone
- United States Army Institute of Surgical Research, 3400 Rawley E Chambers, Fort Sam Houston, Texas 78234, USA.
| | | | | | | | | |
Collapse
|
20
|
Swanson TE, Cheng X, Friedrich C. Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A 2011; 97:167-76. [PMID: 21370447 DOI: 10.1002/jbm.a.33043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 11/25/2010] [Accepted: 01/04/2010] [Indexed: 11/08/2022]
Abstract
Techniques for titanium surface modification have been studied for applications in orthopedic implants specifically for local drug delivery. The extensive research in surface modification is driving the development of devices that integrate infection prevention, osseointegration, and functionality in a structural role. In this study, vancomycin was applied to modified titanium surfaces to determine the effect of surface morphology on drug loading and release profiles. The antimicrobial effectiveness of the released vancomycin was evaluated and found to have a similar effect as the standard vancomycin. The engineered surfaces included sandblasted, sandblasted acid etched, electrochemically etched, and sandblasted electrochemically etched. The antibiotic release was observed to be independent of the measured surface parameters of the engineered surfaces. The development of an implantable device in which the surface morphology can be tailored for an application with no effect on the total drug released would be beneficial to more precisely control the biological response while maintaining local drug delivery for infection prevention.
Collapse
Affiliation(s)
- T E Swanson
- Department of Mechanical Engineering-Engineering Mechanics, Multi-Scale Technologies Institute, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | | | |
Collapse
|
21
|
Zhao Q, Li H, Li B. Nanoencapsulating living biological cells using electrostatic layer-by-layer self-assembly: platelets as a model. JOURNAL OF MATERIALS RESEARCH 2011; 26:347-351. [PMID: 21359101 PMCID: PMC3045201 DOI: 10.1557/jmr.2010.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the literature, a few biological cells have been used as templates to form microcapsules of a variety of shapes and sizes. In this study, we proved the concept that living cells like platelets can be encapsulated with polyelectrolytes using electrostatic layer-by-layer self-assembly (LBL), and, most importantly, the encapsulation process did not induce activation of the platelets. Glycol-chitosan and poly-L-glutamic acid were electrostatically deposited onto platelets, and the encapsulation was confirmed using confocal laser scanning microscopy and scanning electron microscopy. Transmission electron microscopy observation further confirmed that the encapsulation process was mild and the activation of platelets was negligible. The encapsulation of living biological cells like platelets can serve as a model system in a wide range of biomedical applications including local and sustained drug delivery, immune protection of artificial tissues, and versatile artificial blood.
Collapse
Affiliation(s)
- Qinghe Zhao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- WVNano Initiative, Morgantown, WV 26506, USA
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
22
|
Jiang B, DeFusco E, Li B. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners. Biomacromolecules 2010; 11:3630-7. [PMID: 21058719 PMCID: PMC3006044 DOI: 10.1021/bm1010855] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.
Collapse
Affiliation(s)
- Bingbing Jiang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth DeFusco
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
- WVNano Initiative, Morgantown, WV 26506, USA
| |
Collapse
|