1
|
Celebi Torabfam G, Porsuk MH. The Role of the Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Vascular Diseases: A Therapeutic Approach. Angiology 2025; 76:309-322. [PMID: 38171493 DOI: 10.1177/00033197231226275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cardiovascular and bone diseases contribute independently to mortality and global health. The exact mechanisms involved in the pathophysiology shared between bone and vascular diseases are not well defined. Endothelial cells and osteoblasts communicate during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. One shared mechanism may involve osteoprotegerin (OPG) and its ligand Receptor Activator of NF-κB Ligand (RANKL). The RANKL/OPG ratio is an important modulator for the skeletal, immunological, and vascular systems. OPG levels are elevated due to either osteogenic causes or inflammatory responses in the vasculature. The data obtained from clinical and in vitro studies support the role of the RANKL/OPG ratio as a potential marker for the progression of endothelial damage. Therefore, determining the therapeutic approaches for the targeting RANKL/OPG ratio and evaluating its usage as a biomarker in cardiovascular and bone pathophysiology are needed. By integrating the protective and disease-causing role of OPG with its ligand, this review outlines the role of the RANKL/OPG ratio at the molecular level. We also consider targeted therapeutic approaches.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Melis Hazal Porsuk
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| |
Collapse
|
2
|
Thomson AL, Suhardi VJ, Niu Y, Oktarina A, Döring K, Chao C, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. A translational murine model of aseptic loosening with osseointegration failure. J Orthop Res 2024; 42:2525-2534. [PMID: 38899517 DOI: 10.1002/jor.25915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
An in vivo animal model of a weight-bearing intra-articular implant is crucial to the study of implant osseointegration and aseptic loosening caused by osseointegration failure. Osseointegration, defined as a direct structural and functional attachment between living bone tissue and the surface of a load-carrying implant, is essential for implant stability and considered a prerequisite for the long-term clinical success of implants in total joint arthroplasty. Compared to large animal models, murine models offer extensive genetic tools for tracing cell differentiation and proliferation. The 18- to 22-week-old C57BL/6J background mice underwent either press-fitted or loose implantation of a titanium implant, achieving osseointegration or fibrous integration. A protocol was developed for both versions of the procedure, including a description of the relevant anatomy. Samples were subjected to microcomputed tomography and underwent biomechanical testing to access osseointegration. Lastly, samples were fixed and embedded for histological evaluation. The absence of mineralized tissue and weakened maximum pull-out force in loose implantation samples indicated that these implants were less mechanically stable compared to the control at 4 weeks postoperation. Histological analysis demonstrated extensive fibrotic tissue in the peri-implant area of loose implantation samples and excellent implant osseointegration in press-fitted samples at 4 weeks. Both mechanically stable and unstable hemiarthroplasty models with either osseous ingrowth or a robust periprosthetic fibrosis were achieved in mice. We hope that this model can help address current limitations for in vivo study of aseptic loosening and lead to necessary translational benefits.
Collapse
Affiliation(s)
- Andrew L Thomson
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Vincentius J Suhardi
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Kevin Döring
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Christina Chao
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Mathias P G Bostrom
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Yi M, Yin Y, Sun J, Wang Z, Tang Q, Yang C. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice. Front Mol Biosci 2022; 9:965753. [PMID: 36188222 PMCID: PMC9522461 DOI: 10.3389/fmolb.2022.965753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
As clusters of peptides or steroids capable of high-efficiency information transmission, hormones have been substantiated to coordinate metabolism, growth, development, and other physiological processes, especially in bone physiology and repair metabolism. In recent years, the application of hormones for implant osseointegration has become a research hotspot. Herein, we provide a comprehensive overview of the relevant reports on endogenous hormones and their corresponding supplementary preparations to explore the association between hormones and the prognosis of implants. We also discuss the effects and mechanisms of insulin, parathyroid hormone, melatonin, vitamin D, and growth hormone on osseointegration at the molecular and body levels to provide a foothold and guide future research on the systemic conditions that affect the implantation process and expand the relative contraindications of the implant, and the pre-and post-operative precautions. This review shows that systemic hormones can regulate the osseointegration of oral implants through endogenous or exogenous drug-delivery methods.
Collapse
Affiliation(s)
- Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zeying Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
5
|
Xu M, Li Y, Feng X, Zheng W, Zhao Z, Li Y. Parathyroid hormone promotes maxillary expansion and reduces relapse in the repeated activation maxillary expansion rat model by regulating Wnt/β-catenin pathway. Prog Orthod 2022; 23:1. [PMID: 34978631 PMCID: PMC8724514 DOI: 10.1186/s40510-021-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/26/2021] [Indexed: 02/08/2023] Open
Abstract
Background Constricted maxillary bone is a common skeletal deformity, which may lead to crowding and posterior crossbite. Mid-palatal suture expansion is often used to increase the maxillary width, but its skeletal effects are limited and tend to relapse, even with prolonged retention. We hypothesized that parathyroid hormone (PTH) may reduce the relapse of maxillary expansion. Methods We established a novel rat maxillary expansion model using palatal tubes with an insertable “W”-shaped spring which can be repeatedly activated. A total of 32 male healthy Wistar rats were randomly divided into six groups: the control group, the PTH group, the expansion group, the expansion + PTH group, the expansion + relapse group and the expansion + PTH + relapse group. All animals in the first 4 groups were killed after 10 days and the 2 relapse groups were killed after 15 days. The maxillary arch widths and histological staining were used to assess the expansion and relapse effects. The immunohistochemical staining, micro-CT, RT-qPCR and Western blot were used to evaluate the bone remodeling during expansion. Results The suture width was increased by the expansion device, and the repeated activation maxillary expansion rat model showed better expansion effects than the conventional model. PTH significantly promoted the expansion width and reduced the relapse ratio. Meanwhile, in the expansion + PTH group, histological and immunohistochemical staining showed that osteoblasts, osteoclasts, new cartilage and osteoid were significantly increased, micro-CT showed increased bone mass, and PCR and Western blot results confirmed up-regulation of RANKL, β-catenin, type II collagen and OCN. Conclusion The novel repeated activation maxillary expansion rat model has better effects than the conventional model. PTH enhances the maxillary expansion and reduces its relapse by regulating Wnt/β-catenin and RANKL pathways. PTH administration may serve as an adjunctive therapy in addition to mechanical expansion for treatment of maxillary constriction.
Collapse
Affiliation(s)
- Mengting Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Xiaoxia Feng
- The Affiliated Stomatology Hospital, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, South Renmin Road, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, South Renmin Road, Chengdu, 610041, People's Republic of China.
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, South Renmin Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
6
|
Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond MH, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone 2022; 154:116218. [PMID: 34571201 DOI: 10.1016/j.bone.2021.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.
Collapse
Affiliation(s)
- Alice L Bouchard
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Chrisanne Dsouza
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Marie-Hélène Gaumond
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
7
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Turajane K, Ji G, Chinenov Y, Chao M, Ayturk U, Suhardi VJ, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. RNA-seq Analysis of Peri-Implant Tissue Shows Differences in Immune, Notch, Wnt, and Angiogenesis Pathways in Aged Versus Young Mice. JBMR Plus 2021; 5:e10535. [PMID: 34761143 PMCID: PMC8567488 DOI: 10.1002/jbm4.10535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
The number of total joint replacements (TJRs) in the United States is increasing annually. Cementless implants are intended to improve upon traditional cemented implants by allowing bone growth directly on the surface to improve implant longevity. One major complication of TJR is implant loosening, which is related to deficient osseointegration in cementless TJRs. Although poor osseointegration in aged patients is typically attributed to decreased basal bone mass, little is known about the molecular pathways that compromise the growth of bone onto porous titanium implants. To identify the pathways important for osseointegration that are compromised by aging, we developed an approach for transcriptomic profiling of peri-implant tissue in young and aged mice using our murine model of osseointegration. Based on previous findings of changes of bone quality associated with aging, we hypothesized that aged mice have impaired activation of bone anabolic pathways at the bone-implant interface. We found that pathways most significantly downregulated in aged mice relative to young mice are related to angiogenic, Notch, and Wnt signaling. Downregulation of these pathways is associated with markedly increased expression of inflammatory and immune genes at the bone-implant interface in aged mice. These results identify osseointegration pathways affected by aging and suggest that an increased inflammatory response in aged mice may compromise peri-implant bone healing. Targeting the Notch and Wnt pathways, promoting angiogenesis, or modulating the immune response at the peri-implant site may enhance osseointegration and improve the outcome of joint replacement in older patients. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Gang Ji
- Hospital for Special SurgeryNew YorkNYUSA
- The Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yurii Chinenov
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | - Max Chao
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | | | | | - Matthew B Greenblatt
- Hospital for Special SurgeryNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Lionel B Ivashkiv
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | | | - Xu Yang
- Hospital for Special SurgeryNew YorkNYUSA
| |
Collapse
|
9
|
Choi JH, Wang Z, Ross FP, van der Meulen MCH, Bostrom MPG. Systemic osteoprotegerin does not improve peri-implant bone volume or osseointegration in rabbits. J Orthop Res 2021; 39:1611-1621. [PMID: 33049072 DOI: 10.1002/jor.24884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/05/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
Anti-RANKL (receptor activator of nuclear factor kappa-B ligand) agents function by blocking the differentiation of osteoclasts, thereby proving useful in the clinical management of postmenopausal osteoporosis. The effects of such agents on osseointegration is less well understood. The purpose of the current study was to investigate whether osteoprotegerin (OPG), an osteoclast inhibitor, enhances the known anabolic effects of mechanical loading (VEH) and intermittent PTH (iPTH) using a well-established rabbit model of osseointegration. In the first set of experiments, OPG was administered either alone or combined with iPTH to study its effects on measured bone mass. The second set of experiments was conducted using a higher dosage of OPG (10 mg/kg) to explore its early impact at the cellular and molecular levels. All subjects had mechanical load applied to the implant on one extremity, and no load applied on the contralateral side. In the first set of experiments, OPG alone decreased peri-implant bone mass compared to the mechanical loading group, whereas OPG + iPTH increased peri-implant bone mass compared to the OPG group. In the second set of experiments, high-dose OPG significantly decreased osteoclast number (-74.3%) at 1 week. However, this effect was not sustained as osteoclast number returned to baseline by 2 weeks. These results suggest that systemic administration of OPG does not enhance osseointegration, but rather has a detrimental effect.
Collapse
Affiliation(s)
- Joseph H Choi
- Hospital for Special Surgery, New York, New York, USA
| | - Zhiwei Wang
- Hospital for Special Surgery, New York, New York, USA.,Orthopaedic Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
10
|
Estell EG, Rosen CJ. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 2021; 17:31-46. [PMID: 33149262 DOI: 10.1038/s41574-020-00426-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Over the past three decades, the mainstay of treatment for osteoporosis has been antiresorptive agents (such as bisphosphonates), which have been effective with continued administration in lowering fracture risk. However, the clinical landscape has changed as adherence to these medications has declined due to perceived adverse effects. As a result, decreases in hip fracture rates that followed the introduction of bisphosphonates have now levelled off, which is coincident with a decline in the use of the antiresorptive agents. In the past two decades, two types of anabolic agents (including three new drugs), which represent a novel approach to improving bone quality by increasing bone formation, have been approved. These therapies are expected to lead to a new clinical paradigm in which anabolic agents will be used either alone or in combination with antiresorptive agents to build new bone and reduce fracture risk. This Review examines the mechanisms of action for these anabolic agents by detailing their receptor-activating properties for key cell types in the bone and marrow niches. Using these advances in bone biology as context, the comparative effectiveness of these anabolic agents is discussed in relation to other therapeutic options for osteoporosis to better guide their clinical application in the future.
Collapse
Affiliation(s)
- Eben G Estell
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | |
Collapse
|
11
|
Ramavath A, Lamb JN, Palan J, Pandit HG, Jain S. Postoperative periprosthetic femoral fracture around total hip replacements: current concepts and clinical outcomes. EFORT Open Rev 2020; 5:558-567. [PMID: 33072408 PMCID: PMC7528669 DOI: 10.1302/2058-5241.5.200003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rising incidence of postoperative periprosthetic femoral fracture (PFF) presents a significant clinical and economic burden. A detailed understanding of risk factors is required in order to guide preventative strategies. Different femoral stems have unique characteristics and management strategies must be tailored appropriately. Consensus regarding treatment of PFFs around well-fixed stems is lacking, but revision surgery may provide more predictable outcomes for unstable fracture patterns and fractures around polished taper-slip stems. Future research should focus on implant-related risk factors, treatment of concurrent metabolic bone disease and the use of large endoprostheses.
Cite this article: EFORT Open Rev 2020;5:558-567. DOI: 10.1302/2058-5241.5.200003
Collapse
Affiliation(s)
- Ashoklal Ramavath
- Department of Orthopaedic Surgery, Chapel Allerton Hospital, Leeds, UK
| | - Jonathan N Lamb
- Department of Orthopaedic Surgery, Chapel Allerton Hospital, Leeds, UK.,University of Leeds, Leeds, UK
| | - Jeya Palan
- Department of Orthopaedic Surgery, Chapel Allerton Hospital, Leeds, UK
| | - Hemant G Pandit
- Department of Orthopaedic Surgery, Chapel Allerton Hospital, Leeds, UK.,University of Leeds, Leeds, UK
| | - Sameer Jain
- Department of Orthopaedic Surgery, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
12
|
Gilbert W, Goodin JL, McPherson JC, Chuang AH. The Effects of Continual Intermittent Parathyroid Hormone Treatment on Human Periodontal Ligament Fibroblasts in an In Vitro Wound Repopulation Model. Mil Med 2020; 185:644-648. [PMID: 32074331 DOI: 10.1093/milmed/usz252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Periodontal ligament fibroblasts (PDLFs) play a vital role in periodontal regeneration. Parathyroid hormone (PTH) is important in catabolic regulation on osteoclasts; it also has anabolic effects on hard tissue formation. Using an in vitro wound repopulation model, this study investigated the effect of continual intermittent administration of PTH on PDLFs wound repopulation. Methods and Materials: PDLFs were grown in 12-well plates and divided into 0 (control), 5, 10, 20, 40, and 80 nM of PTH treatments. A 3-mm wound was created on confluent and synchronized cells. Six PTH treatments were initiated using serum-free medium with supplements. Cell repopulation was measured at four time points: 5, 10, 15, and 20 days. RESULTS A 5% increase wound repopulation showed an enhancement on day 10 for all treatment groups as compared to control groups. On days 15 and 20, treatment groups showed a decrease in proliferation and migration compared to controls with significant decreases at concentrations of 40 and 80 nM. CONCLUSION Continual intermittent treatment with PTH has the potential to enhance proliferation and migration of PDLFs for wound repopulation at early time points. A dose-dependent correlation was seen with a positive trend on day 10 while a significant decrease on day 20.
Collapse
Affiliation(s)
- William Gilbert
- Okubo Dental Clinic, Madigan Army Medical Center, 11582 C St., Joint Base Lewis-McChord, WA 98433
| | - Jeremy L Goodin
- Department of Clinical Investigation, Eisenhower Army Medical Center, Bldg 38711, 7th Alley, Fort Gordon, GA 30905
| | - James C McPherson
- Department of Clinical Investigation, Eisenhower Army Medical Center, Bldg 38711, 7th Alley, Fort Gordon, GA 30905
| | - Augustine H Chuang
- Department of Clinical Investigation, Eisenhower Army Medical Center, Bldg 38711, 7th Alley, Fort Gordon, GA 30905
| |
Collapse
|
13
|
Li Z, Müller R, Ruffoni D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res 2018; 36:584-593. [PMID: 28975660 DOI: 10.1002/jor.23758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Anchorage of orthopedic implants depends on the interfacial bonding between the implant and the host bone as well as on the mass and microstructure of peri-implant bone, with all these factors being continuously regulated by the biological process of bone (re)modeling. In osteoporotic bone, implant integration may be jeopardized not only by lower peri-implant bone quality but also by reduced intrinsic regeneration ability. The first aim of this review is to provide a critical overview of the influence of osteoporosis on bone regeneration post-implantation. Mechanical stimulation can trigger bone formation and inhibit bone resorption; thus, judicious administration of mechanical loading can be used as an effective non-pharmacological treatment to enhance implant anchorage. Our second aim is to report recent achievements on the application of external mechanical stimulation to improve the quantity of peri-implant bone. The review focuses on peri-implant bone changes in osteoporotic conditions and following mechanical loading, prevalently using small animals and in vivo monitoring approaches. We intend to demonstrate the necessity to reveal new biological information on peri-implant bone mechanobiology to better target implant anchorage and fracture fixation in osteoporotic conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:584-593, 2018.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospaceand Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Malouf-Sierra J, Tarantino U, García-Hernández PA, Corradini C, Overgaard S, Stepan JJ, Borris L, Lespessailles E, Frihagen F, Papavasiliou K, Petto H, Aspenberg P, Caeiro JR, Marin F. Effect of Teriparatide or Risedronate in Elderly Patients With a Recent Pertrochanteric Hip Fracture: Final Results of a 78-Week Randomized Clinical Trial. J Bone Miner Res 2017; 32:1040-1051. [PMID: 28019683 DOI: 10.1002/jbmr.3067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
We present final results of a study comparing teriparatide 20 μg every day (QD) with risedronate 35 mg once per week (QW) started within 2 weeks after surgery for a pertrochanteric hip fracture. Patients with BMD T-score ≤ -2.0 and 25OHD ≥9.2 ng/mL were randomized to receive 26-week double-dummy treatment plus calcium and vitamin D, followed by 52-week open-label treatment with the same assigned active drug. Primary endpoint was change from baseline in lumbar spine (LS) BMD at 78 weeks. Secondary and exploratory endpoints were change in BMD at the proximal femur, function, hip pain (Charnley score and 100 mm Visual Analog Scale [VAS]), quality of life (Short Form-36), radiology outcomes, and safety. Data were analyzed with mixed models for repeated measures (MMRM) and logistic regression. Totally, 224 patients were randomized; 171 (teriparatide: 86) contributed to the efficacy analyses (mean ± SD age: 77 ± 7.7 years, 77% females). Mean baseline LS, femoral neck (FN), and total hip (TH) T-scores were -2.16, -2.63, and -2.51, respectively. At 78 weeks, BMD increased significantly more with teriparatide compared to risedronate at the LS (+11.08% versus +6.45%; p < 0.001) and FN (+1.96% versus -1.19%; p = 0.003), with no significant between-group difference in TH BMD. Timed up-and-go (TUG) test was significantly faster with teriparatide at 6, 12, 18, and 26 weeks (differences: -3.2 to -5.9 s; p = 0.045 for overall difference). Hip pain during TUG test by 100 mm VAS was significantly lower with teriparatide at 18 weeks (adjusted difference: -11.3 mm, p = 0.033; -10.0 and -9.3 mm at 12 and 26 weeks, respectively; p = 0.079 for overall difference). Other secondary and exploratory outcomes were not different. Teriparatide group showed two new hip fractures versus seven with risedronate (p = 0.171) and more frequent hypercalcemia and hyperuricemia. In conclusion, 78-week treatment with teriparatide showed significantly greater increases in LS and FN BMD, less pain, and a faster TUG test versus risedronate. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | - Costantino Corradini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, c/o 1st University Division of Orthopaedy and Traumatology, ASST Gaetano Pini, Milan, Italy
| | - Søren Overgaard
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan J Stepan
- Institute of Rheumatology and Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lars Borris
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Eric Lespessailles
- Institut de prévention et de recherche sur l'ostéoporose (IPROS), Department of Rheumatology, Centre Hospitalier Régional (CHR) d'Orléans, Orléans, France.,Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux (I3MTO), EA 4708, Orléans University, Orléans, France
| | - Frede Frihagen
- Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
| | - Kyriakos Papavasiliou
- 3rd Orthopaedic Department, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Per Aspenberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Santiago de Compostela University Hospital, Health Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Marin
- Eli Lilly Research Centre Ltd, Erl Wood Manor, Surrey, UK
| |
Collapse
|
15
|
Takakura A, Lee JW, Hirano K, Isogai Y, Ishizuya T, Takao-Kawabata R, Iimura T. Administration frequency as well as dosage of PTH are associated with development of cortical porosity in ovariectomized rats. Bone Res 2017; 5:17002. [PMID: 28503340 PMCID: PMC5405404 DOI: 10.1038/boneres.2017.2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
To investigate whether the administration frequency of parathyroid hormone (PTH) is associated with the development of cortical porosity, this study established 15 dosage regimens of teriparatide [human PTH(1–34), TPTD] with four distinct concentrations and four distinct administration frequencies of TPTD to 16-week-old ovariectomized rats. Our analyses demonstrated that the bone mineral density, mechanical properties, and bone turnover were associated with the total amount of TPTD administered. Our observations further revealed that the cortical porosity was markedly developed as a result of an increased administration frequency with a lower concentration of total TPTD administration in our setting, although the highest concentration also induced cortical porosity. Deconvolution fluorescence tiling imaging on calcein-labeled undecalcified bone sections also demonstrated the development of cortical porosity to be closely associated with the bone site where periosteal bone formation took place. This site-specific cortical porosity involved intracortical bone resorption and an increased number and proximity of osteocytic lacunae, occasionally causing fused lacunae. Taken together, these findings suggested the involvement of local distinctions in the rate of bone growth that may be related to the site-specific mechanical properties in the development of cortical porosity induced by frequent and/or high doses of TPTD.
Collapse
Affiliation(s)
- Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan.,Graduate School of Medicine, Division of Analytical Bio-Medicine, Ehime University, Ehime, Japan
| | - Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
| | - Kyoko Hirano
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Yukihiro Isogai
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshinori Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Tadahiro Iimura
- Graduate School of Medicine, Division of Analytical Bio-Medicine, Ehime University, Ehime, Japan.,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Ehime, Japan.,Artificial Joint Integrated Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
16
|
Maycas M, McAndrews KA, Sato AY, Pellegrini GG, Brown DM, Allen MR, Plotkin LI, Gortazar AR, Esbrit P, Bellido T. PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading. J Bone Miner Res 2017; 32:486-497. [PMID: 27683064 DOI: 10.1002/jbmr.3007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/17/2023]
Abstract
There is an unmet need to understand the mechanisms underlying skeletal deterioration in diabetes mellitus (DM) and to develop therapeutic approaches to treat bone fragility in diabetic patients. We demonstrate herein that mice with type 1 DM induced by streptozotocin exhibited low bone mass, inferior mechanical and material properties, increased bone resorption, decreased bone formation, increased apoptosis of osteocytes, and increased expression of the osteocyte-derived bone formation inhibitor Sost/sclerostin. Further, short treatment of diabetic mice with parathyroid hormone related protein (PTHrP)-derived peptides corrected these changes to levels undistinguishable from non-diabetic mice. In addition, diabetic mice exhibited reduced bone formation in response to mechanical stimulation, which was corrected by treatment with the PTHrP peptides, and higher prevalence of apoptotic osteocytes, which was reduced by loading or by the PTHrP peptides alone and reversed by a combination of loading and PTHrP peptide treatment. In vitro experiments demonstrated that the PTHrP peptides or mechanical stimulation by fluid flow activated the survival kinases ERKs and induced nuclear translocation of the canonical Wnt signaling mediator β-catenin, and prevented the increase in osteocytic cell apoptosis induced by high glucose. Thus, PTHrP-derived peptides cross-talk with mechanical signaling pathways to reverse skeletal deterioration induced by DM in mice. These findings suggest a crucial role of osteocytes in the harmful effects of diabetes on bone and raise the possibility of targeting these cells as a novel approach to treat skeletal deterioration in diabetes. Moreover, our study suggests the potential therapeutic efficacy of combined pharmacological and mechanical stimuli to promote bone accrual and maintenance in diabetic subjects. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marta Maycas
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Kevin A McAndrews
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Amy Y Sato
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gretel G Pellegrini
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Arancha R Gortazar
- Instituto de Medicina Molecular Aplicada-Universidad San Pablo CEU, Madrid, Spain
| | - Pedro Esbrit
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.,Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Osagie-Clouard L, Sanghani A, Coathup M, Briggs T, Bostrom M, Blunn G. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017; 6:14-21. [PMID: 28062525 PMCID: PMC5227055 DOI: 10.1302/2046-3758.61.bjr-2016-0085.r1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called 'anabolic window'. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through 'coupled' and 'uncoupled' mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. CITE THIS ARTICLE L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14-21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.
Collapse
Affiliation(s)
- L Osagie-Clouard
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - A Sanghani
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Coathup
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - T Briggs
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Bostrom
- Hospital for Special Surgery, New York, New York, USA
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| |
Collapse
|
18
|
Aspenberg P, Malouf J, Tarantino U, García-Hernández PA, Corradini C, Overgaard S, Stepan JJ, Borris L, Lespessailles E, Frihagen F, Papavasiliou K, Petto H, Caeiro JR, Marin F. Effects of Teriparatide Compared with Risedronate on Recovery After Pertrochanteric Hip Fracture: Results of a Randomized, Active-Controlled, Double-Blind Clinical Trial at 26 Weeks. J Bone Joint Surg Am 2016; 98:1868-1878. [PMID: 27852903 PMCID: PMC5551693 DOI: 10.2106/jbjs.15.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Osteoporosis drugs might affect fracture-healing. We therefore studied the effects of teriparatide in comparison with risedronate on recovery after pertrochanteric hip fractures. METHODS The study was a randomized, multicenter, active-controlled, 78-week trial comparing teriparatide (20 μg/day) with risedronate (35 mg/week) initiated within 2 weeks after fixation of a low-trauma pertrochanteric hip fracture (AO/OTA 31-A1 or 31-A2). The main inclusion criteria were a bone mineral density T-score of ≤-2.0 and 25-OH-vitamin D of ≥9.2 ng/mL. During the first 26 weeks, patients received study medication with oral or injectable placebo plus calcium and vitamin D in a double-blinded fashion. Secondary (Timed Up-and-Go [TUG] test, hip pain, Short Form [SF]-36 health status, and safety) and exploratory (radiographic outcomes and ability to walk) 26-week end points are reported. RESULTS Of the 224 patients who were randomized, 171 (86 teriparatide, 85 risedronate) were included in the analysis. The mean age was 77 ± 8 years, 77% were female, and 26% had a prior history of low-trauma fracture. The teriparatide group completed the TUG test in a shorter time at 6, 12, 18, and 26 weeks (differences of -5.7, -4.4, -3.1, and -3.1 seconds, respectively; p = 0.021 for the overall difference). They also reported less pain on a visual analog scale immediately after the TUG test at 12 and 18 weeks (adjusted absolute differences of 10.6 and 11.9 mm, respectively; p < 0.05). There were no significant between-group differences in the SF-36 score, Charnley hip pain score, ability to walk, or use of walking aids during follow-up. Radiographic healing at 6, 12, and 26 weeks, mechanical failure of the implant (teriparatide, 7; risedronate, 8), loss of reduction (teriparatide, 2; risedronate, 4), and nonunion (0 cases) were not significantly different. Mild hypercalcemia and hyperuricemia were more frequent with teriparatide. CONCLUSIONS Teriparatide was associated with less pain and a shorter time to complete the TUG test between 6 and 26 weeks compared with risedronate. Other fracture-recovery outcomes were similar. The results should be interpreted with caution as these were secondary end points. LEVEL OF EVIDENCE Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Per Aspenberg
- Department of Clinical and Experimental Medicine,
Linköping University, Linköping, Sweden,E-mail address for P. Aspenberg:
| | - Jorge Malouf
- Internal Medicine, Hospital San Pablo, Barcelona,
Spain,E-mail address for J. Malouf:
| | - Umberto Tarantino
- Orthopaedic Surgery, University Tor Vergata, Rome,
Italy,E-mail address for U. Tarantino:
| | - Pedro A. García-Hernández
- Osteoporosis Center, University Hospital, Monterrey,
Mexico,E-mail address for P.A.
García-Hernández:
| | - Costantino Corradini
- Department of Biomedical Surgical and Dental
Sciences, University of Milan, c/o I Division of Orthopaedics and Traumatology,
A.O. Orthopaedic Institute, Milan, Italy,E-mail address for C. Corradini:
| | - Søren Overgaard
- Department of Orthopaedic Surgery and Traumatology,
Odense University Hospital, Odense, Denmark,Institute of Clinical Research, University of
Southern Denmark, Odense, Denmark,E-mail address for S. Overgaard:
| | - Jan J. Stepan
- Institute of Rheumatology and Faculty of Medicine 1,
Charles University, Prague, Czech Republic,E-mail address for J.J. Stepan:
| | - Lars Borris
- Orthopaedic Surgery, University Hospital, Aarhus,
Denmark,E-mail address for L. Borris:
| | - Eric Lespessailles
- IPROS, Department of Rheumatology, C.H.R
Orléans, Orléans, France,I3MTO, Orléans University, Orléans,
France,E-mail address for E. Lespessailles:
| | - Frede Frihagen
- Orthopaedic Surgery, Oslo University Hospital,
Oslo, Norway,E-mail address for F. Frihagen:
| | - Kyriakos Papavasiliou
- 3rd Orthopaedic Department, Aristotle University of
Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece,E-mail address for K. Papavasiliou:
| | - Helmut Petto
- Eli Lilly, Vienna, Austria,E-mail address for H. Petto:
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology,
Santiago de Compostela University Hospital, Health Research Institute,
University of Santiago de Compostela, Santiago de Compostela, Spain,E-mail address for J. Ramón Caeiro:
| | - Fernando Marin
- Eli Lilly Research Centre, Windlesham, United
Kingdom,E-mail address for F. Marin:
| |
Collapse
|
19
|
PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Mol Ther 2015; 24:318-330. [PMID: 26585691 DOI: 10.1038/mt.2015.211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.
Collapse
|
20
|
Bi F, Shi Z, Zhou C, Liu A, Shen Y, Yan S. Intermittent Administration of Parathyroid Hormone [1-34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model. PLoS One 2015; 10:e0139793. [PMID: 26441073 PMCID: PMC4595472 DOI: 10.1371/journal.pone.0139793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
We examined whether intermittent administration of parathyroid hormone [1-34] (PTH[1-34]; 60 μg/kg/day) can prevent the negative effects of titanium (Ti) particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing) received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1-34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM), and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1-34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone-implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1-34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1-34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fanggang Bi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|