1
|
Schoeman MA, Oostlander AE, Rooij KE, Valstar ER, Nelissen RG. Peri-prosthetic tissue cells show osteogenic capacity to differentiate into the osteoblastic lineage. J Orthop Res 2017; 35:1732-1742. [PMID: 27714894 PMCID: PMC5573935 DOI: 10.1002/jor.23457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/29/2016] [Indexed: 02/04/2023]
Abstract
During the process of aseptic loosening of prostheses, particulate wear debris induces a continuous inflammatory-like response resulting in the formation of a layer of fibrous peri-prosthetic tissue at the bone-prosthesis interface. The current treatment for loosening is revision surgery which is associated with a high-morbidity rate, especially in old patients. Therefore, less invasive alternatives are necessary. One approach could be to re-establish osseointegration of the prosthesis by inducing osteoblast differentiation in the peri-prosthetic tissue. Therefore, the aim of this study was to investigate the capacity of peri-prosthetic tissue cells to differentiate into the osteoblast lineage. Cells isolated from peri-prosthetic tissue samples (n = 22)-obtained during revision surgeries-were cultured under normal and several osteogenic culture conditions. Osteogenic differentiation was assessed by measurement of Alkaline Phosphatse (ALP), mineralization of the matrix and expression of several osteogenic genes. Cells cultured in osteogenic medium showed a significant increase in ALP staining (p = 0.024), mineralization of the matrix (p < 0.001) and ALP gene expression (p = 0.014) compared to normal culture medium. Addition of bone morphogenetic proteins (BMPs), a specific GSK3β inhibitor (GIN) or a combination of BMP and GIN to osteogenic medium could not increase ALP staining, mineralization, and ALP gene expression. In one donor, addition of GIN was required to induce mineralization of the matrix. Overall, we observed a high-inter-donor variability in response to osteogenic stimuli. In conclusion, peri-prosthetic tissue cells, cultured under osteogenic conditions, can produce alkaline phosphatase and mineralized matrix, and therefore show characteristics of differentiation into the osteoblastic lineage. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1732-1742, 2017.
Collapse
Affiliation(s)
| | | | - Karien Ede Rooij
- Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
| | - Edward R. Valstar
- Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Rob G.H.H. Nelissen
- Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Kleine SA, Budsberg SC. Synovial membrane receptors as therapeutic targets: A review of receptor localization, structure, and function. J Orthop Res 2017; 35:1589-1605. [PMID: 28374922 DOI: 10.1002/jor.23568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Joint pathology and degeneration is a significant cause of pain. The synovial membrane plays an important role in maintenance of the joint, contributes to the pathology of many arthropathies and may be adversely affected in joint disease. Improving knowledge of the receptors present within the synovium will aid in a better understanding of joint pathology and the development of new treatments for diseases such as osteoarthritis and rheumatoid arthritis. Knowledge of the location and function of synovial membrane receptors (both in healthy and diseased synovium) may provide important targets in the treatment of various arthropathies. Classic pain receptors such as opioid receptors in the synovium are a mainstay in local and systemic management of chronic pain in many species. In addition to these, many other receptors such as bradykinin, neurokinin, transient receptor potential vanilloid, and inflammatory receptors, such as prostanoid and interleukin receptors have been discovered within the synovial membrane. These receptors are important in pain, inflammation, and in maintenance of normal joint function and may serve as targets for pharmacologic intervention in pathologic states. The goal of this review is to outline synovial membrane receptor localization and local therapeutic modulation of these receptors, in order to stimulate further research into pharmacological management of arthropathies at the local level. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1589-1605, 2017.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| |
Collapse
|
3
|
Davydov DA, Avdalyan AM, Agadzhanyan VV, Lushnikova EL, Ustyantseva IM. [Morphometric and molecular biological features of femoral head tissue in different nosological entities of coxarthrosis]. Arkh Patol 2016; 78:20-26. [PMID: 27804942 DOI: 10.17116/patol201678520-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM to comparatively analyze the morphometric and molecular biological characteristics of femoral head tissue in different nosological entities of coxarthrosis. MATERIAL AND METHODS A total of 95 samples of femoral head tissue extirpated during hip endoprosthesis in patients with coxarthrosis were investigated. Clinical findings were used to identify the following nosological entities of coxarthrosis: dysplastic, postischemic and posttraumatic. Histological, immunohistochemical and morphometric studies were used. Osteoclast resorptive activity was assessed by determining the cytoplasmic expression of TRAcP (9C5, «Cell Marque»). Vasculogenesis was evaluated by estimating the mean area of vessels with CD34 (QBEnd/10, «Ventana») from the positive stained endothelium and by determining the cytoplasmic expression level of VEGF (SP28, «Spring Bio») in osteoblasts and osteoclasts. RESULTS Specific histopathological signs were described for each nosological entity of coxarthrosis. Morphometric analysis could reveal a number of additional characteristics of the magnitude of fibrous changes and the thickness of the articular surface and bone rods. Immunohistochemical assessment of molecular biological parameters, such as the expression level of VEGF and TRAcP, also pointed to the characteristic features of bony tissue in the above-mentioned nosological entities of coxarthrosis. In dysplastic coxarthrosis, the maximal expression level of VEGF was recorded in osteoblasts and the expression of VEGF and TRAcP in osteoclasts remained at the minimum level. The lowest expression of VEGF in osteoblasts was found in posttraumatic coxarthrosis. In postischemic coxarthrosis, the highest expression of VEGF and TRAcP was recorded in osteoclasts. CONCLUSION The comparative analysis of the morphometric and molecular biological characteristics of femoral head tissue in different nosological entities of coxarthrosis indicated a number of peculiar features. The most specific manifestations of certain morphological and molecular biological signs were identified for each nosological entity of coxarthrosis.
Collapse
Affiliation(s)
- D A Davydov
- Regional Clinical Center for Miners' Health Prote ction, Leninsk-Kuznetsky, Russian Federation
| | - A M Avdalyan
- Laboratory of Tumor Molecular Genetic Characteristics, Altai Branch, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Barnaul, Russian Federation
| | - V V Agadzhanyan
- Regional Clinical Center for Miners' Health Prote ction, Leninsk-Kuznetsky, Russian Federation
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - I M Ustyantseva
- Regional Clinical Center for Miners' Health Prote ction, Leninsk-Kuznetsky, Russian Federation
| |
Collapse
|
4
|
Arantes RVN, Cestari TM, Viscelli BA, Dionísio TJ, Garlet GP, Santos CF, de Assis GF, Taga R. Meloxicam temporally inhibits the expression of vascular endothelial growth factor receptor (VEGFR)-1 and VEGFR-2 during alveolar bone repair in rats. J Periodontol 2016; 86:162-72. [PMID: 25327303 DOI: 10.1902/jop.2014.140259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) plays an important role during angiogenesis and bone repair. This study investigated whether the use of meloxicam alters bone repair via downregulation of VEGF and receptor expression. METHODS One hundred twenty male Wistar rats had their maxillary right incisor extracted. Animals were divided into a control group (CG; n = 60) and a meloxicam-treated group (TG; n = 60) that received either a single daily intraperitoneal injection of 0.9% NaCl or meloxicam 3 mg/kg, respectively, for 7 consecutive days. Alveolar bone repair was evaluated histomorphometrically, whereas VEGF and its receptors were analyzed by immunohistochemistry and quantitative polymerase chain reaction (qPCR). Data were submitted to two-way analysis of variance and Tukey post hoc test with P < 0.05. RESULTS Bone volume density increased significantly (P = 0.001) in both groups with a strong correlation between treatment and periods (P = 0.003). In the TG, a small amount of bone formation occurred compared with the CG between 3 and 21 days. No significant differences in the number of VEGF-positive cells per square millimeter (P = 0.07) and VEGF messenger RNA (mRNA) expression (P = 0.49) were found between groups. Immunostained cells per square millimeter and mRNA expression for VEGF receptor (VEGFR)-1 (P = 0.04 and P < 0.001) and VEGFR-2 (P < 0.001 for both analysis) showed a strong interaction between treatment groups and periods. In the TG, immunostained cells per square millimeter and mRNA expression for VEGFR-1 were, respectively, 89% and 37% lower from 3 to 10 days compared with the CG, whereas for VEGFR-2, these values were 252% and 60%, respectively, from 3 to 7 days. CONCLUSION In rat alveolar bone repair, meloxicam did not affect VEGF expression but downregulated VEGFR expression, which may cause a delay in the bone repair/remodeling process.
Collapse
|
5
|
Wang Z, Huang Z, Gan J, Liu N, Zhou G, Shi T, Wang Z, Wang R, Bao N, Guo T, Chen J, Zhang J, Dong L, Zhao J. The fibroblast expression of RANKL in CoCrMo-particle-induced osteolysis is mediated by ER stress and XBP1s. Acta Biomater 2015; 24:352-60. [PMID: 26112372 DOI: 10.1016/j.actbio.2015.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
Particle-induced osteolysis is a major cause of aseptic loosening, which is the most common reason for total hip arthroplasty (THA) failure and revision surgery. Although existing studies suggest that synovial fibroblasts present in the interfacial membrane are important targets of wear particles during bone resorption, the interaction mechanisms between the particles and fibroblasts remains elusive. In the present study, we investigated the effect of ER stress induced by CoCrMo particles (CoPs) in fibroblasts, calvarial resorption animal models and aseptic loosening clinical samples and its role in the stimulation of the RANKL expression. Our study further demonstrated that CoPs could induce significant ER stress in fibroblasts. Blocking ER stress with a specific inhibitor dramatically reduced the particle-induced expression of RANKL in vitro and in vivo. Furthermore, in fibroblasts, downregulation of the expression of XBP1s, a signaling molecule of ER stress, significantly reduced the expression of RANKL induced by wear particles. Moreover, inhibition of ER stress or XBP1s both ameliorated the CoPs-induced osteolysis in animal models. Collectively, these results suggested that in particle-induced osteolysis, CoPs could stimulate fibroblasts to secret RANKL through ER stress and the signaling molecule XBP1s. Therefore, downregulating ER stress or the signaling molecule XBP1s of fibroblasts represents a potential therapeutic approach for treating particle-induced peri-implant osteolysis. STATEMENT OF SIGNIFICANCE For the first time, our study demonstrated that ER stress mediated the induction of RANKL expression by CoPs in fibroblasts and promoted particle-induced osteolysis. Furthermore, the upregulation of RANKL by CoPs in fibroblasts was mediated by the ER stress signaling molecule XBP1s. Both blocking ER stress and inhibiting the protein XBP1s by specific inhibitors resulted in downregulation of the expression of RANKL and amelioration of osteolysis induced by the implanted particles. Collectively, these findings suggest a possible mechanism underlying the RANKL expression induced by wear particles in fibroblasts, and downregulating ER stress and the XBP1s expression of fibroblasts represents a potential therapeutic approach for treating aseptic loosening.
Collapse
Affiliation(s)
- Zhenheng Wang
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Zhen Huang
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Jingjing Gan
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Naicheng Liu
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Gang Zhou
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Tongguo Shi
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Zhenzhen Wang
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Rui Wang
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Nirong Bao
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Ting Guo
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Jiangning Chen
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China
| | - Junfeng Zhang
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China; Jiangsu Provincial Laboratory for Nano-Technology, Nanjing University, Nanjing 210093, China.
| | - Lei Dong
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China.
| | - Jianning Zhao
- Jinling Hospital, Department of Orthopaedics, School of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, China.
| |
Collapse
|
6
|
Gallo J, Vaculova J, Goodman SB, Konttinen YT, Thyssen JP. Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta Biomater 2014; 10:2354-66. [PMID: 24525037 DOI: 10.1016/j.actbio.2014.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
Aseptic loosening and osteolysis are the most frequent late complications of total hip arthroplasty (THA) leading to revision of the prosthesis. This review aims to demonstrate how histopathological studies contribute to our understanding of the mechanisms of aseptic loosening/osteolysis development. Only studies analysing periprosthetic tissues retrieved from failed implants in humans were included. Data from 101 studies (5532 patients with failure of THA implants) published in English or German between 1974 and 2013 were included. "Control" samples were reported in 45 of the 101 studies. The most frequently examined tissues were the bone-implant interface membrane and pseudosynovial tissues. Histopathological studies contribute importantly to determination of key cell populations underlying the biological mechanisms of aseptic loosening and osteolysis. The studies demonstrated the key molecules of the host response at the protein level (chemokines, cytokines, nitric oxide metabolites, metalloproteinases). However, these studies also have important limitations. Tissues harvested at revision surgery reflect specifically end-stage failure and may not adequately reveal the evolution of pathophysiological events that lead to prosthetic loosening and osteolysis. One possible solution is to examine tissues harvested from stable total hip arthroplasties that have been revised at various time periods due to dislocation or periprosthetic fracture in multicenter studies.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, University Hospital, Palacky University Olomouc, Czech Republic.
| | - Jana Vaculova
- Department of Pathology, University Hospital Ostrava, Czech Republic
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yrjö T Konttinen
- Institute of Clinical Medicine, Department of Medicine, FIN-00029 HUS, Finland; ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland; COXA Hospital for Joint Replacement, Tampere, Finland
| | - Jacob P Thyssen
- Department of Dermatology and Allergology, Copenhagen University, Hospital Gentofte, Denmark
| |
Collapse
|
7
|
Park SJ, Kim KJ, Kim WU, Cho CS. Interaction of mesenchymal stem cells with fibroblast-like synoviocytes via cadherin-11 promotes angiogenesis by enhanced secretion of placental growth factor. THE JOURNAL OF IMMUNOLOGY 2014; 192:3003-10. [PMID: 24574497 DOI: 10.4049/jimmunol.1302177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) exist in the synovium of patients with rheumatoid arthritis (RA), yet the role of MSC in RA is elusive. Placental growth factor (PlGF) expression is increased in RA synovial fluids, and blocking of PlGF attenuates progression of arthritis in mice. In this study, we observed that PlGF induced chemotaxis of MSC in a dose-dependent manner, which was blocked by anti-vascular endothelial growth factor receptor-1 peptide. MSC exposed to PlGF elicited increased phosphorylation of Akt and p38 MAPK. PlGF-mediated chemotaxis was inhibited by PI3K inhibitor (LY294002) and p38 MAPK inhibitor (SB203580), but not by ERK1/2 inhibitor (PD98059). Fibroblast-like synoviocytes (FLS) constitutively produced PlGF, but MSC released negligible amounts of PlGF. Of note, when FLS of RA patients and MSC were cocultured, PlGF production by FLS was significantly increased; such an increase was dependent on the number of added MSC. Moreover, coculture conditioned medium promoted chemotaxis of MSC and increased angiogenesis in Matrigel plugs assay, and these were suppressed by preincubation of the medium with anti-PlGF Ab. Transwell experiments revealed that MSC to FLS contact was required for the increase in PlGF production by coculture. Cadherin-11 was expressed both in FLS and MSC, and small interfering RNA knockdown of cadherin-11 in FLS significantly abrogated the enhanced PlGF production under coculture conditions. These data indicate that increased levels of PlGF in RA joints could induce the migration of MSC to the synovium, and interaction of migrated MSC with FLS via cadherin-11 may contribute to angiogenesis and chronic synovitis by enhancing the secretion of PlGF.
Collapse
Affiliation(s)
- Su-Jung Park
- Catholic Research Institutes of Medical Sciences, Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
8
|
Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater 2013; 9:8046-58. [PMID: 23669623 DOI: 10.1016/j.actbio.2013.05.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 01/31/2023]
Abstract
Aseptic loosening and other wear-related complications are some of the most frequent late reasons for revision of total knee arthroplasty (TKA). Periprosthetic osteolysis (PPOL) pre-dates aseptic loosening in many cases, indicating the clinical significance of this pathogenic mechanism. A variety of implant-, surgery- and host-related factors have been delineated to explain the development of PPOL. These factors influence the development of PPOL because of changes in mechanical stresses within the vicinity of the prosthetic device, excessive wear of the polyethylene liner, and joint fluid pressure and flow acting on the peri-implant bone. The process of aseptic loosening is initially governed by factors such as implant/limb alignment, device fixation quality and muscle coordination/strength. Later, large numbers of wear particles detached from TKA trigger and perpetuate particle disease, as highlighted by progressive growth of inflammatory/granulomatous tissue around the joint cavity. An increased accumulation of osteoclasts at the bone-implant interface, impairment of osteoblast function, mechanical stresses and increased production of joint fluid contribute to bone resorption and subsequent loosening of the implant. In addition, hypersensitivity and adverse reactions to metal debris may contribute to aseptic TKA failure, but should be determined more precisely. Patient activity level appears to be the most important factor when the long-term development of PPOL is considered. Surgical technique, implant design and material factors are the most important preventative factors, because they influence both the generation of wear debris and excessive mechanical stresses. New generations of bearing surfaces and designs for TKA should carefully address these important issues in extensive preclinical studies. Currently, there is little evidence that PPOL can be prevented by pharmacological intervention.
Collapse
Affiliation(s)
- J Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, University Hospital, Palacky University Olomouc, I.P. Pavlova Str. 6, CZ-775 20 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure. PLoS One 2013; 8:e67127. [PMID: 23840602 PMCID: PMC3688623 DOI: 10.1371/journal.pone.0067127] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α) to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages) and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell) induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5) compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10). This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy), can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.
Collapse
|
10
|
Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun 2012; 19:213-24. [PMID: 22751380 DOI: 10.1177/1753425912451779] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Numerous studies provide detailed insight into the triggering and amplification mechanisms of the inflammatory response associated with prosthetic wear particles, promoting final dominance of bone resorption over bone formation in multiple bone multicellular units around an implant. In fact, inflammation is a highly regulated process tightly linked to simultaneous stimulation of tissue protective and regenerative mechanisms in order to prevent collateral damage of periprosthetic tissues. A variety of cytokines, chemokines, hormones and specific cell populations, including macrophages, dendritic and stem cells, attempt to balance tissue architecture and minimize inflammation. Based on this fact, we postulate that the local tissue homeostatic mechanisms more effectively regulate the pro-inflammatory/pro-osteolytic cells/pathways in patients with none/mild periprosthetic osteolysis (PPOL) than in patients with severe PPOL. In this line of thinking, 'particle disease theory' can be understood, at least partially, in terms of the failure of local tissue homeostatic mechanisms. As a result, we envision focusing current research on homeostatic mechanisms in addition to traditional efforts to elucidate details of pro-inflammatory/pro-osteolytic pathways. We believe this approach could open new avenues for research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, University Hospital, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|