1
|
Xiao WF, Li YS, Deng A, Yang YT, He M. Functional role of hedgehog pathway in osteoarthritis. Cell Biochem Funct 2019; 38:122-129. [PMID: 31833076 DOI: 10.1002/cbf.3448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/29/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022]
Abstract
The hedgehog signalling pathway is one of the key regulators of metazoan development, and it plays an important role in the regulation of a variety of developmental and physiological processes. But it is aberrantly activated in many human diseases, including osteoarthritis (OA). In this study, we have reviewed the association of hedgehog signalling pathway in the development and progression of OA and evaluated the efforts to target this pathway for the prevention of OA. Usually in OA, activation of hedgehog induces up-regulation of the expression of hypertrophic markers, including type X collagen, increases production of nitric oxide and prostaglandin E2, several matrix-degrading enzymes including matrix metalloproteinase and a disintegrin and metalloproteinase with thrombospondin motifs in human knee joint cartilage leading to cartilage degeneration, and thus contributes in OA. Targeting hedgehog signalling might be a viable strategy to prevent or treat OA. Chemical inhibitors of hedgehog signalling is promising, but they cause severe side effects. Knockdown of HH gene is not an option for OA treatment in humans because it is not possible to delete HH in larger animals. Efficient knockdown of HH achieved by local delivery of small interfering RNA in future studies utilizing large animal OA models might be a more efficient approach for the prevention of OA. However, it remains a major problem to develop one single scaffold due to the different physiological functions of cartilage and subchondral bones possess. More studies are necessary to identify selective inhibitors for efficiently targeting the hedgehog pathway in clinical conditions.
Collapse
Affiliation(s)
- Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ang Deng
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun-Tao Yang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Tang J, Su N, Zhou S, Xie Y, Huang J, Wen X, Wang Z, Wang Q, Xu W, Du X, Chen H, Chen L. Fibroblast Growth Factor Receptor 3 Inhibits Osteoarthritis Progression in the Knee Joints of Adult Mice. Arthritis Rheumatol 2017; 68:2432-43. [PMID: 27159076 DOI: 10.1002/art.39739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fibroblast growth factor (FGF) signaling is involved in articular cartilage homeostasis. This study was undertaken to investigate the role and mechanisms of FGF receptor 3 (FGFR-3) in the pathogenesis of osteoarthritis (OA) caused by surgery and aging in mice. METHODS FGFR-3 was conditionally deleted or activated in articular chondrocytes in adult mice subjected to surgical destabilization of the medial meniscus (DMM). A mouse model of human achondroplasia was also used to assess the role of FGFR-3 in age-associated spontaneous OA. Knee joint cartilage was histologically evaluated and scored using the Osteoarthritis Research Society International system. The expression of genes associated with articular cartilage maintenance was quantitatively evaluated in hip cartilage explants. The effect of inhibiting Indian hedgehog (IHH) signaling in Fgfr3-deficient explants was analyzed. RESULTS Conditional Fgfr3 deletion in mice aggravated DMM-induced cartilage degeneration. Matrix metalloproteinase 13 and type X collagen levels were up-regulated, while type II collagen levels were down-regulated, in the articular cartilage of these mice. Conversely, FGFR-3 activation attenuated cartilage degeneration induced by DMM surgery and age. IHH signaling and runt-related transcription factor 2 levels in mouse articular chondrocytes were up-regulated in the absence of Fgfr3, while inhibition of IHH signaling suppressed the increases in the expression of Runx2, Mmp13, and other factors in Fgfr3-deficient mouse cartilage explants. CONCLUSION Our findings indicate that FGFR-3 delays OA progression in mouse knee joints at least in part via down-regulation of IHH signaling in articular chondrocytes.
Collapse
Affiliation(s)
- Junzhou Tang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Wen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
3
|
Stamatis-Liossis N, Daoussis D, Drosos A, Sakkas L. Is there a link between IL-23/IL-17 and developmental pathways such as the Wnt and Hedgehog pathway? Mediterr J Rheumatol 2017; 28:59-61. [PMID: 32185257 PMCID: PMC7045931 DOI: 10.31138/mjr.28.1.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022] Open
Abstract
Recent experimental evidence suggests that IL-23 may induce spondyloarthropathy by acting on entheseal resident "innate-like" T cells. These cells express IL-23R and respond to IL-23 by secreting inflammatory cytokines such as IL-6 and IL-17 as well as IL-22 which acts on osteoblasts and regulates bone remodeling. Moreover, a large amount of evidence indicates that new bone formation in the form of osteophytes is mainly driven by reactivation of developmental pathways such as the Wnt and the Hedgehog pathway. We hypothesize that IL-23/IL-17 may mediate bone remodeling by affecting the expression of developmental pathways.
Collapse
Affiliation(s)
- Nicholas Stamatis-Liossis
- University Department of Internal Medicine, Rheumatology Department, Rheumatology Research Laboratory, Medical University of Patras, Greece
| | - Dimitrios Daoussis
- University Department of Internal Medicine, Rheumatology Department, Rheumatology Research Laboratory, Medical University of Patras, Greece
| | | | | | - Lazaros Sakkas
- Rheumatology Department, University Medical School of Larissa
| |
Collapse
|
4
|
Orth P, Madry H. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:504-20. [PMID: 26066580 DOI: 10.1089/ten.teb.2015.0122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair.
Collapse
Affiliation(s)
- Patrick Orth
- 1 Center of Experimental Orthopedics, Saarland University , Homburg, Germany .,2 Department of Orthopedic Surgery, Saarland University Medical Center , Homburg, Germany
| | - Henning Madry
- 1 Center of Experimental Orthopedics, Saarland University , Homburg, Germany .,2 Department of Orthopedic Surgery, Saarland University Medical Center , Homburg, Germany
| |
Collapse
|
5
|
|
6
|
Antoniou J, Wang HT, Hadjab I, Aldebeyan S, Alaqeel MA, Meij BP, Tryfonidou MA, Mwale F. The Effects of Naproxen on Chondrogenesis of Human Mesenchymal Stem Cells. Tissue Eng Part A 2015; 21:2136-46. [PMID: 25873236 DOI: 10.1089/ten.tea.2014.0668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently, there are no established treatments to prevent, stop, or even retard the degeneration of articular cartilage in osteoarthritis (OA). Biological repair of the degenerating articular cartilage would be preferable to surgery. There is no benign site where autologous chondrocytes can be harvested and used as a cell source for cartilage repair, leaving mesenchymal stem cells (MSCs) as an attractive option. However, MSCs from OA patients have been shown to constitutively express collagen type X (COL-X), a marker of late-stage chondrocyte hypertrophy. We recently found that naproxen (Npx), but not other nonsteroidal anti-inflammatory drugs, can induce collagen type X alpha 1 (COL10A1) gene expression in bone marrow-derived MSCs from healthy and OA donors. In this study, we determined the effect of Npx on COL10A1 expression and investigated the intracellular signaling pathways that mediate such effect in normal human MSCs during chondrogenesis. MSCs were cultured in standard chondrogenic differentiation media supplemented with or without Npx. Our results show that Npx can regulate chondrogenic differentiation by affecting the gene expression of both Indian hedgehog and parathyroid hormone/parathyroid hormone-related protein signaling pathways in a time-dependent manner, suggesting a complex interaction of different signaling pathways during the process.
Collapse
Affiliation(s)
- John Antoniou
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,2 Division of Orthopedic Surgery, McGill University , Montreal, Quebec, Canada
| | - Hong Tian Wang
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada
| | - Insaf Hadjab
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,3 École Polytechnique , Montreal, Quebec, Canada
| | - Sultan Aldebeyan
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,4 Department of Orthopaedic Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Motaz A Alaqeel
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,5 Department of Orthopedics, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Björn P Meij
- 6 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- 6 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Fackson Mwale
- 1 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University , Montreal, Quebec, Canada .,2 Division of Orthopedic Surgery, McGill University , Montreal, Quebec, Canada
| |
Collapse
|
7
|
Daoussis D, Filippopoulou A, Liossis SN, Sirinian C, Klavdianou K, Bouris P, Karamanos NK, Andonopoulos AP. Anti-TNFα treatment decreases the previously increased serum Indian Hedgehog levels in patients with ankylosing spondylitis and affects the expression of functional Hedgehog pathway target genes. Semin Arthritis Rheum 2015; 44:646-51. [PMID: 25701499 DOI: 10.1016/j.semarthrit.2015.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Indian Hedgehog (Ihh) is the ligand that activates the Hedgehog pathway (HH) in the skeleton-the main controller of endochondral ossification. We aimed at assessing serum levels of Ihh in patients with ankylosing spondylitis (AS) and the effect of serum from patients with AS on HH pathway activation. METHODS Serum Ihh levels were measured in 59 patients with AS, 70 patients with rheumatoid arthritis (RA), and 53 healthy subjects. The effect of serum from patients with AS on HH pathway activation was evaluated using an osteoblast-like cell line model. RESULTS Patients with AS not on anti-TNFα treatment had significantly higher Ihh levels compared to patients with RA not on anti-TNFα treatment (mean ± SEM of OD: 0.370 ± 0.025 vs. 0.279 ± 0.026 for patients with AS and RA, respectively, p = 0.027) and healthy subjects (p = 0.031). Patients with AS on anti-TNFα treatment had significantly lower Ihh levels compared to patients with AS not on such treatment (p = 0.028). Patients with RA on anti-TNF treatment had higher levels of Ihh compared to patients not on such treatment (p = 0.013). PTHrP levels were similar in patients with RA, AS, and healthy subjects and were not affected by anti-TNFα treatment. We next assessed HH pathway activation in Saos2 cells following incubation with serum from AS patients prior to and following anti-TNF treatment. The HH pathway was downregulated following treatment. CONCLUSIONS Ihh levels are increased in patients with AS and decrease following anti-TNFα treatment; this finding may have pathogenic and clinical implications.
Collapse
Affiliation(s)
- Dimitrios Daoussis
- Department of Rheumatology, University of Patras Medical School, Patras University Hospital, Rion 26504, Patras, Greece.
| | - Alexandra Filippopoulou
- Department of Rheumatology, University of Patras Medical School, Patras University Hospital, Rion 26504, Patras, Greece
| | - Stamatis-Nick Liossis
- Department of Rheumatology, University of Patras Medical School, Patras University Hospital, Rion 26504, Patras, Greece
| | - Chaido Sirinian
- Clinical and Molecular Oncology Laboratoty, University of Patras Medical School, Patras University Hospital, Rion, Patras, Greece
| | - Kalliopi Klavdianou
- Department of Rheumatology, University of Patras Medical School, Patras University Hospital, Rion 26504, Patras, Greece
| | | | | | - Andrew P Andonopoulos
- Department of Rheumatology, University of Patras Medical School, Patras University Hospital, Rion 26504, Patras, Greece
| |
Collapse
|
8
|
Salem O, Wang HT, Alaseem AM, Ciobanu O, Hadjab I, Gawri R, Antoniou J, Mwale F. Naproxen affects osteogenesis of human mesenchymal stem cells via regulation of Indian hedgehog signaling molecules. Arthritis Res Ther 2014; 16:R152. [PMID: 25034046 PMCID: PMC4223691 DOI: 10.1186/ar4614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION We previously showed that type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification), is constitutively expressed by mesenchymal stem cells (MSCs) from osteoarthritis patients and this may be related to Naproxen (Npx), a nonsteroidal anti-inflammatory drug used for therapy. Hedgehog (HH) signaling plays an important role during the development of bone. We tested the hypothesis that Npx affected osteogenic differentiation of human MSCs through the expression of Indian hedgehog (IHH), Patched-1 (PTC1) and GLI family members GLI1, GLI2, GLI3 in vitro. METHODS MSCs were cultured in osteogenic differentiation medium without (control) or with 0.5 μM Npx. The expression of collagen type X, alpha 1 (COL10A1), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OC), collagen type I, alpha 1 (COL1A1) was analyzed with real-time reverse transcription (RT) PCR, and the ALP activity was measured. The osteogenesis of MSCs was monitored by mineral staining and quantification with alizarin red S. To examine whether Npx affects osteogenic differentiation through HH signaling, the effect of Npx on the expression of IHH, GLI1, GLI2, GLI3 and PTC1 was analyzed with real-time RT PCR. The effect of cyclopamine (Cpn), a HH signaling inhibitor, on the expression of COL10A1, ALP, OC and COL1A1 was also determined. RESULTS When MSCs were cultured in osteogenic differentiation medium, Npx supplementation led to a significant decrease in ALP gene expression as well as its activity, and had a tendency to decrease mineral deposition. It also decreased the expression of COL1A1 significantly. In contrast, the gene expression of COL10A1 and OPN were upregulated significantly by Npx. No significant effect was found on OC expression. The expression of IHH, PTC1, GLI1, and GLI2 was increased by Npx, while no significant difference was observed on GLI3 expression. Cpn reversed the effect of Npx on the expression of COL10A1, ALP, OPN and COL1A1. CONCLUSIONS These results indicate that Npx can affect gene expression during osteogenic differentiation of MSCs, and downregulate mineral deposition in the extracellular matrix through IHH signaling. Therefore, Npx could affect MSC-mediated repair of subchondral bone in OA patients.
Collapse
|
9
|
Cohen DJ. Targeting the hedgehog pathway: role in cancer and clinical implications of its inhibition. Hematol Oncol Clin North Am 2012; 26:565-88, viii. [PMID: 22520980 DOI: 10.1016/j.hoc.2012.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that is evolutionally highly conserved and plays an important role in embryonic pattern formation and stem cell response to tissue damage. Given the pivotal role the Hh pathway plays in embryonic development in terms of proliferation and differentiation, it is not surprising that it has also been implicated in tumorigenesis and tumor growth acceleration in a vast variety of malignancies. This article summarizes the mechanism of Hh pathway signal transduction, discusses the models of pathway activation, reviews the clinical data using Hh inhibitors, and discusses challenges to the development of pathway inhibitors.
Collapse
Affiliation(s)
- Deirdre J Cohen
- Division of GI Oncology, NYU Cancer Institute, 160 East 34th Street, New York, NY 10016, USA.
| |
Collapse
|
10
|
Steinert AF, Weissenberger M, Kunz M, Gilbert F, Ghivizzani SC, Göbel S, Jakob F, Nöth U, Rudert M. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther 2012; 14:R168. [PMID: 22817660 PMCID: PMC3580562 DOI: 10.1186/ar3921] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/20/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction To date, no single most-appropriate factor or delivery method has been identified for the purpose of mesenchymal stem cell (MSC)-based treatment of cartilage injury. Therefore, in this study we tested whether gene delivery of the growth factor Indian hedgehog (IHH) was able to induce chondrogenesis in human primary MSCs, and whether it was possible by such an approach to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro. Methods First-generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with adenoviral vectors, bone morphogenetic protein-2 (Ad.BMP-2), or transforming growth factor beta-1 (Ad.TGF-β1) to transduce human bone-marrow derived MSCs at 5 × 102 infectious particles/cell. Thereafter, 3 × 105 cells were seeded into aggregates and cultured for 3 weeks in serum-free medium, with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results IHH, TGF-β1 and BMP-2 genes were equipotent inducers of chondrogenesis in primary MSCs, as evidenced by strong staining for proteoglycans, collagen type II, increased levels of glycosaminoglycan synthesis, and expression of mRNAs associated with chondrogenesis. IHH-modified aggregates, alone or in combination, also showed a tendency to progress towards hypertrophy, as judged by the expression of alkaline phosphatase and stainings for collagen type X and Annexin 5. Conclusion As this study provides evidence for chondrogenic induction of MSC aggregates in vitro via IHH gene delivery, this technology may be efficiently employed for generating cartilaginous repair tissues in vivo.
Collapse
|