1
|
Yin TC, Lin HS, Sung PH, Chiang JY, Yang CH, Yip HK, Chen KH. Additional benefits of combined ceftriaxone and adipose-derived mesenchymal stem cells on revamping the outcomes in rodent after acute spinal infection. J Mol Histol 2025; 56:66. [PMID: 39760772 PMCID: PMC11703877 DOI: 10.1007/s10735-024-10344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
This study tested whether combined ceftriaxone and adipose-derived mesenchymal stem cells (ADMSCs) would defend the spinal cord against acute spinal infection (ASI) in rodent. Adult-Male-SD rats were grouped into groups 1 (SC)/2 (ASI)/3 (ASI + ceftriaxone from days 2 to 28 after ASI induction)/4 (ASI + allogenic ADMSCs from day 2 for a total of 3 doses/3 consecutive intervals by intravenous injection)/5 (ASI + combined ceftriaxone and ADMSC) and spinal cord tissues were harvested by day 28. Circulatory levels of TNF-α/IL-6 at days 7 and 28, and these two parameters in spinal fluid at day 28 were lowest in group 1, highest in group 2, significantly lower in group 5 than in groups 3/4, and significantly lower in group 3 than in group 4 (all p < 0.0001). The day-28 bacterial colony formation unit (CFU) in vertebral bone and circulatory WBC counts at the time points of days 7/14/28, and the protein expressions of upstream (TRL-2/TLR-4/MYD88/TRAF6/IKKα/IKKβ /IKBβ/p-NF-κB) and downstream (IL-1β/IL-6/TNF-α/IFN-γ/iNOS) inflammatory signalings displayed a similar pattern of inflammatory biomarkers in spinal fluid among the groups (all p < 0.0001). By day 28, the bone injury score/bone marrow density/ratio of bone volume (BV) to the bone tissue volume (TV)/ratio of bone surface (BS) to BV/ratio of BS to bone TV/trabecular number exhibited an opposite, whereas the trabecular space exhibited an alike pattern of inflammatory biomarkers among the groups (all p < 0.0001). Combined ceftriaxone and ADMSCs therapy offered an additional benefit on protecting the vertebral bone/spinal cord against ASI damage.
Collapse
Affiliation(s)
- Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hung-Sheng Lin
- Division of Neurology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Dapi Rd. Niaosung Dist, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chien-Hui Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Dapi Rd. Niaosung Dist, Kaohsiung City, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Dapi Rd. Niaosung Dist, Kaohsiung, 83301, Taiwan.
- Department of Nursing, Asia University, Taichung, 41354, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Dapi Rd. Niaosung Dist, Kaohsiung City, 83301, Taiwan.
| |
Collapse
|
2
|
Jiang T, Bai X, Li M. Advances in the Development of Bacterial Bioluminescence Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:265-288. [PMID: 38640069 DOI: 10.1146/annurev-anchem-061622-034229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Bioluminescence imaging (BLI) is a powerful method for visualizing biological processes and tracking cells. Engineered bioluminescent bacteria that utilize luciferase-catalyzed biochemical reactions to generate luminescence have become useful analytical tools for in vitro and in vivo bacterial imaging. Accordingly, this review initially introduces the development of engineered bioluminescent bacteria that use different luciferase-luciferin pairs as analytical tools and their applications for in vivo BLI, including real-time bacterial tracking of infection, probiotic investigation, tumor-targeted therapy, and drug screening. Applications of engineered bioluminescent bacteria as whole-cell biosensors for sensing biological changes in vitro and in vivo are then discussed. Finally, we review the optimizations and future directions of bioluminescent bacteria for imaging. This review aims to provide fundamental insights into bacterial BLI and highlight the potential development of this technique in the future.
Collapse
Affiliation(s)
- Tianyu Jiang
- 1Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiaoyu Bai
- 1Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
- 2School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Minyong Li
- 3Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China;
| |
Collapse
|
3
|
Rajkovic CJ, Tracz JA, DeMordaunt T, Davidar AD, Perdomo-Pantoja A, Judy BF, Zhang KY, Hernandez VN, Lin J, Lazzari JL, Cottrill E, Witham TF. Synthesis and evaluation of a novel vancomycin-infused, biomimetic bone graft using a rat model of spinal implant-associated infection. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 18:100323. [PMID: 38746017 PMCID: PMC11091687 DOI: 10.1016/j.xnsj.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
Background Postoperative infection is a complication of spinal fusion surgery resulting in increased patient morbidity. Strategies including intraoperative application of powdered vancomycin have been proposed to reduce the incidence of infection; however, such antimicrobial effects are short-lived. Methods Instrumentation of the L4-L5 vertebrae was performed mimicking pedicle screw and rod fixation in 30 rats. Titanium instrumentation inoculated with either PBS or 1×105 CFU bioluminescent MRSA, along with biomimetic bone grafts infused with varying concentrations of vancomycin and 125 µg of rhBMP-2 (BioMim-rhBMP-2-VCM) were implanted prior to closure. Infection was quantified during the six-week postoperative period using bioluminescent imaging. Arthrodesis was evaluated using micro-CT. Results Infected animals receiving a bone graft infused with low-dose (0.18 mg/g) or high-dose vancomycin (0.89 mg/g) both exhibited significantly lower bioluminescent signal over the six-week postoperative period than control animals inoculated with MRSA and implanted with bone grafts lacking vancomycin (p=.019 and p=.007, respectively). Both low and high-dose vancomycin-infused grafts also resulted in a statistically significant reduction in average bioluminescence when compared to control animals (p=.027 and p=.047, respectively), independent of time. MicroCT analysis of animals from each group revealed pseudoarthrosis only in the control group, suggesting a correlation between infection and pseudoarthrosis. MRSA-inoculated control animals also had significantly less bone volume formation on micro-CT than the PBS-inoculated control cohort (p<.001), the MRSA+low-dose vancomycin-infused bone graft cohort (p<.001), and the MRSA+high-dose vancomycin-infused bone graft cohort (p<.001). Conclusion BioMim-rhBMP-2-VCM presents a novel tissue engineering approach to simultaneously promoting arthrodesis and antimicrobial prophylaxis in spinal fusion. Despite mixed evidence of potential osteotoxicity of vancomycin reported in literature, BioMim-rhBMP-2-VCM preserved arthrodesis and osteogenesis with increasing vancomycin loading doses due to the graft's osteoinductive composition.
Collapse
Affiliation(s)
- Christian J Rajkovic
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Jovanna A Tracz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Trevor DeMordaunt
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - A Daniel Davidar
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Alexander Perdomo-Pantoja
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue Campus Box 8057, St. Louis, MO 63110, United States
| | - Brendan F Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Kevin Yang Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Vaughn N Hernandez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Jessica Lin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Julianna L Lazzari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 104002, Durham, NC 27710, United States
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, United States
| |
Collapse
|
4
|
Hao Y, Zhu G, Yu L, Ren Z, Zhou W, Zhang P, Lian X. FOXO3-Activated HOTTIP Sequesters miR-615-3p away from COL2A1 to Mitigate Intervertebral Disc Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:280-295. [PMID: 37981220 DOI: 10.1016/j.ajpath.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
In this study, knockout of FOXO3 was found to impair intervertebral disc maturation and homeostasis in postnatal mice as well as facilitating extracellular matrix degradation. RNA sequencing can uncover disease-related gene expression and investigate disease pathophysiology. High-throughput transcriptome sequencing and experimental validations were used to identify the essential gene and mechanism involved in intervertebral disc degeneration (IDD). Nucleus pulposus (NP) tissue samples were collected from the mice with conditional knockout of FOXO3 (FOXO3 KO) for high-throughput sequencing, followed by screening of differentially expressed lncRNAs and mRNAs. The mRNAs were subjected to GO and KEGG enrichment analyses. Interactions among FOXO3, HOTTIP, miR-615-3p, and COL2A1 were analyzed. NP cells were subjected to a series of mimics, inhibitors, overexpression plasmids, and shRNAs to validate the mechanisms of FOXO3 in controlling HOTTIP/miR-615-3p/COL2A1 in IDD. Mechanistically, FOXO3 transcriptionally activated HOTTIP, facilitated the competitive HOTTIP binding to miR-615-3p, and increased the expression of the miR-615-3p target gene COL2A1. Thus, NP cell proliferation was induced, cell apoptosis was diminished, resulting in delayed development of IDD. Based on these data, the transcription factor FOXO3 may decrease miR-615-3p binding to COL2A1 and up-regulate COL2A1 expression by activating HOTTIP transcription, which in turn inhibits NP cell apoptosis and promotes its proliferation, to prevent the degradation of intervertebral disc matrix and maintain the normal physiological function of intervertebral disc, thereby preventing the occurrence and development of IDD.
Collapse
Affiliation(s)
- Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panke Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Shaw JD, Bailey TL, Ong J, Brodke DS, Williams DL, Wawrose RA, Epperson RT, Kawaguchi B, Ashton NN. Development and validation of a large animal ovine model for implant-associated spine infection using biofilm based inocula. Biofilm 2023; 6:100138. [PMID: 38078060 PMCID: PMC10704336 DOI: 10.1016/j.bioflm.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 10/16/2024] Open
Abstract
Postoperative implant-associated spine infection remains poorly understood. Currently there is no large animal model using biofilm as initial inocula to study this challenging clinical entity. The purpose of the present study was to develop a sheep model for implant-associated spine infection using clinically relevant biofilm inocula and to assess the in vivo utility of methylene blue (MB) for visualizing infected tissues and guiding debridement. This 28-day study used five adult female Rambouillet sheep, each with two non-contiguous surgical sites- in the lumbar and thoracic regions- comprising randomized positive and negative infection control sites. A standard mini-open approach to the spine was performed to place sterile pedicle screws and Staphylococcus aureus biofilm-covered (positive control), or sterile (negative control) spinal fusion rods. Surgical site bioburden was quantified at the terminal procedure. Negative and positive control sites were stained with MB and staining intensity quantified from photographs. Specimens were analyzed with x-ray, micro-CT and histologically. Inoculation rods contained ∼10.44 log10 colony forming units per rod (CFU/rod). Biofilm inocula persisted on positive-control rod explants with ∼6.16 log10 CFU/rod. There was ∼6.35 log10 CFU/g of tissue in the positive controls versus no identifiable bioburden in the negative controls. Positive controls displayed hallmarks of deep spine infection and osteomyelitis, with robust local tissue response, bone resorption, and demineralization. MB staining was more intense in infected, positive control sites. This work presents an animal-efficient sheep model displaying clinically relevant implant-associated deep spine infection.
Collapse
Affiliation(s)
- Jeremy D. Shaw
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis L. Bailey
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Jemi Ong
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Darrel S. Brodke
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Dustin L. Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Richard A. Wawrose
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Brooke Kawaguchi
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
6
|
Huang S, Wen J, Zhang Y, Bai X, Cui ZK. Choosing the right animal model for osteomyelitis research: Considerations and challenges. J Orthop Translat 2023; 43:47-65. [PMID: 38094261 PMCID: PMC10716383 DOI: 10.1016/j.jot.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 03/22/2024] Open
Abstract
Osteomyelitis is a debilitating bone disorder characterized by an inflammatory process involving the bone marrow, bone cortex, periosteum, and surrounding soft tissue, which can ultimately result in bone destruction. The etiology of osteomyelitis can be infectious, caused by various microorganisms, or noninfectious, such as chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). Researchers have turned to animal models to study the pathophysiology of osteomyelitis. However, selecting an appropriate animal model that accurately recapitulates the human pathology of osteomyelitis while controlling for multiple variables that influence different clinical presentations remains a significant challenge. In this review, we present an overview of various animal models used in osteomyelitis research, including rodent, rabbit, avian/chicken, porcine, minipig, canine, sheep, and goat models. We discuss the characteristics of each animal model and the corresponding clinical scenarios that can provide a basic rationale for experimental selection. This review highlights the importance of selecting an appropriate animal model for osteomyelitis research to improve the accuracy of the results and facilitate the development of novel treatment and management strategies.
Collapse
Affiliation(s)
| | | | - Yiqing Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
DeMourdant T, Rajkovic CJ, Tracz JA, Perdomo-Pantoja A, Judy BF, Hernandez VN, Lin J, Lazzari JL, Dikeman DA, Archer NK, Davis KM, Gordon O, Witham TF. A novel rodent model of chronic spinal implant-associated infection. Spine J 2023; 23:1389-1399. [PMID: 37247639 PMCID: PMC10530089 DOI: 10.1016/j.spinee.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND CONTEXT Bacterial infection of spinal instrumentation is a significant challenge in spinal fusion surgery. Although the intraoperative local application of powdered vancomycin is common practice for mitigating infection, the antimicrobial effects of this route of administration are short-lived. Therefore, novel antibiotic-loaded bone grafts as well as a reliable animal model to permit the testing of such therapies are needed to improve the efficacy of infection reduction practices in spinal fusion surgery. PURPOSE This study aims to establish a clinically relevant rat model of spinal implant-associated infection to permit the evaluation of antimicrobial bone graft materials used in spinal fusion. STUDY DESIGN Rodent study of chronic spinal implant-associated infection. METHODS Instrumentation anchored in and spanning the vertebral bodies of L4 and L5 was inoculated with bioluminescent methicillin-resistant Staphylococcus aureus bacteria (MRSA). Infection was monitored using an in vivo imaging system (IVIS) for 8 weeks. Spines were harvested and evaluated histologically, and colony-forming units (CFUs) were quantified in harvested implants and spinal tissue. RESULTS Postsurgical analysis of bacterial infection in vivo demonstrated stratification between MRSA and phosphate-buffered saline (PBS) control groups during the first 4 weeks of the 8-week infection period, indicating the successful establishment of acute infection. Over the 8-week chronic infection period, groups inoculated with 1 × 105 MRSA CFU and 1 × 106 MRSA CFU demonstrated significantly higher bioluminescence than groups inoculated with PBS control (p = 0.009 and p = 0.041 respectively). Histological examination at 8 weeks postimplantation revealed the presence of abscesses localized to implant placement in all MRSA inoculation groups, with the most pervasive abscess formation in samples inoculated with 1 × 105 MRSA CFU and 1 × 106 MRSA CFU. Quantification of CFU plated from harvested spinal tissue at 8 weeks post-implantation revealed the 1 × 105 MRSA CFU inoculation group as the only group with a significantly greater average CFU count compared to PBS control (p = 0.017). Further, CFU quantification from harvested spinal tissue was greater than CFU quantification from harvested implants across all inoculation groups. CONCLUSION Our model demonstrated that the inoculation dosage of 1 × 105 MRSA CFU exhibited the most robust chronic infection within instrumented vertebral bodies. This dosage had the greatest difference in bioluminescence signal from control (p < 0.01), the lowest mortality (0% compared to 50% for samples inoculated with 1 × 106 MRSA CFU), and a significantly higher amount of CFUs from harvested spine samples than CFUs from control harvested spine samples. Further, histological analysis confirmed the reliability of this novel rodent model of implanted-associated infection to establish infection and biofilm formation of MRSA for all inoculation groups. CLINICAL SIGNIFICANCE This model is intended to simulate the infection of instrumentation used in spinal fusion surgeries concerning implant locality and material. This model may evaluate potential antimicrobial and osteogenic biomaterials and investigate the relationship between implant-associated infection and failed fusion.
Collapse
Affiliation(s)
- Trevor DeMourdant
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Christian J Rajkovic
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Jovanna A Tracz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Alexander Perdomo-Pantoja
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA; Department of Neurosurgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Brendan F Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Vaughn N Hernandez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Jessica Lin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Julianna L Lazzari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD 21287, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD 21287, USA
| | - Kimberly M Davis
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem PO Box 12271, Jerusalem 9112102 , Israel
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109 Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Blaskovich MAT, Hansford KA, Butler MS, Ramu S, Kavanagh AM, Jarrad AM, Prasetyoputri A, Pitt ME, Huang JX, Lindahl F, Ziora ZM, Bradford T, Muldoon C, Rajaratnam P, Pelingon R, Edwards DJ, Zhang B, Amado M, Elliott AG, Zuegg J, Coin L, Woischnig AK, Khanna N, Breidenstein E, Stincone A, Mason C, Khan N, Cho HK, Karau MJ, Greenwood-Quaintance KE, Patel R, Wootton M, James ML, Hutton ML, Lyras D, Ogunniyi AD, Mahdi LK, Trott DJ, Wu X, Niles S, Lewis K, Smith JR, Barber KE, Yim J, Rice SA, Rybak MJ, Ishmael CR, Hori KR, Bernthal NM, Francis KP, Roberts JA, Paterson DL, Cooper MA. A lipoglycopeptide antibiotic for Gram-positive biofilm-related infections. Sci Transl Med 2022; 14:eabj2381. [DOI: 10.1126/scitranslmed.abj2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug-resistant Gram-positive bacterial infections are still a substantial burden on the public health system, with two bacteria (
Staphylococcus aureus
and
Streptococcus pneumoniae
) accounting for over 1.5 million drug-resistant infections in the United States alone in 2017. In 2019, 250,000 deaths were attributed to these pathogens globally. We have developed a preclinical glycopeptide antibiotic, MCC5145, that has excellent potency (MIC
90
≤ 0.06 μg/ml) against hundreds of isolates of methicillin-resistant
S. aureus
(MRSA) and other Gram-positive bacteria, with a greater than 1000-fold margin over mammalian cell cytotoxicity values. The antibiotic has therapeutic in vivo efficacy when dosed subcutaneously in multiple murine models of established bacterial infections, including thigh infection with MRSA and blood septicemia with
S. pneumoniae
, as well as when dosed orally in an antibiotic-induced
Clostridioides difficile
infection model. MCC5145 exhibited reduced nephrotoxicity at microbiologically active doses in mice compared to vancomycin. MCC5145 also showed improved activity against biofilms compared to vancomycin, both in vitro and in vivo, and a low propensity to select for drug resistance. Characterization of drug action using a transposon library bioinformatic platform showed a mechanistic distinction from other glycopeptide antibiotics.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark S. Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Soumya Ramu
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Angela M. Kavanagh
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Angie M. Jarrad
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anggia Prasetyoputri
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Miranda E. Pitt
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Johnny X. Huang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Fredrik Lindahl
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zyta M. Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tanya Bradford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig Muldoon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Premraj Rajaratnam
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ruby Pelingon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David J. Edwards
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Maite Amado
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alysha G. Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Johannes Zuegg
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lachlan Coin
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anne-Kathrin Woischnig
- University and University Hospital of Basel, Division of Infectious Diseases and Infection Biology Laboratory Department of Biomedicine, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nina Khanna
- University and University Hospital of Basel, Division of Infectious Diseases and Infection Biology Laboratory Department of Biomedicine, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Elena Breidenstein
- Summit Therapeutics, The Works, Unity Campus, Cambridgeshire, CB22 3FT, UK
| | - Anna Stincone
- Summit Therapeutics, The Works, Unity Campus, Cambridgeshire, CB22 3FT, UK
| | - Clive Mason
- Summit Therapeutics, The Works, Unity Campus, Cambridgeshire, CB22 3FT, UK
| | - Nawaz Khan
- Summit Therapeutics, The Works, Unity Campus, Cambridgeshire, CB22 3FT, UK
| | - Hye-Kyung Cho
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa J. Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kerryl E. Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit Public Health Wales, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, Wales
| | - Meagan L. James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Layla K. Mahdi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Xiaoqian Wu
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Samantha Niles
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Jordan R. Smith
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Katie E. Barber
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Juwon Yim
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Seth Alan Rice
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Chad R. Ishmael
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kellyn R. Hori
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Nicholas M. Bernthal
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kevin P. Francis
- Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- PerkinElmer, 68 Elm Street, Hopkinton, MA 01748, USA
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Matthew A. Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
9
|
Billings C, Anderson DE. Role of Animal Models to Advance Research of Bacterial Osteomyelitis. Front Vet Sci 2022; 9:879630. [PMID: 35558882 PMCID: PMC9087578 DOI: 10.3389/fvets.2022.879630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis is an inflammatory bone disease typically caused by infectious microorganisms, often bacteria, which causes progressive bone destruction and loss. The most common bacteria associated with chronic osteomyelitis is Staphylococcus aureus. The incidence of osteomyelitis in the United States is estimated to be upwards of 50,000 cases annually and places a significant burden upon the healthcare system. There are three general categories of osteomyelitis: hematogenous; secondary to spread from a contiguous focus of infection, often from trauma or implanted medical devices and materials; and secondary to vascular disease, often a result of diabetic foot ulcers. Independent of the route of infection, osteomyelitis is often challenging to diagnose and treat, and the effect on the patient's quality of life is significant. Therapy for osteomyelitis varies based on category and clinical variables in each case. Therapeutic strategies are typically reliant upon protracted antimicrobial therapy and surgical interventions. Therapy is most successful when intensive and initiated early, although infection may recur months to years later. Also, treatment is accompanied by risks such as systemic toxicity, selection for antimicrobial drug resistance from prolonged antimicrobial use, and loss of form or function of the affected area due to radical surgical debridement or implant removal. The challenges of diagnosis and successful treatment, as well as the negative impacts on patient's quality of life, exemplify the need for improved strategies to combat bacterial osteomyelitis. There are many in vitro and in vivo investigations aimed toward better understanding of the pathophysiology of bacterial osteomyelitis, as well as improved diagnostic and therapeutic strategies. Here, we review the role of animal models utilized for the study of bacterial osteomyelitis and their critically important role in understanding and improving the management of bacterial osteomyelitis.
Collapse
|
10
|
Wang Y, Che M, Zheng Z, Liu J, Ji X, Sun Y, Xin J, Gong W, Na S, Jin Y, Wang S, Zhang S. Animal Models for Postoperative Implant‐Related Spinal Infection. Orthop Surg 2022; 14:1049-1058. [PMID: 35466555 PMCID: PMC9163983 DOI: 10.1111/os.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Postoperative infections following implant‐related spinal surgery are severe and disastrous complications for both orthopaedic surgeons and patients worldwide. They can cause neurological damage, disability, and death. To better understand the mechanism of these destructive complications and intervene in the process, further research is needed. Therefore, there is an urgent need for efficient, accurate, and easily available animal models to study the pathogenesis of spinal infections and develop new and effective anti‐bacterial methods. In this paper, we provide a general review of the commonly used animal models of postoperative implant‐related spinal infections, describe their advantages and disadvantages, and highlight the significance of correctly choosing the model according to the infection aspect under investigation. These models are valuable tools contributing to the better understanding of postoperative spinal infections and will continue to facilitate the invention of novel preventative and treatment strategies for patients with postoperative spinal infections. However, although they are valid and reproducible in some respects, the current animal models present certain limitations. Future ideal spinal infection animal models may assess the bacterial load of the same animal in real‐time in vivo, and better mimic the human anatomy as well as surgical techniques. Strains other than Staphylococcus aureus account for a large proportion of postoperative spinal infections, and thus, the establishment of models to evaluate other types of microbial infections is expected in the future. Furthermore, novel transgenic models established on advancements in genome editing are also likely to be developed in the future.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Mingxue Che
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Zhi Zheng
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Jun Liu
- Institute of Military Veterinary Science the Academy of Military Medical Science of PLA Changchun China
| | - Xue Ji
- Institute of Military Veterinary Science the Academy of Military Medical Science of PLA Changchun China
| | - Yang Sun
- Institute of Military Veterinary Science the Academy of Military Medical Science of PLA Changchun China
| | - Jingguo Xin
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Weiquan Gong
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Shibo Na
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Yuanzhe Jin
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| | - Shuo Wang
- Department of Ophthalmology the Second Hospital of Jilin University Changchun China
| | - Shaokun Zhang
- Department of Spinal Surgery the First Hospital of Jilin University Changchun China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury Changchun China
| |
Collapse
|
11
|
Next-Generation Sequencing Quickly Identifies Mycobacterium smegmatis in Spine Implant Infection. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Active rheumatoid arthritis in a mouse model is not an independent risk factor for periprosthetic joint infection. PLoS One 2021; 16:e0250910. [PMID: 34398899 PMCID: PMC8366981 DOI: 10.1371/journal.pone.0250910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Periprosthetic joint infection (PJI) represents a devastating complication of total joint arthroplasty associated with significant morbidity and mortality. Literature suggests a possible higher incidence of periprosthetic joint infection (PJI) in patients with rheumatoid arthritis (RA). There is, however, no consensus on this purported risk nor a well-defined mechanism. This study investigates how collagen-induced arthritis (CIA), a validated animal model of RA, impacts infectious burden in a well-established model of PJI. METHODS Control mice were compared against CIA mice. Whole blood samples were collected to quantify systemic IgG levels via ELISA. Ex vivo respiratory burst function was measured via dihydrorhodamine assay. Ex vivo Staphylococcus aureus Xen36 burden was measured directly via colony forming unit (CFU) counts and crystal violet assay to assess biofilm formation. In vivo, surgical placement of a titanium implant through the knee joint and inoculation with S. aureus Xen36 was performed. Bacterial burden was then quantified by longitudinal bioluminescent imaging. RESULTS Mice with CIA demonstrated significantly higher levels of systemic IgG compared with control mice (p = 0.003). Ex vivo, there was no significant difference in respiratory burst function (p = 0.89) or S. aureus bacterial burden as measured by CFU counts (p = 0.91) and crystal violet assay (p = 0.96). In vivo, no significant difference in bacterial bioluminescence between groups was found at all postoperative time points. CFU counts of both the implant and the peri-implant tissue were not significantly different between groups (p = 0.82 and 0.80, respectively). CONCLUSION This study demonstrated no significant difference in S. aureus infectious burden between mice with CIA and control mice. These results suggest that untreated, active RA may not represent a significant intrinsic risk factor for PJI, however further mechanistic translational and clinical studies are warranted.
Collapse
|
13
|
Greig D, Trikha R, Sekimura T, Cevallos N, Kelley BV, Mamouei Z, Yeaman MR, Bernthal NM. Platelet Deficiency Represents a Modifiable Risk Factor for Periprosthetic Joint Infection in a Preclinical Mouse Model. J Bone Joint Surg Am 2021; 103:1016-1025. [PMID: 33877055 PMCID: PMC10364842 DOI: 10.2106/jbjs.20.01428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Well known for their hemostatic function, platelets are increasingly becoming recognized as important immunomodulators. The purpose of the present study was to assess the impact of platelet depletion on antimicrobial host defense in a mouse model of periprosthetic joint infection (PJI). METHODS Thrombocytopenia (TCP) was induced in C57BL/6 mice with use of a selective antibody against platelet CD41 (anti-CD41). Whole blood from pre-treated mice was incubated with Staphylococcus aureus to assess antimicrobial efficacy with use of bioluminescent imaging, quantitative histological staining, and colony forming unit (CFU) quantification. In parallel, untreated heterologous platelets were added to TCP blood to assess potential rescue of antimicrobial efficacy. In vivo, TCP and control mice underwent placement of a titanium implant in the femur inoculated with bioluminescent Xen36 S. aureus. Longitudinal bioluminescent imaging was performed postoperatively to quantify the evolution of bacterial burden, which was confirmed via assessment of S. aureus CFUs on the implant and in peri-implant tissue on postoperative day (POD) 28. RESULTS Anti-CD41 treatment resulted in significant dose-dependent reductions in platelet count. Ex vivo, platelet-depleted whole blood demonstrated significantly less bacterial reduction than control blood. These outcomes were reversed with the addition of untreated rescue platelets. In vivo, infection burden was significantly higher in TCP mice and was inversely correlated with preoperative platelet count (r2 = 0.63, p = 0.037). Likewise, CFU quantification on POD28 was associated with increased bacterial proliferation and severity of periprosthetic infection in TCP mice compared with controls. CONCLUSIONS Thrombocytopenia resulted in an increased bacterial burden both ex vivo and in vivo in a mouse model of PJI. CLINICAL RELEVANCE In orthopaedic patients, deficiencies in platelet quantity or function represent an easily modifiable risk factor for PJI.
Collapse
Affiliation(s)
- Danielle Greig
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Rishi Trikha
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Troy Sekimura
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Benjamin V Kelley
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Michael R Yeaman
- Divisions of Molecular Medicine and Infectious Diseases, Department of Medicine, and The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| |
Collapse
|
14
|
Joyce K, Sakai D, Pandit A. Preclinical models of vertebral osteomyelitis and associated infections: Current models and recommendations for study design. JOR Spine 2021; 4:e1142. [PMID: 34337331 PMCID: PMC8313152 DOI: 10.1002/jsp2.1142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Spine-related infections, such as vertebral osteomyelitis, discitis, or spondylitis, are rare diseases that mostly affect adults, and are usually of hematogenous origin. The incidence of this condition has gradually risen in recent years because of increases in spine-related surgery and hospital-acquired infections, an aging population, and intravenous (IV) drug use. Spine infections are most commonly caused by Staphylococcus aureus, while other systemic infections such as tuberculosis and brucellosis can also cause spondylitis. Various animal models of vertebral osteomyelitis and associated infections have been investigated in mouse, rat, chicken, rabbit, dog, and sheep models by hematogenous and direct inoculation in surgery, each with their strengths and limitations. This review is the first of its kind to concisely analyze the various existing animal models used to reproduce clinically relevant models of infection. Spine-related infection models must address the unique anatomy of the spine, the avascular nature of its structures and tissues and the consequences of tissue destruction such as spinal cord compression. Further investigation is necessary to elucidate the specific mechanisms of host-microbe response to inform antimicrobial therapy and administration techniques in a technically demanding body cavity. Small-animal models are not suitable for large instrumentation, and difficult IV access thwarts antibiotic administration. In contrast, large-animal models can be implanted with clinically relevant instrumentation and are resilient to repeat procedures to study postoperative infection. A canine model of infection offers a unique opportunity to design and investigate antimicrobial treatments through recruitment a rich population of canine patients, presenting with a natural disease that is suitable for randomized trials.
Collapse
Affiliation(s)
- Kieran Joyce
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
- School of MedicineNational University of IrelandGalwayIreland
| | - Daisuke Sakai
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
15
|
Comparison of two fluorescent probes in preclinical non-invasive imaging and image-guided debridement surgery of Staphylococcal biofilm implant infections. Sci Rep 2021; 11:1622. [PMID: 33452271 PMCID: PMC7810895 DOI: 10.1038/s41598-020-78362-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022] Open
Abstract
Implant-associated infections are challenging to diagnose and treat. Fluorescent probes have been heralded as a technologic advancement that can improve our ability to non-invasively identify infecting organisms, as well as guide the inexact procedure of surgical debridement. This study’s purpose was to compare two fluorescent probes for their ability to localize Staphylococcus aureus biofilm infections on spinal implants utilizing noninvasive optical imaging, then assessing the broader applicability of the more successful probe in other infection animal models. This was followed by real-time, fluorescence image-guided surgery to facilitate debridement of infected tissue. The two probe candidates, a labelled antibiotic that targets peptidoglycan (Vanco-800CW), and the other, a labelled antibody targeting the immunodominant Staphylococcal antigen A (1D9-680), were injected into mice with spine implant infections. Mice were then imaged noninvasively with near infrared fluorescent imaging at wavelengths corresponding to the two probe candidates. Both probes localized to the infection, with the 1D9-680 probe showing greater fidelity over time. The 1D9-680 probe was then tested in mouse models of shoulder implant and allograft infection, demonstrating its broader applicability. Finally, an image-guided surgery system which superimposes fluorescent signals over analog, real-time, tissue images was employed to facilitate debridement of fluorescent-labelled bacteria.
Collapse
|
16
|
Zoller SD, Hegde V, Burke ZDC, Park HY, Ishmael CR, Blumstein GW, Sheppard W, Hamad C, Loftin AH, Johansen DO, Smith RA, Sprague MM, Hori KR, Clarkson SJ, Borthwell R, Simon SI, Miller JF, Nelson SD, Bernthal NM. Evading the host response: Staphylococcus "hiding" in cortical bone canalicular system causes increased bacterial burden. Bone Res 2020; 8:43. [PMID: 33303744 PMCID: PMC7728749 DOI: 10.1038/s41413-020-00118-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/22/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Extremity reconstruction surgery is increasingly performed rather than amputation for patients with large-segment pathologic bone loss. Debate persists as to the optimal void filler for this "limb salvage" surgery, whether metal or allograft bone. Clinicians focus on optimizing important functional gains for patients, and the risk of devastating implant infection has been thought to be similar regardless of implant material. Recent insights into infection pathophysiology are challenging this equipoise, however, with both basic science data suggesting a novel mechanism of infection of Staphylococcus aureus (the most common infecting agent) into the host lacunar-canaliculi network, and also clinical data revealing a higher rate of infection of allograft over metal. The current translational study was therefore developed to bridge the gap between these insights in a longitudinal murine model of infection of allograft bone and metal. Real-time Staphylococci infection characteristics were quantified in cortical bone vs metal, and both microarchitecture of host implant and presence of host immune response were assessed. An orders-of-magnitude higher bacterial burden was established in cortical allograft bone over both metal and cancellous bone. The establishment of immune-evading microabscesses was confirmed in both cortical allograft haversian canal and the submicron canaliculi network in an additional model of mouse femur bone infection. These study results reveal a mechanism by which Staphylococci evasion of host immunity is possible, contributing to elevated risks of infection in cortical bone. The presence of this local infection reservoir imparts massive clinical implications that may alter the current paradigm of osteomyelitis and bulk allograft infection treatment.
Collapse
Affiliation(s)
- Stephen D Zoller
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Vishal Hegde
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Zachary D C Burke
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Chad R Ishmael
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Gideon W Blumstein
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - William Sheppard
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Christopher Hamad
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Amanda H Loftin
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Daniel O Johansen
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Ryan A Smith
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Marina M Sprague
- Department of Internal Medicine, University of California, Los Angeles, 757 Westwood Plaza, Suite 7501, Los Angeles, CA, 90095, USA
| | - Kellyn R Hori
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Samuel J Clarkson
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Rachel Borthwell
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Jeff F Miller
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, 1250 16th St Suite 3450, Santa Monica, CA, 90404, USA
| | - Nicholas M Bernthal
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA.
| |
Collapse
|
17
|
Trikha R, Greig D, Kelley BV, Mamouei Z, Sekimura T, Cevallos N, Olson T, Chaudry A, Magyar C, Leisman D, Stavrakis A, Yeaman MR, Bernthal NM. Inhibition of Angiotensin Converting Enzyme Impairs Anti-staphylococcal Immune Function in a Preclinical Model of Implant Infection. Front Immunol 2020; 11:1919. [PMID: 33042111 PMCID: PMC7518049 DOI: 10.3389/fimmu.2020.01919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Evidence suggests the renin-angiotensin system (RAS) plays key immunomodulatory roles. In particular, angiotensin-converting enzyme (ACE) has been shown to play a role in antimicrobial host defense. ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB) are some of the most commonly prescribed medications, especially in patients undergoing invasive surgery. Thus, the current study assessed the immunomodulatory effect of RAS-modulation in a preclinical model of implant infection. Methods:In vitro antimicrobial effects of ACEi and ARBs were first assessed. C57BL/6J mice subsequently received either an ACEi (lisinopril; 16 mg/kg/day), an ARB (losartan; 30 mg/kg/day), or no treatment. Conditioned mice blood was then utilized to quantify respiratory burst function as well as Staphylococcus aureus Xen36 burden ex vivo in each treatment group. S. aureus infectious burden for each treatment group was then assessed in vivo using a validated mouse model of implant infection. Real-time quantitation of infectious burden via bioluminescent imaging over the course of 28 days post-procedure was assessed. Host response via monocyte and neutrophil infiltration within paraspinal and spleen tissue was quantified by immunohistochemistry for F4/80 and myeloperoxidase, respectively. Results: Blood from mice treated with an ACEi demonstrated a decreased ability to eradicate bacteria when mixed with Xen36 as significantly higher levels of colony forming units (CFU) and biofilm formation was appreciated ex vivo (p < 0.05). Mice treated with an ACEi showed a higher infection burden in vivo at all times (p < 0.05) and significantly higher CFUs of bacteria on both implant and paraspinal tissue at the time of sacrifice (p < 0.05 for each comparison). There was also significantly decreased infiltration and respiratory burst function of immune effector cells in the ACEi group (p < 0.05). Conclusion: ACEi, but not ARB, treatment resulted in increased S. aureus burden and impaired immune response in a preclinical model of implant infection. These results suggest that perioperative ACEi use may represent a previously unappreciated risk factor for surgical site infection. Given the relative interchangeability of ACEi and ARB from a cardiovascular standpoint, this risk factor may be modifiable.
Collapse
Affiliation(s)
- Rishi Trikha
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Danielle Greig
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Benjamin V Kelley
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Troy Sekimura
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Thomas Olson
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Ameen Chaudry
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Clara Magyar
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Daniel Leisman
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexandra Stavrakis
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Michael R Yeaman
- Divisions of Molecular Medicine and Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States.,The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Highly efficient imidazolium-containing oligomers for preventing MRSA biofilm and postoperative spinal infection. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Gordon O, Miller RJ, Thompson JM, Ordonez AA, Klunk MH, Dikeman DA, Joyce DP, Ruiz-Bedoya CA, Miller LS, Jain SK. Rabbit model of Staphylococcus aureus implant-associated spinal infection. Dis Model Mech 2020; 13:dmm.045385. [PMID: 32586832 PMCID: PMC7406311 DOI: 10.1242/dmm.045385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Post-surgical implant-associated spinal infection is a devastating complication commonly caused by Staphylococcus aureus. Biofilm formation is thought to reduce penetration of antibiotics and immune cells, contributing to chronic and difficult-to-treat infections. A rabbit model of a posterior-approach spinal surgery was created, in which bilateral titanium pedicle screws were interconnected by a plate at the level of lumbar vertebra L6 and inoculated with a methicillin-resistant S.aureus (MRSA) bioluminescent strain. In vivo whole-animal bioluminescence imaging (BLI) and ex vivo bacterial cultures demonstrated a peak in bacterial burden by day 14, when wound dehiscence occurred. Structures suggestive of biofilm, visualized by scanning electron microscopy, were evident up to 56 days following infection. Infection-induced inflammation and bone remodeling were also monitored using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and computed tomography (CT). PET imaging signals were noted in the soft tissue and bone surrounding the implanted materials. CT imaging demonstrated marked bone remodeling and a decrease in dense bone at the infection sites. This rabbit model of implant-associated spinal infection provides a valuable preclinical in vivo approach to investigate the pathogenesis of implant-associated spinal infections and to evaluate novel therapeutics. Summary: A model of post-surgical methicillin-resistant Staphylococcus aureus implant-associated spinal infection was created in rabbits, recapitulating acute infection as well as chronic low-burden infection, with structures suggestive of biofilm formation and bone remodeling.
Collapse
Affiliation(s)
- Oren Gordon
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John M Thompson
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alvaro A Ordonez
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariah H Klunk
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Camilo A Ruiz-Bedoya
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Immunology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Sanjay K Jain
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA .,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Sheppard WL, Mosich GM, Smith RA, Hamad CD, Park HY, Zoller SD, Trikha R, McCoy TK, Borthwell R, Hoang J, Truong N, Cevallos N, Clarkson S, Hori KR, van Dijl JM, Francis KP, Petrigliano FA, Bernthal NM. Novel in vivo mouse model of shoulder implant infection. J Shoulder Elbow Surg 2020; 29:1412-1424. [PMID: 32014357 PMCID: PMC11037115 DOI: 10.1016/j.jse.2019.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Animal models are used to guide management of periprosthetic implant infections. No adequate model exists for periprosthetic shoulder infections, and clinicians thus have no preclinical tools to assess potential therapeutics. We hypothesize that it is possible to establish a mouse model of shoulder implant infection (SII) that allows noninvasive, longitudinal tracking of biofilm and host response through in vivo optical imaging. The model may then be employed to validate a targeting probe (1D9-680) with clinical translation potential for diagnosing infection and image-guided débridement. METHODS A surgical implant was press-fit into the proximal humerus of c57BL/6J mice and inoculated with 2 μL of 1 × 103 (e3), or 1 × 104 (e4), colony-forming units (CFUs) of bioluminescent Staphylococcus aureus Xen-36. The control group received 2 μL sterile saline. Bacterial activity was monitored in vivo over 42 days, directly (bioluminescence) and indirectly (targeting probe). Weekly radiographs assessed implant loosening. CFU harvests, confocal microscopy, and histology were performed. RESULTS Both inoculated groups established chronic infections. CFUs on postoperative day (POD) 42 were increased in the infected groups compared with the sterile group (P < .001). By POD 14, osteolysis was visualized in both infected groups. The e4 group developed catastrophic bone destruction by POD 42. The e3 group maintained a congruent shoulder joint. Targeting probes helped to visualize low-grade infections via fluorescence. DISCUSSION Given bone destruction in the e4 group, a longitudinal, noninvasive mouse model of SII and chronic osteolysis was produced using e3 of S aureus Xen-36, mimicking clinical presentations of chronic SII. CONCLUSION The development of this model provides a foundation to study new therapeutics, interventions, and host modifications.
Collapse
Affiliation(s)
- William L Sheppard
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Gina M Mosich
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Ryan A Smith
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher D Hamad
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Stephen D Zoller
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Rishi Trikha
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Tatiana K McCoy
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Borthwell
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Hoang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicole Truong
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicolas Cevallos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samuel Clarkson
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kellyn R Hori
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kevin P Francis
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA; PerkinElmer, Hopkinton, MA, USA
| | - Frank A Petrigliano
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Nicholas M Bernthal
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA.
| |
Collapse
|
21
|
Kelley BV, Hamad C, Zoller SD, Greig D, Mamouei Z, Chun R, Hori K, Cevallos N, Ishmael C, Hsiue P, Trikha R, Sekimura T, Gettleman B, Golzar A, Lin A, Olson T, Chaudry A, Le MM, Scaduto AA, Francis KP, Bernthal NM. In vivo Mouse Model of Spinal Implant Infection. J Vis Exp 2020:10.3791/60560. [PMID: 32658180 PMCID: PMC8601786 DOI: 10.3791/60560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Spine implant infections portend poor outcomes as diagnosis is challenging and surgical eradication is at odds with mechanical spinal stability. The purpose of this method is to describe a novel mouse model of spinal implant infection (SII) that was created to provide an inexpensive, rapid, and accurate in vivo tool to test potential therapeutics and treatment strategies for spinal implant infections. In this method, we present a model of posterior-approach spinal surgery in which a stainless-steel k-wire is transfixed into the L4 spinous process of 12-week old C57BL/6J wild-type mice and inoculated with 1 x 103 CFU of a bioluminescent strain of Staphylococcus aureus Xen36 bacteria. Mice are then longitudinally imaged for bioluminescence in vivo on post-operative days 0, 1, 3, 5, 7, 10, 14, 18, 21, 25, 28, and 35. Bioluminescence imaging (BLI) signals from a standardized field of view are quantified to measure in vivo bacterial burden. To quantify bacteria adhering to implants and peri-implant tissue, mice are euthanized and the implant and surrounding soft tissue are harvested. Bacteria are detached from the implant by sonication, cultured overnight and then colony forming units (CFUs) are counted. The results acquired from this method include longitudinal bacterial counts as measured by in vivo S. aureus bioluminescence (mean maximum flux) and CFU counts following euthanasia. While prior animal models of instrumented spine infection have involved invasive, ex vivo tissue analysis, the mouse model of SII presented in this paper leverages noninvasive, real time in vivo optical imaging of bioluminescent bacteria to replace static tissue study. Applications of the model are broad and may include utilizing alternative bioluminescent bacterial strains, incorporating other types of genetically engineered mice to contemporaneously study host immune response, and evaluating current or investigating new diagnostic and therapeutic modalities such as antibiotics or implant coatings.
Collapse
Affiliation(s)
- Benjamin V Kelley
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Christopher Hamad
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Stephen D Zoller
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Danielle Greig
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Rene Chun
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Kellyn Hori
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Chad Ishmael
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Peter Hsiue
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Rishi Trikha
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Troy Sekimura
- David Geffen School of Medicine, University of California Los Angeles
| | - Brandon Gettleman
- University of South Carolina School of Medicine, University of South Carolina
| | - Autreen Golzar
- David Geffen School of Medicine, University of California Los Angeles
| | - Adrian Lin
- David Geffen School of Medicine, University of California Los Angeles
| | - Thomas Olson
- David Geffen School of Medicine, University of California Los Angeles
| | - Ameen Chaudry
- David Geffen School of Medicine, University of California Los Angeles
| | - Michael M Le
- David Geffen School of Medicine, University of California Los Angeles
| | - Anthony A Scaduto
- Department of Orthopaedic Surgery, University of California Los Angeles
| | - Kevin P Francis
- Department of Orthopaedic Surgery, University of California Los Angeles
| | | |
Collapse
|
22
|
Park HY, Hegde V, Zoller SD, Sheppard W, Hamad C, Smith RA, Sprague MM, Proal JD, Hoang J, Loftin A, Blumstein G, Burke Z, Cevallos N, Scaduto AA, Bernthal NM. Progress not panacea: vancomycin powder efficacy and dose evaluated in an in vivo mouse model of spine implant infection. Spine J 2020; 20:973-980. [PMID: 31863932 PMCID: PMC7351246 DOI: 10.1016/j.spinee.2019.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Intrawound vancomycin powder (VP) has been rapidly adopted in spine surgery with apparent benefit demonstrated in limited, retrospective studies. Randomized trials, basic science, and dose response studies are scarce. PURPOSE This study aims to test the efficacy and dose effect of VP over an extended time course within a randomized, controlled in vivo animal experiment. STUDY DESIGN/SETTING Randomized controlled experiment utilizing a mouse model of spine implant infection with treatment groups receiving vancomycin powder following bacterial inoculation. METHODS Utilizing a mouse model of spine implant infection with bioluminescent Staphylococcus aureus, 24 mice were randomized into 3 groups: 10 infected mice with VP treatment (+VP), 10 infected mice without VP treatment (No-VP), and 4 sterile controls (SC). Four milligrams of VP (mouse equivalent of 1 g in a human) were administered before wound closure. Bioluminescence imaging was performed over 5 weeks to quantify bacterial burden. Electron microscopy (EM), bacterial colonization assays (Live/Dead) staining, and colony forming units (CFU) analyses were completed. A second dosing experiment was completed with 34 mice randomized into 4 groups: control, 2 mg, 4 mg, and 8 mg groups. RESULTS The (+VP) treatment group exhibited significantly lower bacterial loads compared to the control (No-VP) group, (p<.001). CFU analysis at the conclusion of the experiment revealed 20% of mice in the +VP group and 67% of mice in the No-VP group had persistent infections, and the (+VP) treatment group had significantly less mean number of CFUs (p<.03). EM and Live/Dead staining revealed florid biofilm formation in the No-VP group. Bioluminescence was suppressed in all VP doses tested compared with sterile controls (p<.001). CFU analysis revealed a 40%, 10%, and 20% persistent infection rate in the 2 mg, 4 mg, and 8 mg dose groups, respectively. CFU counts across dosing groups were not statistically different (p=.56). CONCLUSIONS Vancomycin powder provided an overall infection prevention benefit but failed to eradicate infection in all mice. Furthermore, the dose when halved also demonstrated an overall protective benefit, albeit at a lower rate. CLINICAL SIGNIFICANCE Vancomycin powder is efficacious but should not be viewed as a panacea for perioperative infection prevention. Dose alterations can be considered, especially in patients with kidney disease or at high risk for seroma.
Collapse
Affiliation(s)
- Howard Y Park
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vishal Hegde
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen D Zoller
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - William Sheppard
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Hamad
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan A Smith
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marina M Sprague
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joshua D Proal
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Hoang
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amanda Loftin
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gideon Blumstein
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zachary Burke
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony A Scaduto
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Orthopaedic Institute for Children, Los Angeles, CA, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Orthopaedic Institute for Children, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Abstract
STUDY DESIGN A controlled, interventional animal study. OBJECTIVE Spinal implant infection (SII) is a devastating complication. The objective of this study was to evaluate the efficacy of a novel implant coating that has both a passive antibiotic elution and an active-release mechanism triggered in the presence of bacteria, using an in vivo mouse model of SII. SUMMARY OF BACKGROUND DATA Current methods to minimize the frequency of SII include local antibiotic therapy (vancomycin powder), betadine irrigation, silver nanoparticles, and passive release from antibiotic-loaded poly(methyl methacrylate) cement beads, all of which have notable weaknesses. A novel implant coating has been developed to address some of these limitations but has not been tested in the environment of a SII. METHODS A biodegradable coating using branched poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) polymer was designed to deliver antibiotics. The in vivo performance of this coating was tested in the delivery of either vancomycin or tigecycline in a previously established mouse model of SII. Noninvasive bioluminescence imaging was used to quantify the bacterial burden, and implant sonication was used to determine bacterial colony-forming units (CFUs) from the implant and surrounding bone and soft tissue. RESULTS The PEG-PPS-vancomycin coating significantly lowered the infection burden from postoperative day 3 onwards (P < 0.05), whereas PEG-PPS-tigecycline only decreased the infection on postoperative day 5 to 10 (P < 0.05). CFUs were lower on PEG-PPS-vancomycin pins than PEG-PPS-tigecycline and PEG-PPS pins alone on both the implants (2.4 × 10, 8.5 × 10, and 1.0 × 10 CFUs, respectively) and surrounding bone and soft tissue (1.3 × 10, 4.8 × 10, and 5.4 × 10 CFUs, respectively) (P < 0.05). CONCLUSION The biodegradable PEG-PPS coating demonstrates promise in decreasing bacterial burden and preventing SII. The vancomycin coating outperformed the tigecycline coating in this model compared to prior work in arthroplasty models, highlighting the uniqueness of the paraspinal infection microenvironment. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Thompson JM, Miller LS. Preclinical Optical Imaging to Study Pathogenesis, Novel Therapeutics and Diagnostics Against Orthopaedic Infection. J Orthop Res 2019; 37:2269-2277. [PMID: 31342546 DOI: 10.1002/jor.24428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Preclinical in vivo optical imaging includes bioluminescence imaging (BLI) and fluorescence imaging (FLI), which provide noninvasive and longitudinal monitoring of biological processes in an in vivo context. In vivo BLI involves the detection of photons of light from bioluminescent bacteria engineered to naturally emit light in preclinical animal models of infection. Meanwhile, in vivo FLI involves the detection of photons of a longer emission wavelength of light after exposure of a fluorophore to a shorter excitation wavelength of light. In vivo FLI has been used in preclinical animal models to detect fluorescent-labeled host proteins or cells (often in engineered fluorescent reporter mice) to understand host-related processes, or to detect injectable near-infrared fluorescent probes as a novel approach for diagnosing infection. This review describes the use of in vivo optical imaging in preclinical models of orthopaedic implant-associated infection (OIAI), including (i) pathogenesis of the infectious course, (ii) monitoring efficacy of antimicrobial prophylaxis and therapy and (iii) evaluating novel near-infrared fluorescent probes for diagnosing infection. Finally, we describe optoacoustic imaging and fluorescence image-guided surgery, which are recent technologies that have the potential to translate to diagnosing and treating OIAI in humans. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2269-2277, 2019.
Collapse
Affiliation(s)
- John M Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
| | - Lloyd S Miller
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| |
Collapse
|
25
|
Miller RJ, Thompson JM, Zheng J, Marchitto MC, Archer NK, Pinsker BL, Ortines RV, Jiang X, Martin RA, Brown ID, Wang Y, Sterling RS, Mao HQ, Miller LS. In Vivo Bioluminescence Imaging in a Rabbit Model of Orthopaedic Implant-Associated Infection to Monitor Efficacy of an Antibiotic-Releasing Coating. J Bone Joint Surg Am 2019; 101:e12. [PMID: 30801375 PMCID: PMC6738548 DOI: 10.2106/jbjs.18.00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In vivo bioluminescence imaging (BLI) provides noninvasive monitoring of bacterial burden in animal models of orthopaedic implant-associated infection (OIAI). However, technical limitations have limited its use to mouse and rat models of OIAI. The goal of this study was to develop a larger, rabbit model of OIAI using in vivo BLI to evaluate the efficacy of an antibiotic-releasing implant coating. METHODS A nanofiber coating loaded with or without linezolid-rifampin was electrospun onto a surgical-grade locking peg. To model OIAI in rabbits, a medial parapatellar arthrotomy was performed to ream the femoral canal, and a bright bioluminescent methicillin-resistant Staphylococcus aureus (MRSA) strain was inoculated into the canal, followed by retrograde insertion of the coated implant flush with the articular surface. In vivo BLI signals were confirmed by ex vivo colony-forming units (CFUs) from tissue, bone, and implant specimens. RESULTS In this rabbit model of OIAI (n = 6 rabbits per group), implants coated without antibiotics were associated with significantly increased knee width and in vivo BLI signals compared with implants coated with linezolid-rifampin (p < 0.001 and p < 0.05, respectively). On day 7, the implants without antibiotics were associated with significantly increased CFUs from tissue (mean [and standard error of the mean], 1.4 × 10 ± 2.1 × 10 CFUs; p < 0.001), bone (6.9 × 10 ± 3.1 × 10 CFUs; p < 0.05), and implant (5.1 × 10 ± 2.2 × 10 CFUs; p < 0.05) specimens compared with implants with linezolid-rifampin, which demonstrated no detectable CFUs from any source. CONCLUSIONS By combining a bright bioluminescent MRSA strain with modified techniques, in vivo BLI in a rabbit model of OIAI demonstrated the efficacy of an antibiotic-releasing coating. CLINICAL RELEVANCE The new capability of in vivo BLI for noninvasive monitoring of bacterial burden in larger-animal models of OIAI may have important preclinical relevance.
Collapse
Affiliation(s)
- Robert J. Miller
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M. Thompson
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesse Zheng
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Mark C. Marchitto
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathan K. Archer
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bret L. Pinsker
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger V. Ortines
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xuesong Jiang
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Russell A. Martin
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Isabelle D. Brown
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yu Wang
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert S. Sterling
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hai-Quan Mao
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Lloyd S. Miller
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland,Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Zoller SD, Park HY, Olafsen T, Zamilpa C, Burke ZD, Blumstein G, Sheppard WL, Hamad CD, Hori KR, Tseng JC, Czupryna J, McMannus C, Lee JT, Bispo M, Romero Pastrana F, Raineri EJ, Miller JF, Miller LS, van Dijl JM, Francis KP, Bernthal NM. Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI Insight 2019; 4:124813. [PMID: 30728332 DOI: 10.1172/jci.insight.124813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023] Open
Abstract
Spine implant infections portend disastrous outcomes, as diagnosis is challenging and surgical eradication is at odds with mechanical spinal stability. Current imaging modalities can detect anatomical alterations and anomalies but cannot differentiate between infection and aseptic loosening, diagnose specific pathogens, or delineate the extent of an infection. Herein, a fully human monoclonal antibody 1D9, recognizing the immunodominant staphylococcal antigen A on the surface of Staphylococcus aureus, was assessed as a nuclear and fluorescent imaging probe in a preclinical model of S. aureus spinal implant infection, utilizing bioluminescently labeled bacteria to confirm the specificity and sensitivity of this targeting. Postoperative mice were administered 1D9 probe dual labeled with 89-zirconium (89Zr) and a bars represent SEM dye (NIR680) (89Zr-NIR680-1D9), and PET-CT and in vivo fluorescence and bioluminescence imaging were performed. The 89Zr-NIR680-1D9 probe accurately diagnosed both acute and subacute implant infection and permitted fluorescent image-guided surgery for selective debridement of infected tissue. Therefore, a single probe could noninvasively diagnose an infection and facilitate image-guided surgery to improve the clinical management of implant infections.
Collapse
Affiliation(s)
- Stephen D Zoller
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Charles Zamilpa
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Zachary Dc Burke
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Gideon Blumstein
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - William L Sheppard
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | | | - Kellyn R Hori
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Mafalda Bispo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisa Jm Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jeffery F Miller
- California NanoSystems Institute, UCLA, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Lloyd S Miller
- Department of Orthopaedic Surgery.,Department of Dermatology, and.,Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kevin P Francis
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA.,PerkinElmer, Hopkinton, Massachusetts, USA
| | - Nicholas M Bernthal
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| |
Collapse
|
27
|
Park HY, Sheppard W, Smith R, Xiao J, Gatto J, Bowen R, Scaduto A, Holly L, Lu D, McBride D, Shamie AN, Park DY. The combined administration of vancomycin IV, standard prophylactic antibiotics, and vancomycin powder in spinal instrumentation surgery: does the routine use affect infection rates and bacterial resistance? JOURNAL OF SPINE SURGERY 2018; 4:173-179. [PMID: 30069504 DOI: 10.21037/jss.2018.05.04] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Surgical site infections (SSI) poses significant risk following spinal instrumentation surgery. The 2013 North American Spine Society (NASS) Evidence-Based Clinical Guidelines found that the incidence of SSI in spine surgery ranged from 0.7-10%, with higher rates with medical comorbidities. National guidelines currently recommend first-generation cephalosporins as first line prophylaxis. Due to an increase in MRSA cases in our institution, a combined antibiotic strategy using vancomycin IV, standard prophylactic antibiotics, and vancomycin powder was implemented for all spinal instrumentation surgeries. Methods All spinal instrumentation surgeries performed at this institution from 2013-2016 were identified. Chart review was then performed to identify the inclusion and exclusion criteria, demographic data, diagnosis, type of surgery performed, and bacterial culture results. Rates of SSI, as defined by the Center for Disease Control (CDC), were calculated and antibiotic resistance was determined. As control, SSIs were identified and reviewed from 2010, prior to the implementation of the combined strategy. Results One thousand and seventy four subjects were identified in the combined cohort. Mean age was 52.3 years, 540 males (50.2%), 534 females (49.8%). There were 960 primary surgeries (89.4%), 114 cases revision surgeries (10.6%). Cervical myelopathy (27.9%), lumbar stenosis (16.2%), lumbar spondylolisthesis (14.0%), and scoliosis (pediatric and adult)/deformity (13.7%) were leading diagnoses. The standard prophylactic antibiotic was cefazolin IV in 524 cases (48.8%), gentamicin IV in 526 cases (49.0%), vancomycin powder was used in 72.3% of cases. Four SSI cases out of 1,074 were identified (0.37%), 3 deep and 1 superficial, with no antibiotic resistance. In the control group, there were 11 infections of 892 cases (1.23%). There were significantly lower rates of SSI in the combined group versus control (P=0.05). Conclusions The combined antibiotic strategy led to low SSI rates in this retrospective case control study. Limitations of this study include retrospective design and small sample size. A large multicenter randomized clinical trial may provide further insight in the effectiveness of this strategy. Level of evidence 3. Clinical relevance: the combined antibiotic protocol may be considered in institutions with concern for SSI and methicillin resistant infections associated with spinal instrumentation surgeries.
Collapse
Affiliation(s)
- Howard Young Park
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William Sheppard
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan Smith
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jiayang Xiao
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan Gatto
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Richard Bowen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Orthopaedic Institute for Children, Santa Monica, CA, USA
| | - Anthony Scaduto
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Orthopaedic Institute for Children, Santa Monica, CA, USA
| | - Langston Holly
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel Lu
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Duncan McBride
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Arya Nick Shamie
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Don Young Park
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
28
|
Momcilovic M, Shackelford DB. Imaging Cancer Metabolism. Biomol Ther (Seoul) 2018; 26:81-92. [PMID: 29212309 PMCID: PMC5746040 DOI: 10.4062/biomolther.2017.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Abstract
STUDY DESIGN A randomized complete block animal spinal implant infection model with internal control. OBJECTIVE The aim of this study was to develop a spinal implant animal infection model to simulate postoperative gram-negative wound infection. SUMMARY OF BACKGROUND DATA Implant-associated surgical site infections (SSIs) remain a dreaded complication of spinal surgery. Currently, over 30% of all spine SSIs are secondary to gram-negative bacteria. Traditional animal models have utilized gram-positive inoculums to simulate postoperative infection, but there exists no model in the literature for gram-negative infection in the setting of spinal instrumentation. METHODS Five New Zealand white female rabbits underwent simulated partial laminectomies and implantation of a 5 mm titanium wire adjacent to the spinous processes of vertebra T4, T9, L1, and L6 to mimic posterior spinal instrumentation. The second site, T9, was used as the sterile internal control sites, while all other sites were challenged with varying inoculums of Escherichia coli (EC American Type Culture Collection 25922): 10, 10, 10, 10, and 10 Colony Forming Units (CFU). The rabbits were sacrificed 4 days postoperatively and bacterial loads were assayed from the implants and surrounding tissue. RESULTS No evidence for infection was observed in any of the sterile control sites. The lowest inoculum of E. coli (10 CFU) did not produce a reliable infection. Inoculation with 10 CFU created a consistent soft tissue infection, but inconsistent infection on implants. Inoculation with 10 CFU was required to consistently produce both soft tissue and implant infection. CONCLUSION Consistent soft tissue and implant infection was produced with inoculation of 10 CFU of E. coli. Gram-negative infections represent greater than 30% of all spinal SSIs, and this animal model can reliably reproduce such infections with spinal instrumentation that can guide future development of anti-infective therapies. LEVEL OF EVIDENCE 2.
Collapse
|
30
|
Hu Y, Hegde V, Johansen D, Loftin AH, Dworsky E, Zoller SD, Park HY, Hamad CD, Nelson GE, Francis KP, Scaduto A, Bernthal NM. Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection. PLoS One 2017; 12:e0173019. [PMID: 28245229 PMCID: PMC5330510 DOI: 10.1371/journal.pone.0173019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/12/2017] [Indexed: 12/04/2022] Open
Abstract
Background Management of spine implant infections (SII) are challenging. Explantation of infected spinal hardware can destabilize the spine, but retention can lead to cord compromise and biofilm formation, complicating management. While vancomycin monotherapy is commonly used, in vitro studies have shown reduced efficacy against biofilm compared to combination therapy with rifampin. Using an established in vivo mouse model of SII, we aim to evaluate whether combination therapy has increased efficacy compared to both vancomycin alone and infected controls. Methods An L-shaped, Kirschner-wire was transfixed into the L4 spinous process of 12-week-old C57BL/6 mice, and inoculated with bioluminescent Staphylococcus aureus. Mice were randomized into a vancomycin group, a combination group with vancomycin plus rifampin, or a control group receiving saline. Treatment began on post-operative day (POD) 7 and continued through POD 14. In vivo imaging was performed to monitor bioluminescence for 35 days. Colony-forming units (CFUs) were cultured on POD 35. Results Bioluminescence peaked around POD 7 for all groups. The combination group had a 10-fold decrease in signal by POD 10. The vancomycin and control groups reached similar levels on POD 17 and 21, respectively. On POD 25 the combination group dropped below baseline, but rebounded to the same level as the other groups, demonstrating a biofilm-associated infection by POD 35. Quantification of CFUs on POD 35 confirmed an ongoing infection in all three groups. Conclusions Although both therapies were initially effective, they were not able to eliminate implant biofilm bacteria, resulting in a rebound infection after antibiotic cessation. This model shows, for the first time, why histologic-based, static assessments of antimicrobials can be misleading, and the importance of longitudinal tracking of infection. Future studies can use this model to test combinations of antibiotic therapies to see if they are more effective in eliminating biofilm prior to human trials.
Collapse
Affiliation(s)
- Yan Hu
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Vishal Hegde
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Daniel Johansen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Amanda H. Loftin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Erik Dworsky
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Stephen D. Zoller
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Howard Y. Park
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Christopher D. Hamad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - George E. Nelson
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kevin P. Francis
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Anthony Scaduto
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
| | - Nicholas M. Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Santa Monica, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Iatridis JC, Kang J, Kandel R, Risbud MV. New horizons in spine research: Intervertebral disc repair and regeneration. J Orthop Res 2017; 35:5-7. [PMID: 28114734 PMCID: PMC5482231 DOI: 10.1002/jor.23499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - James Kang
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Rita Kandel
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario M5G1X5, Canada
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|