1
|
Alad M, Grant MP, Epure LM, Shih SY, Merle G, Im HJ, Antoniou J, Mwale F. Short Link N Modulates Inflammasome Activity in Intervertebral Discs Through Interaction with CD14. Biomolecules 2024; 14:1312. [PMID: 39456246 PMCID: PMC11505976 DOI: 10.3390/biom14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Intervertebral disc degeneration and pain are associated with the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome activation and the processing of interleukin-1 beta (IL-1β). Activation of thehm inflammasome is triggered by Toll-like receptor stimulation and requires the cofactor receptor cluster of differentiation 14 (CD14). Short Link N (sLN), a peptide derived from link protein, has been shown to modulate inflammation and pain in discs in vitro and in vivo; however, the underlying mechanisms remain elusive. This study aims to assess whether sLN modulates IL-1β and inflammasome activity through interaction with CD14. Disc cells treated with lipopolysaccharides (LPS) with or without sLN were used to assess changes in Caspase-1, IL-1β, and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Peptide docking of sLN to CD14 and immunoprecipitation were performed to determine their interaction. The results indicated that sLN inhibited LPS-induced NFκB and Caspase-1 activation, reducing IL-1β maturation and secretion in disc cells. A significant decrease in inflammasome markers was observed with sLN treatment. Immunoprecipitation studies revealed a direct interaction between sLN and the LPS-binding pocket of CD14. Our results suggest that sLN could be a potential therapeutic agent for discogenic pain by mitigating IL-1β and inflammasome activity within discs.
Collapse
Affiliation(s)
- Muskan Alad
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Michael P. Grant
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Laura M. Epure
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- SMBD-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Sunny Y. Shih
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Geraldine Merle
- Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada
- Chemical Engineering Department, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
| | - Hee-Jeong Im
- Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - John Antoniou
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
- SMBD-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Fackson Mwale
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3T 1E2, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
2
|
Tendulkar G, Ehnert S, Sreekumar V, Chen T, Kaps HP, Golombek S, Wendel HP, Nüssler AK, Avci-Adali M. Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs-The Potential Role in Increasing Anabolic Response. Int J Mol Sci 2019; 20:E1716. [PMID: 30959917 PMCID: PMC6479841 DOI: 10.3390/ijms20071716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Musculoskeletal disorders, such as osteoarthritis and intervertebral disc degeneration are causes of morbidity, which concomitantly burdens the health and social care systems worldwide, with massive costs. Link N peptide has recently been described as a novel anabolic stimulator for intervertebral disc repair. In this study, we analyzed the influence on anabolic response, by delivering synthetic Link N encoding mRNA into primary human chondrocytes and mesenchymal stromal cells (SCP1 cells), Furthermore, both cell types were seeded on knitted titanium scaffolds, and the influence of Link N peptide mRNA for possible tissue engineering applications was investigated. Synthetic modified Link N mRNA was efficiently delivered into both cell types and cell transfection resulted in an enhanced expression of aggrecan, Sox 9, and type II collagen with a decreased expression of type X collagen. Interestingly, despite increased expression of BMP2 and BMP7, BMP signaling was repressed and TGFβ signaling was boosted by Link N transfection in mesenchymal stromal cells, suggesting possible regulatory mechanisms. Thus, the exogenous delivery of Link N peptide mRNA into cells augmented an anabolic response and thereby increased extracellular matrix synthesis. Considering these findings, we suppose that the cultivation of cells on knitted titanium scaffolds and the exogenous delivery of Link N peptide mRNA into cells could mechanically support the stability of tissue-engineered constructs and improve the synthesis of extracellular matrix by seeded cells. This method can provide a potent strategy for articular cartilage and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Vrinda Sreekumar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Tao Chen
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| | - Andreas K Nüssler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Short Link N promotes disc repair in a rabbit model of disc degeneration. Arthritis Res Ther 2018; 20:201. [PMID: 30157962 PMCID: PMC6116458 DOI: 10.1186/s13075-018-1625-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
Background The degeneration of the intervertebral disc (IVD) is characterized by proteolytic degradation of the extracellular matrix, and its repair requires the production of an extracellular matrix with a high proteoglycan-to-collagen ratio characteristic of a nucleus pulposus (NP)-like phenotype in vivo. At the moment, there is no medical treatment to reverse or even retard disc degeneration. The purpose of the present study was to determine if a low dose of short link N (sLN), a recently discovered fragment of the link N peptide, could behave in a manner similar to that of link N in restoring the proteoglycan content and proteoglycan-to-collagen ratio of the disc in a rabbit model of IVD degeneration, as an indication of its potential therapeutic benefit in reversing disc degeneration. Methods Adolescent New Zealand white rabbits received an annular puncture with an 18-gauge needle into two noncontiguous discs to induce disc degeneration. Two weeks later, either saline (10 μL) or sLN (25 μg in 10 μL saline) was injected into the center of the NP. The sLN concentration was empirically chosen at a lower molar concentration equivalent to half that of link N (100 μg in 10 μL). The effect on radiographic, biochemical and histologic changes were evaluated. Results Following needle puncture, disc height decreased by about 25–30% within 2 weeks and maintained this loss for the duration of the 12-week study; a single 25-μg sLN injection at 2 weeks partially restored this loss in disc height. sLN injection led to an increase in glycosaminoglycans (GAG) content 12 weeks post-injection in both the NP and annulus fibrosus (AF). There was a trend towards maintaining control disc collagen-content with sLN supplementation and the GAG-to-collagen ratio in the NP was increased when compared to the saline group. Conclusions When administered to the degenerative disc in vivo, sLN injection leads to an increase in proteoglycan content and a trend towards maintaining control disc collagen content in both the NP and AF. This is similar to link N when it is administered to the degenerative disc. Thus, pharmacologically, sLN supplementation could be a novel therapeutic approach for treating disc degeneration.
Collapse
|
4
|
Noorwali H, Grant MP, Epure LM, Madiraju P, Sampen H, Antoniou J, Mwale F. Link N as a therapeutic agent for discogenic pain. JOR Spine 2018; 1:e1008. [PMID: 31463438 PMCID: PMC6686832 DOI: 10.1002/jsp2.1008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Neurotrophins (NTs) are the major contributors of sensory axonal sprouting, neural survival, regulation of nociceptive sensory neurons, inflammatory hyperalgesia, and neuropathic pain. Intervertebral disc (IVD) cells constitutively express NTs. Their expression is upregulated by proinflammatory cytokines present in the IVD during degeneration, which can promote peripheral nerve ingrowth and hyperinnervation, leading to discogenic pain. Currently, there are no targeted therapies that decrease hyperinnervation in degenerative disc disease. Link N is a naturally occurring peptide with a high regenerative potential in the IVD. Therefore, the suitability of Link N as a therapeutic peptide for suppressing NTs, which are known modulators and mediators of pain, was investigated. The aim of the present study is to determine the effect of Link N on NTs expression, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and their cognate receptors TrkA and TrkB as they are directly correlated with symptomatic back pain. Furthermore, the neurotransmitter (substance P) was also evaluated in human annulus fibrosus (AF) cells stimulated with cytokines. Human AF cells isolated from normal IVDs were stimulated with interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the presence or absence of Link N. NGF release in the media was evaluated by Western blotting. Total RNA was isolated and gene expression was measured using real-time PCR. Gene expression of NGF, BDNF, TrkA, and TrkB significantly decreased in human disc cells stimulated with either IL-1β or TNF-α supplemented with Link N when compared to the cells stimulated only with IL-1β or TNF-α. NGF protein expression was also suppressed in AF cells coincubated with Link N and IL-1β when compared to the cells stimulated only with IL-1β. Link N can suppress the stimulation of NGF, BDNF, and their receptors TrkA and TrkB in AF cells in an inflammatory milieu. Thus, coupled with previous observations, this suggests that administration of Link N has the potential to not only repair the discs in early stages of the disease but also suppress pain.
Collapse
Affiliation(s)
- Hussain Noorwali
- Division of Orthopaedic SurgeryMcGill UniversityMontrealQCCanada
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
- Division of Orthopaedic SurgeryKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Michael P. Grant
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Laura M. Epure
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Padma Madiraju
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Hee‐Jeong Sampen
- Department of BiochemistryRush University Medical CenterChicagoIllinois
| | - John Antoniou
- Division of Orthopaedic SurgeryMcGill UniversityMontrealQCCanada
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| | - Fackson Mwale
- Division of Orthopaedic SurgeryMcGill UniversityMontrealQCCanada
- SMBD‐Jewish General HospitalLady Davis Institute for Medical ResearchMontrealQCCanada
| |
Collapse
|
5
|
Bach FC, Laagland LT, Grant MP, Creemers LB, Ito K, Meij BP, Mwale F, Tryfonidou MA. Link-N: The missing link towards intervertebral disc repair is species-specific. PLoS One 2017; 12:e0187831. [PMID: 29117254 PMCID: PMC5679057 DOI: 10.1371/journal.pone.0187831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023] Open
Abstract
Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lisanne T. Laagland
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- Orthopedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
6
|
Gawri R, Shiba T, Pilliar R, Kandel R. Inorganic polyphosphates enhances nucleus pulposus tissue formation in vitro. J Orthop Res 2017; 35:41-50. [PMID: 27164002 DOI: 10.1002/jor.23288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
Disc degeneration is associated with low back pain for which currently there is no optimal therapy so there is a great need to identify new treatment approaches. Inorganic polyphosphates (polyP) are linear polymers of orthophosphate units varying in chain length and present in many cell types. As polyP has anabolic effects on chondrocytes, we hypothesized that polyP treatment would enhance matrix accumulation by nucleus pulposus (NP) cells. NP cells isolated from bovine caudal discs were grown in 3D culture under normoxic or in select experiments under hypoxic conditions, in the presence or absence of various concentrations and sizes of polyP. Gene expression was determined using RT-PCR. Matrix accumulation was quantified by measuring proteoglycan and collagen contents. DAPI fluorescence shift was used to stain for polyP in tissue. DAPI staining showed polyP present predominantly in the pericellular region of in vitro formed tissue. PolyP treatment enhanced matrix accumulation in a concentration and chain length dependant manner. NP cells exposed to polyP-22 (22 phosphate units length) showed an increase in gene expression of aggrecan, Collagen II, Sox 9, and MMP-13 which was maintained for the 14 days of culture. This suggests that polyP may enhance NP tissue formation in vitro by upregulating the expression of matrix genes. As polyP enhances proteoglycan accumulation even under hypoxic conditions, this raises the possibility that polyP may be a novel treatment to induce NP regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:41-50, 2017.
Collapse
Affiliation(s)
- Rahul Gawri
- Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Toshikazu Shiba
- Regenetiss Inc., Kunitachi, Tokyo, Japan.,Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Robert Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Faculty of Dentistry, University of Toronto, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Suite 6-500, Toronto, Ontario, Canada, M5G 1X5
| |
Collapse
|
7
|
AlGarni N, Grant MP, Epure LM, Salem O, Bokhari R, Antoniou J, Mwale F. Short Link N Stimulates Intervertebral Disc Repair in a Novel Long-Term Organ Culture Model that Includes the Bony Vertebrae. Tissue Eng Part A 2016; 22:1252-1257. [DOI: 10.1089/ten.tea.2016.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Nizar AlGarni
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Laura M. Epure
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Omar Salem
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Rakan Bokhari
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - John Antoniou
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| |
Collapse
|