1
|
Schilaty ND, Martin RK, Ueno R, Rigamonti L, Bates NA. Mechanics of cadaveric anterior cruciate ligament reconstructions during simulated jump landing tasks: Lessons learned from a pilot investigation. Clin Biomech (Bristol, Avon) 2021; 86:105372. [PMID: 34052693 PMCID: PMC8278414 DOI: 10.1016/j.clinbiomech.2021.105372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Around half of anterior cruciate ligament (ACL) injuries are treated through reconstruction, but the literature lacks mechanical investigation of reconstructions in a dynamic athletic task and rupture environment. The current objective was to ascertain the feasibility of investigating ACL reconstructions in a rupture environment during simulated landing tasks in a validated mechanical impact simulator. METHODS Four cadaveric lower extremities were subjected to simulated landing in a mechanical impact simulator. External joint loads that mimicked magnitudes recorded from an in vivo population were applied to each joint in a stepwise manner. Simulations were repeated until ACL failure was achieved. Repeated measures design was used to test each specimen in the native ACL and hamstrings, quadriceps, and patellar tendon reconstructed states. FINDINGS ACL injuries were generated in 100% of specimens. Graft substance damage occurred in 58% of ACLRs, and in 75% of bone tendon bone grafts. Bone tendon bone and quadriceps grafts survived greater simulated loading than hamstrings grafts, but smaller simulated loading than the native ACL. Median peak strain prior to failure was 20.3% (11.6, 24.5) for the native ACL and 17.4% (9.5, 23.3) across all graft types. INTERPRETATION The simulator was a viable construct for mechanical examination of ACLR grafts in rupture environments. Post-surgery, ACL reconstruction complexes are weaker than the native ACL when subjected to equivalent loading. Bone tendon bone grafts most closely resembled the native ligament and provided the most consistently relevant rupture results. This model advocated reconstruction graft capacity to sustain forces generated from immediate gait and weightbearing during rehabilitation from an ACL injury.
Collapse
Affiliation(s)
- Nathan D Schilaty
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA; Sports Medicine Center, Mayo Clinic, Rochester, MN, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - R Kyle Martin
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA; Department of Orthopedic Surgery, CentraCare, Saint Cloud, MN, USA
| | - Ryo Ueno
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Luca Rigamonti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nathaniel A Bates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA; Sports Medicine Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Biomechanical considerations are crucial for the success of tendon and meniscus allograft integration-a systematic review. Knee Surg Sports Traumatol Arthrosc 2019; 27:1708-1716. [PMID: 30291394 DOI: 10.1007/s00167-018-5185-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE This systematic review intends to give an overview of the current knowledge on how allografts used for the reconstruction of cruciate ligaments and menisci are integrated and specifically perform regarding their biomechanical function. METHODS Two reviewers reviewed the PubMed and Central Cochrane library with focus on the biomechanical integration of tendon ligament and meniscus allografts. The literature search was conducted in accordance with the PRISMA statement for reporting systematic reviews and meta-analyses. RESULTS The analysed literature on tendon allografts shows that they are more vulnerable to overstretching in the phase of degradation compared to autografts as the revascularization process starts later and takes longer. Therefore, to avoid excessive graft loads, allografts for cruciate ligament replacement should be selected that exhibit much higher failure loads than the native ligaments to counteract the detrimental effect of degradation. Further, placement techniques should be considered that result in a minimum of strain differences during knee joint motion, which is best achieved by near-isometric placement. The most important biomechanical parameters for meniscus allograft transplantation are secure fixation and proper graft sizing. Allograft attachment by bone plugs or by a bone block is superior to circumferential suturing and enables the allograft to restore the chondroprotective biomechanical function. Graft sizing is also of major relevance, because too small grafts are not able to compensate the knee joint incongruity and too large grafts may fail due to extrusion. Only adequate sizing and fixation together can lead to a biomechanically functioning allograft. The objective assessment of the biomechanical quality of allografts in a clinical setting is challenging, but would be highly desirable for monitoring the remodelling and incorporation process. CONCLUSIONS Currently, indicators like ap-stability after ACL reconstruction or meniscal extrusion represent only indirect measures for biomechanical graft integration. These parameters are at best clinical indicators of allograft function, but the overall integration properties comprising e.g. fixation and graft stiffness remain unknown. Therefore, future research should e.g. focus on advanced imaging techniques or other non-invasive methods allowing for in vivo assessment of biomechanical allograft properties.
Collapse
|
3
|
Bates NA, Nesbitt RJ, Shearn JT, Myer GD, Hewett TE. The influence of internal and external tibial rotation offsets on knee joint and ligament biomechanics during simulated athletic tasks. Clin Biomech (Bristol, Avon) 2018; 52:109-116. [PMID: 29425835 PMCID: PMC5835205 DOI: 10.1016/j.clinbiomech.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Following anterior cruciate ligament injury and subsequent reconstruction transverse plane tibiofemoral rotation becomes underconstrained and overconstrained, respectively. Conflicting reports exist on how rotations influence loading at the knee. This investigation aimed to determine the mechanical effects of internal and external tibial rotation offsets on knee kinematics and ligament strains during in vitro simulations of in vivo recorded kinematics. METHOD A 6-degree-of-freedom robotic manipulator arm was used to articulate 11 cadaveric tibiofemoral joint specimens through simulations of four athletic tasks produced from in vivo recorded kinematics. These simulations were then repeated with 4° tibial rotation offsets applied to the baseline joint orientation. FINDINGS Rotational offsets had a significant effect on peak posterior force for female motion simulations (P < 0.01), peak lateral force for most simulated tasks (P < 0.01), and peak anterior force, internal torque, and flexion torque for sidestep cutting tasks (P ≤ 0.01). Rotational offsets did not exhibit statistically significant effects on peak anterior cruciate ligament strain (P > 0.05) or medial collateral ligament strain (P > 0.05) for any task. INTERPRETATION Transverse plane rotational offsets comparable to those observed in anterior cruciate ligament deficient and reconstructed patients alter knee kinetics without significantly altering anterior cruciate ligament strain. As knee degeneration is attributed to abnormal knee loading profiles, altered transverse plane kinematics may contribute to this. However, altered transverse plane rotations likely play a limited role in anterior cruciate ligament injury risk as physiologic offsets failed to significantly influence anterior cruciate ligament strain during athletic tasks.
Collapse
Affiliation(s)
- Nathaniel A. Bates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Rebecca J. Nesbitt
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason T. Shearn
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Gregory D. Myer
- Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA,Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Timothy E. Hewett
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA,Sports Medicine Center, Mayo Clinic, Rochester, MN, USA,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Nesbitt RJ, Bates NA, Rao MB, Schaffner G, Shearn JT. Effects of Population Variability on Knee Loading During Simulated Human Gait. Ann Biomed Eng 2017; 46:284-297. [PMID: 29159731 DOI: 10.1007/s10439-017-1956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/03/2017] [Indexed: 01/11/2023]
Abstract
Cadaveric simulation models allow researchers to study native tissues in situ. However, as tests are conducted using donor specimens with unmatched kinematics, techniques that impose population average motions are subject to deviation from true physiologic conditions. This study aimed to identify factors which explain the kinetic variability observed during robotic simulations of a single human gait motion using a sample of human cadaver knees. Twelve human cadaver limbs (58 ± 16 years) were subjected to tibiofemoral geometrical analysis and cyclical stiffness testing in each anatomical degree of freedom. A simulated gait motion was then applied to each specimen. Resulting kinetics, specimen geometries, and various representations of tissue stiffness were reduced to functional attributes using principal component analysis and fit to a generalized linear prediction model. The capacity of knee topography to generate force was the largest contributor to kinetic variation in compression. Overall joint size, femoral notch height, translational laxity, and ad/abduction stiffness significantly contributed to kinetic variation in medial/lateral and anterior/posterior forces and associated torques. Future studies will investigate customizing kinematic paths to better simulate native conditions and reduce sampling variation, improving biomechanical test methods and evaluation strategies for future orthopedic techniques.
Collapse
Affiliation(s)
- Rebecca J Nesbitt
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Nathaniel A Bates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Marepalli B Rao
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental Health-Genomics, University of Cincinnati, Cincinnati, OH, USA
| | - Grant Schaffner
- Department of Aerospace Engineering & Engineering Mechanics, University of Cincinnati, Cincinnati, OH, USA
| | - Jason T Shearn
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Boguszewski DV, Wagner CT, Butler DL, Shearn JT. Effect of ACL graft material on anterior knee force during simulated in vivo ovine motion applied to the porcine knee: An in vitro examination of force during 2000 cycles. J Orthop Res 2015; 33:1789-95. [PMID: 26134453 DOI: 10.1002/jor.22958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 05/22/2015] [Indexed: 02/04/2023]
Abstract
This study determined how anterior cruciate ligament (ACL) reconstruction affected the magnitude and temporal patterns of anterior knee force and internal knee moment during 2000 cycles of simulated gait. Porcine knees were tested using a six degree-of-freedom robot, examining three porcine allograft materials compared with the native ACL. Reconstructions were performed using: (1) bone-patellar tendon-bone allograft (BPTB), (2) reconstructive porcine tissue matrix (RTM), or (3) an RTM-polymer hybrid construct (Hybrid). Forces and moments were measured over the entire gait cycle and contrasted at heel strike, mid stance, toe off, and peak flexion. The Hybrid construct performed the best, as magnitude and temporal changes in both anterior knee force and internal knee moment were not different from the native ACL knee. Conversely, the RTM knees showed greater loss in anterior knee force during 2000 cycles than the native ACL knee at heel strike and toe off, with an average force loss of 46%. BPTB knees performed the least favorably, with significant loss in anterior knee force at all key points and an average force loss of 61%. This is clinically relevant, as increases in post-operative knee laxity are believed to play a role in graft failure and early onset osteoarthritis.
Collapse
Affiliation(s)
- Daniel V Boguszewski
- Department of Orthopaedic Surgery, University of California Los Angles, Los Angeles, California
| | - Christopher T Wagner
- LifeCell Corporation, Bridgewater, New Jersey.,Department of Biomedical Engineering, The College of New Jersey, Ewing, New Jersey
| | - David L Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Jason T Shearn
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|