1
|
Liu Z, Hussien AA, Wang Y, Heckmann T, Gonzalez R, Karner CM, Snedeker JG, Gray RS. An adhesion G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment. eLife 2021; 10:67781. [PMID: 34318745 PMCID: PMC8328515 DOI: 10.7554/elife.67781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spine disorder affecting children worldwide, yet little is known about the pathogenesis of this disorder. Here, we demonstrate that genetic regulation of structural components of the axial skeleton, the intervertebral discs, and dense connective tissues (i.e., ligaments and tendons) is essential for the maintenance of spinal alignment. We show that the adhesion G protein-coupled receptor ADGRG6, previously implicated in human AIS association studies, is required in these tissues to maintain typical spine alignment in mice. Furthermore, we show that ADGRG6 regulates biomechanical properties of tendon and stimulates CREB signaling governing gene expression in cartilaginous tissues of the spine. Treatment with a cAMP agonist could mirror aspects of receptor function in culture, thus defining core pathways for regulating these axial cartilaginous and connective tissues. As ADGRG6 is a key gene involved in human AIS, these findings open up novel therapeutic opportunities for human scoliosis.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, United States
| | - Amro A Hussien
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Yunjia Wang
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Terry Heckmann
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States
| | - Roberto Gonzalez
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States
| | - Courtney M Karner
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
2
|
Okazaki Y, Furumatsu T, Kamatsuki Y, Nishida K, Nasu Y, Nakahara R, Saito T, Ozaki T. Differences between the root and horn cells of the human medial meniscus from the osteoarthritic knee in cellular characteristics and responses to mechanical stress. J Orthop Sci 2021; 26:230-236. [PMID: 32223991 DOI: 10.1016/j.jos.2020.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Many histological, mechanical, and clinical studies have been performed on the medial meniscus posterior root attachment, as it often tears in patients with osteoarthritic knee. Medial meniscal root repair is recommended in clinical situations; however, to date, no studies have examined the differences between meniscal root and horn cells. The aim of this study was, therefore, to investigate the morphology, reaction to cyclic tensile strain, and gene expression levels of medial meniscal root and horn cells. METHODS Meniscal samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Root and horn cells were cultured in Dulbecco's modified Eagle's medium without enzymes. The morphology, distribution, and proliferation of medial meniscal root and horn cells, as well as the gene and protein expression levels of Sry-type HMG box 9 and type II collagen, were determined after cyclic tensile strain treatment. RESULTS Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for Sry-type HMG box 9 and type II collagen was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following a 2-h treatment with 5% and 10% cyclic tensile. Sry-type HMG box 9 and α1(II) collagen mRNA expression levels were significantly enhanced in both cells after 2- and 4-h cyclic tensile strain (5%) treatment. CONCLUSIONS Medial meniscal root and horn cells have distinct morphologies, reactions to mechanical stress, and cellular phenotypes. Our results suggest that physiological tensile strain is important to activate extracellular matrix production in horn cells.
Collapse
Affiliation(s)
- Yuki Okazaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| | - Yusuke Kamatsuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yoshihisa Nasu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Ryuichi Nakahara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Taichi Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
3
|
Furumatsu T, Maehara A, Okazaki Y, Ozaki T. Intercondylar and central regions of complete discoid lateral meniscus have different cell and matrix organizations. J Orthop Sci 2018; 23:811-818. [PMID: 29937131 DOI: 10.1016/j.jos.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/16/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND A complete discoid lateral meniscus (DLM) has a high risk of horizontal tear. However, cellular phenotypes and extracellular matrix organizations in complete DLMs are still unclear. The aim of this study was to investigate histological and cellular biological characteristics in both the intercondylar and central regions of complete DLM. MATERIALS AND METHODS Meniscal samples were obtained from the intercondylar and central regions of complete DLM (n = 6). Blood vessels and aggregated cell ratio were measured in each region. Depositions of type I/II collagens and safranin O-stained proteoglycans in the extracellular matrix were assessed. Experiments in gene expression, morphology, proliferation, and effect of mechanical stretch were performed using cultured cells derived from each region. RESULTS Blood vessel counts were significantly higher in the intercondylar region than in the central region. The ratio of aggregated cells was lower in the intercondylar region than in the central region. Deposition of type I collagen was comparable for both regions. The central region contained a larger quantity of type II collagen and safranin O staining density compared with the intercondylar region. Proliferation of the fibroblastic intercondylar cells was not affected by 5%-stretching. However, stretching treatments decreased relative proliferation of the chondrocytic central cells. CONCLUSIONS This study demonstrated that the central region of complete DLM had different cellular properties and collagen components compared with the intercondylar region. Our results suggest that the central region of complete DLM may have a low healing potential like the inner avascular region of the meniscus.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
| | - Ami Maehara
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yuki Okazaki
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Furumatsu T, Ozaki T. An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells. Methods Mol Biol 2017; 1489:533-542. [PMID: 27734404 DOI: 10.1007/978-1-4939-6430-7_45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
5
|
Furumatsu T, Maehara A, Ozaki T. ROCK inhibition stimulates SOX9/Smad3-dependent COL2A1 expression in inner meniscus cells. J Orthop Sci 2016; 21:524-529. [PMID: 27113646 DOI: 10.1016/j.jos.2016.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 03/27/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Proper functioning of the meniscus depends on the composition and organization of its fibrocartilaginous extracellular matrix. We previously demonstrated that the avascular inner meniscus has a more chondrocytic phenotype compared with the outer meniscus. Inhibition of the Rho family GTPase ROCK, the major regulator of the actin cytoskeleton, stimulates the chondrogenic transcription factor Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. However, the crosstalk between ROCK inhibition, SOX9, and other transcription modulators on COL2A1 upregulation remains unclear in meniscus cells. The aim of this study was to investigate the role of SOX9-related transcriptional complex on COL2A1 expression under the inhibition of ROCK in human meniscus cells. METHODS Human inner and outer meniscus cells were prepared from macroscopically intact lateral menisci. Cells were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y27632). Gene expression, collagen synthesis, and nuclear translocation of SOX9 and Smad2/3 were analyzed. RESULTS Treatment of ROCKi increased the ratio of type I/II collagen double positive cells derived from the inner meniscus. In real-time PCR analyses, expression of SOX9 and COL2A1 genes was stimulated by ROCKi treatment in inner meniscus cells. ROCKi treatment also induced nuclear translocation of SOX9 and phosphorylated Smad2/3 in immunohistological analyses. Complex formation between SOX9 and Smad3 was increased by ROCKi treatment in inner meniscus cells. Chromatin immunoprecipitation analyses revealed that association between SOX9/Smad3 transcriptional complex with the COL2A1 enhancer region was increased by ROCKi treatment. CONCLUSIONS This study demonstrated that ROCK inhibition stimulated SOX9/Smad3-dependent COL2A1 expression through the immediate nuclear translocation of Smad3 in inner meniscus cells. Our results suggest that ROCK inhibition can stimulates type II collagen synthesis through the cooperative activation of Smad3 in inner meniscus cells. ROCKi treatment may be useful to promote the fibrochondrocytic healing of the injured inner meniscus.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.
| | - Ami Maehara
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|