1
|
Skidanov A, Ashukina N, Maltseva V, Skidanov M, Danyshchuk Z, Radchenko V. The relationship between structural changes in paraspinal muscles and intervertebral disc and facet joint degeneration in the lumbar spine of rats. J Orthop Surg Res 2024; 19:58. [PMID: 38217024 PMCID: PMC10785363 DOI: 10.1186/s13018-024-04548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Degenerative spine disease is one of the largest causes of disability worldwide and has a multifactorial aetiology. Determining the leading causes of this multifactorial disease could help create new treatment approaches. PURPOSE Study the impact of degenerative changes in the paraspinal muscles caused by local (prolonged compression) or systemic (high-fat diet) factors on the structure of the intervertebral discs (IVDs) and facet joints of the lumbar spine in rats. METHODS The study was conducted using two animal models to create degenerative changes in the paraspinal muscles of 10 white laboratory rats for 90 days and five control rats: 1) high-fat diet model (model 1) involved keeping the rats on a high calorie diet; 2) compression model (model 2) involved binding the paraspinal muscles from L2 to S1 using non-absorbable sutures. Histological analysis for the facet joints and IVDs of rats (at the L1-L4 level) with semi-quantitative analysis of the structure conducted used by degeneration grading system for IVDs and cartilage degeneration score (OARSI) for facet joint. RESULTS In both models, 90 days after the experiment, the degenerative changes observed in the rats' IVDs were more severe in the annulus fibrosus than in the nucleus pulposus. The height of the IVD in model 1 did not differ from the control group, but in the model 2 was 1.3 times greater (p < 0.001) compared with control. Degenerative changes in the IVD were scored out 5.3 ± 1.7 in model 1 and 5.32 ± 2.1 in model 2 of a possible 16. The height of the articular cartilage of the facet joints was smaller by 1.5 times (p < 0.001) and 1.4 times (p < 0.001) in model 1 and model 2, respectively, compared to the control. Degenerative changes of facet joint were scored out 3.7 ± 0.6 in model 1 and 3.8 ± 0.6 in model 2 of five points according to the cartilage degeneration score. CONCLUSIONS It was determined that rats who had structural changes in the lumbar paraspinal muscles as a result of being kept on a high-fat diet or subjected to prolonged compression for 90 days, showed degenerative changes in intervertebral discs and osteoarthritis in facet joints of lumbar spine.
Collapse
Affiliation(s)
- Artem Skidanov
- Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, 80 Pushkinska St., Kharkiv, 61024, Ukraine
| | - Nataliya Ashukina
- Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, 80 Pushkinska St., Kharkiv, 61024, Ukraine
| | - Valentyna Maltseva
- Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, 80 Pushkinska St., Kharkiv, 61024, Ukraine.
| | - Mykyta Skidanov
- Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, 80 Pushkinska St., Kharkiv, 61024, Ukraine
| | - Zinaida Danyshchuk
- Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, 80 Pushkinska St., Kharkiv, 61024, Ukraine
| | - Volodymyr Radchenko
- Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, 80 Pushkinska St., Kharkiv, 61024, Ukraine
| |
Collapse
|
2
|
Lee SH, Choi HH, Chang MC. The Effectiveness of Facet Joint Injection with Steroid and Botulinum Toxin in Severe Lumbar Central Spinal Stenosis: A Randomized Controlled Trial. Toxins (Basel) 2022; 15:toxins15010011. [PMID: 36668831 PMCID: PMC9866817 DOI: 10.3390/toxins15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Lumbar central spinal stenosis (LCSS) is a common disorder that causes disability and pain in the elderly. It causes pain in the radicular leg. Recently, transforaminal epidural steroid injection (TFESI) has been widely used to control radicular leg pain caused by LCSS. However, in cases of severe LCSS, drugs injected using TFESI cannot spread into the spinal canal and would have less therapeutic effects than in mild LCSS. To compensate for this limitation of TFESI, we injected steroids and botulinum toxin type A into the bilateral facet joints, evaluated their effects, and compared them with those of TFESI. One hundred patients with severe LCSS were included in the study and randomly allocated to either the facet injection (FI) or TFESI group. For 50 patients in the FI group, 30 mg (40 mg/mL) of triamcinolone with 50 IU of botulinum toxin type A mixed with a 1 mL solution of 100 mL of 50% dextrose water and 30 mL of 4% lidocaine were administered into the bilateral facet joints under fluoroscopy. For 50 patients in the TFESI group, 30 mg (40 mg/mL) of triamcinolone with 0.8 mL of 2% lidocaine and 2.5 mL of 50% dextrose water was injected bilaterally under fluoroscopy. Radicular leg pain (measured with a numeric rating scale) and pain-related disability (measured with the modified Oswestry Disability Index) due to severe LCSS were significantly reduced after facet joint injection. The therapeutic effects were greater after facet joint injection than after bilateral TFESI. The injection of a mixed solution of steroids and botulinum toxin type A into the bilateral facet joints would be a beneficial therapeutic option in patients with severe LCSS.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Radiology, Madi Pain Management Center, Jeonju 54969, Republic of Korea
| | - Hyun Hee Choi
- Madi Research and Development Center, Jeonju 54969, Republic of Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
- Correspondence:
| |
Collapse
|
3
|
Wu XT, Wang YX, Feng XM, Feng M, Sun HH. Update on the roles of macrophages in the degeneration and repair process of intervertebral discs. Joint Bone Spine 2022; 90:105514. [PMID: 36529418 DOI: 10.1016/j.jbspin.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Intervertebral disc (IVD) degeneration is the common cause of lumbar degenerative diseases, causing severe social and economic burden. The process of IVD degeneration involves a complex of pathologic changes on both extracellular matrix degradation and resident cell apoptosis. In recent years, there is increasing evidence that macrophages play vital roles during the damage and repair process of IVD degeneration. Nevertheless, the interactions between macrophages and IVD are not well understood, even if the IVD has long been regarded as the immune privileged site. Therefore, this review mainly focuses on the progress and obstacles of studies investigating the blood supply, immune response and especially macrophages during the IVD degeneration process.
Collapse
Affiliation(s)
- Xiao-Tao Wu
- Spine department, Northern Jiangsu People's Hospital, Yangzhou City 225001, China; Spine Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing City 210009, Jiangsu, China
| | - Yong-Xiang Wang
- Spine department, Northern Jiangsu People's Hospital, Yangzhou City 225001, China
| | - Xin-Min Feng
- Spine department, Northern Jiangsu People's Hospital, Yangzhou City 225001, China
| | - Min Feng
- Day treatment ward, Northern Jiangsu People's Hospital, Yangzhou City 225001, China.
| | - Hui-Hui Sun
- Spine department, Northern Jiangsu People's Hospital, Yangzhou City 225001, China.
| |
Collapse
|
4
|
Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, Lv X, Liu H, Chen S. New Progress in Basic Research of Macrophages in the Pathogenesis and Treatment of Low Back Pain. Front Cell Dev Biol 2022; 10:866857. [PMID: 35669508 PMCID: PMC9163565 DOI: 10.3389/fcell.2022.866857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain (LBP) is quite common in clinical practice, which can lead to long-term bed rest or even disability. It is a worldwide health problem remains to be solved. LBP can be induced or exacerbated by abnormal structure and function of spinal tissue such as intervertebral disc (IVD), dorsal root ganglion (DRG) and muscle; IVD degeneration (IVDD) is considered as the most important among all the pathogenic factors. Inflammation, immune response, mechanical load, and hypoxia etc., can induce LBP by affecting the spinal tissue, among which inflammation and immune response are the key link. Inflammation and immune response play a double-edged sword role in LBP. As the main phagocytic cells in the body, macrophages are closely related to body homeostasis and various diseases. Recent studies have shown that macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus, expressed in various structures of the IVD, and the number is positively correlated with the degree of IVDD. Moreover, macrophages play a phagocytosis role or regulate the metabolism of DRG and muscle tissues through neuro-immune mechanism, while the imbalance of macrophages polarization will lead to more inflammatory factors to chemotaxis and aggregation, forming an "inflammatory waterfall" effect similar to "positive feedback," which greatly aggravates LBP. Regulation of macrophages migration and polarization, inhibition of inflammation and continuous activation of immune response by molecular biological technology can markedly improve the inflammatory microenvironment, and thus effectively prevent and treat LBP. Studies on macrophages and LBP were mainly focused in the last 3-5 years, attracting more and more scholars' attention. This paper summarizes the new research progress of macrophages in the pathogenesis and treatment of LBP, aiming to provide an important clinical prevention and treatment strategy for LBP.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xiangrong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deming Bao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Seidel MF, Netzer C, Chobaz V, Hügle T, Geurts J. Localization of Nerve Growth Factor Expression to Structurally Damaged Cartilaginous Tissues in Human Lumbar Facet Joint Osteoarthritis. Front Immunol 2022; 13:783076. [PMID: 35300334 PMCID: PMC8921992 DOI: 10.3389/fimmu.2022.783076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/04/2022] [Indexed: 01/25/2023] Open
Abstract
Purpose Nerve Growth Factor (NGF) is a pivotal mediator of chronic pain and plays a role in bone remodelling. Through its high affinity receptor TrkA, NGF induces substance P (SP) as key downstream mediator of pain and local inflammation. Here we analysed NGF, TrkA and SP tissue distribution in facet joint osteoarthritis (FJOA), a major cause of chronic low back pain. Methods FJOA specimens (n=19) were harvested from patients undergoing intervertebral fusion surgery. Radiologic grading of FJOA and spinal stenosis, followed by immunohistochemistry for NGF, TrkA and SP on consecutive tissue sections, was performed in ten specimens. Explant cultures (n=9) were used to assess secretion of NGF, IL-6, and SP by FJOA osteochondral tissues under basal and inflammatory conditions. Results NGF was predominantly expressed in damaged cartilaginous tissues (80%), occasionally in bone marrow (20%), but not in osteochondral vascular channels. NGF area fraction in cartilage was not associated with the extent of proteoglycan loss or radiologic FJOA severity. Consecutive sections showed that NGF and SP expression was localized at structurally damaged cartilage, in absence of TrkA expression. SP and TrkA were expressed in subchondral bone marrow in both presence and absence of NGF. Low level NGF, but not SP secretion, was detected in four out of eighteen FJOA explants under both basal or inflammatory conditions (n=2 each). Conclusion NGF is associated with SP expression and structural cartilage damage in osteoarthritic facet joints, but not with radiologic disease severity. NGF tissue distribution in FJOA differs from predominant subchondral bone expression reported for knee OA.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre Hospitalier, Biel-Bienne, Switzerland
| | - Cordula Netzer
- Spine Surgery, Department of Biomedical Engineering, University Hospital of Basel, Basel, Switzerland
| | - Véronique Chobaz
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Thomas Hügle
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
[Research progress of spontaneous facet fusion after lumbar spine surgery]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:500-504. [PMID: 35426292 PMCID: PMC9011065 DOI: 10.7507/1002-1892.202111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To summarize the research progress on spontaneous facet fusion (SFF) after lumbar spine surgery, and provide reference for further research on SFF. METHODS The definition, development, clinical significance, and related influence factors of SFF were throughout reviewed by referring to relevant domestic and foreign literature in recent years. RESULTS SFF is a phenomenon of joint space disappearance and fusion of upper and lower articular processes, which starts in a ring shape from the outermost edges to the central regions. Currently reported SFF occurred after posterior lumbar pedicle screw fixation. SFF may increase the stability of surgical segments and relieve clinical symptoms of patients. SFF is closely related to the method of lumbar internal fixation, facet osteoarthritis, interbody fusion, age, body mass index, type B fracture (according to AO classification), and the operative segment. CONCLUSION Most reported SFF occur after posterior lumbar pedicle screw fixation, which can increase lumbar stability, but the mechanism and influencing factors remain to be further clarified.
Collapse
|
7
|
Wu C, Yu J, Xu G, Bao G, Zhang J, Xue P, Jiang J, Chen J, Chen C, Hong H, Cui Z. Wnt16 protects chondrocytes from lumbar facet joint osteoarthritis through the Wnt/β-catenin pathway in low back pain patients. Somatosens Mot Res 2021; 38:339-346. [PMID: 34553673 DOI: 10.1080/08990220.2021.1977267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Low back pain (LBP) is a long-lasting and chronic symptom without any exact cause. This study attempts to propose a new staging system based on the original grading system combined with pathological results and clinical symptoms to better clarify the dynamic evolution of LBP related to cartilage degeneration during facet joint osteoarthritis (FJOA). To explore a potential target for diagnosis, treatment, and drug intervention of facet joint osteoarthritis related LBP via protecting chondrocytes. MATERIALS AND METHODS All the facet joints were divided into 4 groups according to our new degenerative staging system based on Weishaupt grade, CT and MRI. Collect the facet joint samples from patients whom suffered lumbar fusion surgery for lumbar disc herniation. Molecular biology experiments were used to explore the effect of Wnt16 on the degeneration of facet joints. Micro-CT examination and pain stimulation test checked the biological function of Wnt16 in rats. RESULTS Wnt16 was significantly increased and more aggregated in the facet joint chondrocytes in the Phase III and Phase IV, which is consistent with the pathological findings of cartilage degeneration (OARSI). We found that Wnt16 participated in the regulation of FJOA via Wnt/β-catenin pathway in vitro, which was inhibited by specific inhibitor DKK1. The rats, rich expressed Wnt16, showed higher paw withdrawal thresholds and prolonged paw withdrawal latency to FJOA related LBP. Micro-CT examination for the lumbar spine of rats showed Wnt16 protected the chondrocytes from FJOA. CONCLUSIONS This study defined a new staging system for LBP related cartilage degeneration of facet joint based on the original grading system combined with pathological results and clinical symptoms. Wnt16 is expected to be a potential target for treatment of FJOA via protecting chondrocytes.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Jinjuan Yu
- Outpatient Department, The Third People's Hospital of Nantong, Nantong, PR China
| | - Guanhua Xu
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Guofeng Bao
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Jinlong Zhang
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Pengfei Xue
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Jiawei Jiang
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Jiajia Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Chu Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| | - Zhiming Cui
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong University, The First People's Hospital of Nantong, Nantong, PR China
| |
Collapse
|
8
|
Giardullo L, Altomare A, Rotondo C, Corrado A, Cantatore FP. Osteoblast Dysfunction in Non-Hereditary Sclerosing Bone Diseases. Int J Mol Sci 2021; 22:ijms22157980. [PMID: 34360745 PMCID: PMC8348499 DOI: 10.3390/ijms22157980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
A review of the available literature was performed in order to summarize the existing evidence between osteoblast dysfunction and clinical features in non-hereditary sclerosing bone diseases. It has been known that proliferation and migration of osteoblasts are concerted by soluble factors such as fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), bone morphogenetic protein (BMP) but also by signal transduction cascades such as Wnt signaling pathway. Protein kinases play also a leading role in triggering the activation of osteoblasts in this group of diseases. Post-zygotic changes in mitogen-activated protein kinase (MAPK) have been shown to be associated with sporadic cases of Melorheostosis. Serum levels of FGF and PDGF have been shown to be increased in myelofibrosis, although studies focusing on Sphingosine-1-phosphate receptor was shown to be strongly expressed in Paget disease of the bone, which may partially explain the osteoblastic hyperactivity during this condition. Pathophysiological mechanisms of osteoblasts in osteoblastic metastases have been studied much more thoroughly than in rare sclerosing syndromes: striking cellular mechanisms such as osteomimicry or complex intercellular signaling alterations have been described. Further research is needed to describe pathological mechanisms by which rare sclerosing non hereditary diseases lead to osteoblast dysfunction.
Collapse
|
9
|
Knockdown of TRAF6 inhibits chondrocytes apoptosis and inflammation by suppressing the NF-κB pathway in lumbar facet joint osteoarthritis. Mol Cell Biochem 2021; 476:1929-1938. [PMID: 33502650 DOI: 10.1007/s11010-021-04048-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6), a regulator of NF-κB signaling, has been discovered recently to be probably related to osteoarthritis, while the function of TRAF6 in lumbar facet joint osteoarthritis(FJOA)still remains unknown. The aim of this study was to probe the specific function of TRAF6 in chondrocytes and its connection with the pathophysiology of FJOA. We found upregulation of TRAF6 in FJOA cartilage by western blot analysis. In vitro, we stimulated immortalized human chondrocytes by LPS to establish the cells apoptosis model. Western blot analysis demonstrated that levels of TRAF6 and cleaved caspase-3/8 in the chondrocyte injury model increased significantly. Knockdown of TRAF6 suppressed the expression of matrix metallopeptidase-13 (MMP-13) and interleukin-6 (IL-6) induced by LPS, and alleviated cell apoptosis. Meanwhile, western blot and immunofluorescent staining demonstrated that IκBα degradation and p65 nuclear transportation were also inhibited, revealing that knockdown of TRAF6 suppressed activation of the NF-κB pathway in LPS-induced chondrocytes apoptosis model. Collectively, our findings suggest that TRAF6 plays a crucial role in FJOA development by regulating NF-κB signaling pathway. Knockdown of TRAF6 may supply a potential therapeutic strategy for FJOA.
Collapse
|
10
|
Latini E, Curci ER, Nusca SM, Lacopo A, Musa F, Santoboni F, Trischitta D, Vetrano M, Vulpiani MC. Medical ozone therapy in facet joint syndrome: an overview of sonoanatomy, ultrasound-guided injection techniques and potential mechanism of action. Med Gas Res 2021; 11:145-151. [PMID: 34213496 PMCID: PMC8374461 DOI: 10.4103/2045-9912.318859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Facet joint osteoarthritis is the most prevalent source of facet joint pain and represents a significant cause of low back pain. Oxygen-ozone therapy has been shown to have positive results in acute and chronic spinal degeneration diseases and it could be a safe and efficacious alternative to traditional facet joint conservative treatments. This review article explains the interventional facet joint management with ultrasound-guided oxygen-ozone therapy, providing an anatomy/sonoanatomy overview of lumbar facet joints and summarizing the potential mechanism of action of oxygen-ozone in the treatment of facet joint osteoarthritis, not yet fully understood.
Collapse
Affiliation(s)
- Eleonora Latini
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Enrico Roberto Curci
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Sveva Maria Nusca
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Alessandra Lacopo
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Musa
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Flavia Santoboni
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Trischitta
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Mario Vetrano
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Maria Chiara Vulpiani
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
11
|
Li J, Ding Z, Li Y, Wang W, Wang J, Yu H, Liu A, Miao J, Chen S, Wu T, Cao Y. BMSCs-Derived Exosomes Ameliorate Pain Via Abrogation of Aberrant Nerve Invasion in Subchondral Bone in Lumbar Facet Joint Osteoarthritis. J Orthop Res 2020; 38:670-679. [PMID: 31608495 DOI: 10.1002/jor.24497] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
Lumbar facet joint osteoarthritis (LFJ OA) is regarded as one of the common causes of low back pain (LBP). The pathogenesis and underlying mechanism of this disease are largely unknown, there is still no effective disease-modifying therapy. This study aims to investigate the efficacy of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the pathogenesis and behavioral signs of LBP in the LFJ OA mouse model. The pathogenetic change in cartilage and aberrant nerve invasion in the subchondral bone of LFJ in a mouse model after treatment with BMSC-exosomes was evaluated. BMSC-exosomes could relieve pain via abrogation of aberrant CGRP-positive nerve and abnormal H-type vessel formation in the subchondral bone of LFJ. Moreover, BMSC-exosomes attenuated cartilage degeneration and inhibited tartrate-resistant acid phosphatase expression and RANKL-RANK-TRAF6 signaling activation to facilitate subchondral bone remodeling. These results indicated that BMSC-exosomes could relive behavioral signs of LBP and pathological processes in LFJ OA. BMSC-exosomes have a prominent protective effect and might be a potential therapeutic option for the treatment of LFJ OA causing LBP. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:670-679, 2020.
Collapse
Affiliation(s)
- Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haiyang Yu
- Department of Human Anatomy and Histology and Embryology, Xiangya Basic Medical College, Central South University, Changsha, 410013, China
| | - Ansong Liu
- Department of Human Anatomy and Histology and Embryology, Xiangya Basic Medical College, Central South University, Changsha, 410013, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
12
|
Chen C, Cui S, Li W, Jin H, Fan J, Sun Y, Cui Z. Ingenuity pathway analysis of human facet joint tissues: Insight into facet joint osteoarthritis. Exp Ther Med 2020; 19:2997-3008. [PMID: 32256786 PMCID: PMC7086291 DOI: 10.3892/etm.2020.8555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Facet joint osteoarthritis (FJOA) is a common degenerative joint disorder with high prevalence in the elderly. FJOA causes lower back pain and lower extremity pain, and thus severely impacts the quality of life of affected patients. Emerging studies have focused on the histomorphological and histomorphometric changes in FJOA. However, the dynamic genetic changes in FJOA have remained to be clearly determined. In the present study, previously obtained RNA deep sequencing data were subjected to an ingenuity pathway analysis (IPA) and canonical signaling pathways of differentially expressed genes (DEGs) in FJOA were studied. The top 25 enriched canonical signaling pathways were identified and canonical signaling pathways with high absolute values of z-scores, specifically leukocyte extravasation signaling, Tec kinase signaling and osteoarthritis pathway, were investigated in detail. DEGs were further categorized by disease, biological function and toxicity (tox) function. The genetic networks between DEGs as well as hub genes in these functional networks were also investigated. It was demonstrated that C-X-C motif chemokine ligand 8, elastase, neutrophil expressed, growth factor independent 1 transcriptional repressor, Spi-1 proto-oncogene, CCAAT enhancer binding protein epsilon, GATA binding protein 1, TAL bHLH transcription factor 1, erythroid differentiation factor, minichromosome maintenance complex component 4, BTG anti-proliferation factor 2, BRCA1 DNA repair-associated, cyclin D1, chromatin assembly factor 1 subunit A, triggering receptor expressed on myeloid cells 1 and tumor protein p63 were hub genes in the top 5 IPA networks (with a score >30). The present study provides insight into the pathological processes of FJOA from a genetic perspective and may thus benefit the clinical treatment of FJOA.
Collapse
Affiliation(s)
- Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shengyu Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weidong Li
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huricha Jin
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianbo Fan
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
13
|
Abnormal Conditions of the Diskovertebral Segment: MRI With Anatomic-Pathologic Correlation. AJR Am J Roentgenol 2020; 214:853-861. [PMID: 32069076 DOI: 10.2214/ajr.19.22081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this article is to review the appearance of various abnormalities that affect the lumbar intervertebral disk and diskovertebral segment through anatomic-pathologic correlation in cadavers. CONCLUSION. Familiarity with the pathologic conditions in and around the intervertebral disk is important in recognizing such conditions as a potential source of symptoms. We revisit the principal role of MRI in evaluating these abnormalities and excluding other sources of significant clinical manifestations.
Collapse
|
14
|
[Lumbar facet joint disease : Classification, clinical diagnostics, and minimally invasive treatment]. DER ORTHOPADE 2019; 48:77-83. [PMID: 30637440 DOI: 10.1007/s00132-018-03667-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The degeneration of the lumbar facet joint is a multi-factorial process that is closely linked to degeneration of the intervertebral discs and has been implicated as one of the causes of low-back pain of elderly patients in about 15 up to 40% of cases. Moreover, emerging data suggest that increased inflammatory features play an important role in the progression of lumbar facet joint disease and may serve as a link to the afferent pain nerve fibers. OPERATIVE TECHNIQUES Since the first description in 1975 of minimally invasive treatment of lumbar facet joint disease, different techniques have been developed and used with varying results. Today, the major techniques are thermorhizotomy, cryorhizotomy, and endoscopic or percutaneous facet debridement with different anatomical targets, such as the medial branch of the dorsal ramus or facet joint capsule.
Collapse
|
15
|
Novel Ex Vivo Human Osteochondral Explant Model of Knee and Spine Osteoarthritis Enables Assessment of Inflammatory and Drug Treatment Responses. Int J Mol Sci 2018; 19:ijms19051314. [PMID: 29710775 PMCID: PMC5983625 DOI: 10.3390/ijms19051314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis of the knee and spine is highly prevalent in modern society, yet a disease-modifying pharmacological treatment remains an unmet clinical need. A major challenge for drug development includes selection of appropriate preclinical models that accurately reflect clinical phenotypes of human disease. The aim of this study was to establish an ex vivo explant model of human knee and spine osteoarthritis that enables assessment of osteochondral tissue responses to inflammation and drug treatment. Equal-sized osteochondral fragments from knee and facet joints (both n = 6) were subjected to explant culture for 7 days in the presence of a toll-like receptor 4 (TLR4) agonist and an inhibitor of transforming growth factor-beta (TGF-β) receptor type I signaling. Markers of inflammation, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), but not bone metabolism (pro-collagen-I) were significantly increased by treatment with TLR4 agonist. Targeting of TGF-β signaling resulted in a strong reduction of pro-collagen-I and significantly decreased IL-6 levels. MCP-1 secretion was increased, revealing a regulatory feedback mechanism between TGF-β and MCP-1 in joint tissues. These findings demonstrate proof-of-concept and feasibility of explant culture of human osteochondral specimens as a preclinical disease model, which might aid in definition and validation of disease-modifying drug targets.
Collapse
|
16
|
Wu T, Ni S, Cao Y, Liao S, Hu J, Duan C. Three-dimensional visualization and pathologic characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an ovariectomized mouse model. Spine J 2018; 18:663-673. [PMID: 29155252 DOI: 10.1016/j.spinee.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Low back pain (LBP) is more prevalent among postmenopausal women than men. Ovariectomy (OVX) is an established animal model that mimics the estrogen deficiency of postmenopausal women. Little is known about the three-dimensional (3D) morphologic properties of cartilage and subchondral bone changes in the lumbar facet joint (LFJ) of an OVX mouse model. PURPOSE The purpose of this study was to characterize the 3D morphologic change of cartilage and subchondral bone in the LFJ of an OVX mouse model. STUDY DESIGN Three-dimensional visualization and a histologic study on degenerative changes in cartilage and subchondral bone in the LFJ of an OVX mouse model were conducted. MATERIALS AND METHODS Ovariectomy is performed to mimic postmenopausal changes in adult female mice. We present an imaging tool for 3D visualization of the pathologic characteristics of cartilage and subchondral bone changes LFJ degradation using propagation-based phase-contrast computed tomography (PPCT). The samples were further dissected, fixed, and stained for histologic examination. RESULTS Propagation-based phase-contrast computed tomography imaging provides a 3D visualization of altered cartilage with a simultaneous high detail of the subchondral bone abnormalities in an OVX LFJ model. A quantitative analysis demonstrated that the cartilage volume, the surface area, and thickness were decreased in the OVX group compared with the control group (p<.05). Meanwhile, these decreases were accompanied by an obvious destruction of the subchondral bone surface and a loss of trabecular bone in the OVX group (p<.05). The delineation of the 3D pathologic changes in the PPCT imaging was confirmed by a histopathologic method with Safranin-O staining. Tartrate-resistant acid phosphatase staining revealed an increased number of osteoclasts in the subchondral bone of the OVX mice compared with that of the control group. CONCLUSIONS These results demonstrated that a mouse model of OVX-induced LFJ osteoarthritis (OA)-like changes was successfully established and showed a good resemblance to the human OA pathology. Propagation-based phase-contrast computed tomography has great potential to becomea powerful 3D imaging method to comprehensively characterize LFJ OA and to effectively monitor therapeutics. Moreover, degenerative LFJ possesses a severe morphologic change in the subchondral bone, may be the source of postmenopausal LBP, and has the potential to be a novel therapeutic target for LBP treatment.
Collapse
Affiliation(s)
- Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Lushan South Rd, Changsha, 410008, China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Rd No.87, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Xiangya Rd No.87, Changsha, Hunan, China.
| |
Collapse
|
17
|
Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis. Int J Mol Sci 2018. [PMID: 29538299 PMCID: PMC5877706 DOI: 10.3390/ijms19030845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15) and osteoarthritic (n = 22) lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.
Collapse
|
18
|
Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 148:21-31. [PMID: 29277342 DOI: 10.1016/j.pbiomolbio.2017.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disorder, and non-cartilage articular pathologies, e.g. subchondral bone disturbance, contribute substantially to the onset and progression of the disease. In the early stage of OA, abnormal mechanical loading leads to micro-cracks or micro-fractures that trigger a reparative process with angiogenesis and inflammatory response. With the progression of disease, cystic lesion, sclerosis and osteophytosis occur at tissue level, and osteoblast dysfunction at cellular level. Osteoblasts derived from OA sclerotic bone produce increased amount of type I collagen with aberrant Col1A1/A2 ratio and poor mineralization capability. The coupling mechanism of bone resorption with formation is also impaired with elevated osteoclastic activities. All these suggest a view that OA subchondral bone presents a defective fracture repair process in a chronic course. It has been found that T and B cells, the major effectors in the adaptive immunity, take part in the hard callus formation at fracture site in addition to the initial phase of haematoma and inflammation. Infiltration of lymphocytes could interplay with osteoclasts and osteoblasts via a direct physical cell-to-cell contact. Several lines of evidence have consistently shown the involvement of T and B cells in osteoclastogenesis and bone erosion in arthritic joints. Yet the biological link between immune cells and osteoblastic function remains ambiguous. This review will discuss the current knowledge regarding the role of immune cells in bone remodelling, and address its implications in emerging basic and clinical investigations into the pathogenesis and management of subchondral bone pathologies in OA.
Collapse
Affiliation(s)
- Adrian Weber
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Pok Man Boris Chan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
19
|
Lai Q, Liu Y, Huang L, Liu X, Yu X, Wang Q, Guo R, Zhu J, Cheng H, Dai M, Zhang B. Expression of adiponectin in the subchondral bone of lumbar facet joints with different degrees of degeneration. BMC Musculoskelet Disord 2017; 18:427. [PMID: 29100514 PMCID: PMC5670694 DOI: 10.1186/s12891-017-1786-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/24/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Osteoarthritis research has been most commonly performed in the setting of the articular cartilage of the knee. To the best of our knowledge, no studies have evaluated the role of adiponectin in osteoarthritis of the lumbar facet joint (FJOA). Therefore, in this study, we explored whether adiponectin was expressed in the lumbar facet joints and evaluated the role of adiponectin in FJOA. METHODS We enrolled patients who underwent lumbar computed tomography (CT) and magnetic resonance imaging (MRI) at the Orthopedic Department of the First Affiliated Hospital of Nanchang from May 2015 to June 2016. Lumbar facet joints were obtained from 135 patients at the time of lumbar fusion surgery and divided into three groups according to the Weishaupt grade. Cytokine levels in the subchondral bones were evaluated by enzyme-linked immunosorbent assays (ELISAs), and adiponectin levels were determined by immunohistochemistry, western blotting, and quantitative polymerase chain reaction (qPCR). RESULTS By ELISA, adiponectin levels were examined in the subchondral bone for lumbar facet joint, and adiponectin was found to be negatively correlated with BMI in 52 patients (p < 0.001, r = -0.861). By immunohistochemistry analysis, adiponectin was found to be expressed in the subchondral bone of the lumbar facet, whereas the cartilage area was negative for adiponectin expression. Immunostaining intensity and area was related to the degeneration of the lumbar facet joint, and, in our research, considerably decreased staining intensity and area were observed in more severely degenerated lumbar facet joints. Furthermore, the expression of adiponectin was also reduced in degenerated lumbar facet joints, and the level of decline corresponded to degeneration detected by western blotting and qPCR analysis (n = 27, p < 0.0001). CONCLUSIONS Adiponectin expression was observed in the subchondral bone of the lumbar facet joint and decreased as the degree of degeneration increased. Thus, the results of this study provide new insights into the relationship between adiponectin and osteoarthritis.
Collapse
Affiliation(s)
- Qi Lai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Yuan Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Leitao Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Xionglong Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jianghao Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Hanxiong Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China.,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China. .,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nangchang, Jiangxi, 330006, China. .,Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
20
|
Hügle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 2017; 56:1461-1471. [PMID: 28003493 DOI: 10.1093/rheumatology/kew389] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
Subchondral bone and the synovium play an important role in the initiation and progression of OA. MRI often permits an early detection of synovial hypertrophy and bone marrow lesions, both of which can precede cartilage damage. Newer imaging modalities including CT osteoabsorptiometry and hybrid SPECT-CT have underlined the importance of bone in OA pathogenesis. The subchondral bone in OA undergoes an uncoupled remodelling process, which is notably characterized by macrophage infiltration and osteoclast formation. Concomitant increased osteoblast activity leads to spatial remineralization and osteosclerosis in end-stage disease. A plethora of metabolic and mechanical factors can lead to synovitis in OA. Synovial tissue is highly vascularized and thus exposed to systemic influences such as hypercholesterolaemia or low grade inflammation. This review aims to describe the current understanding of synovitis and subchondral bone pathology and their connection in OA.
Collapse
Affiliation(s)
- Thomas Hügle
- Osteoarthritis Research Center Basel.,Department of Rheumatology
| | - Jeroen Geurts
- Osteoarthritis Research Center Basel.,Spine Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
21
|
Cao Y, Ni S, Wu T, Duan C, Liao S, Hu J. WITHDRAWN: 3D visualization and pathological characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an Ovariectomized mouse model. Spine J 2017:S1529-9430(17)30322-4. [PMID: 28713051 DOI: 10.1016/j.spinee.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.spinee.2017.11.009. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China.
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China.
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha, 410008, China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China; The Key Laboratory of Organ Damage, Aging and Reproductive Medicine of Hunan Province, Changsha, Hunan, PR China
| |
Collapse
|
22
|
Amudong A, Muheremu A, Abudourexiti T. Hypertrophy of the ligamentum flavum and expression of transforming growth factor beta. J Int Med Res 2017. [PMID: 28635357 PMCID: PMC5805210 DOI: 10.1177/0300060517711308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective To explore the relationship between cellular apoptosis and hypertrophy of the
ligamentum flavum in the lumbar region. Methods Thirty patients with lumbar spinal stenosis were evaluated. Hypertrophy of
the ligamentum flavum was present in 15 patients and absent in 15.
Hematoxylin–eosin staining and transforming growth factor beta (TGF-β)
immunohistochemical testing were applied to compare these two groups. Results Derangement of fibrous alignment, fibrocartilage changes, and infiltration of
inflammatory cells were observed in the patients with hypertrophy of the
ligamentum flavum, while fibrous alignment was normal and few inflammatory
cells were observed in patients without hypertrophy. Immunohistochemical
studies showed positive expression of TGF-β in patients with hypertrophy,
while expression was negative in patients without hypertrophy. The
integrated optical density was 2.6556708 in the hypertrophy group and
23104671 in the normal controls. Conclusions Expression of TGF-β was closely related to hypertrophy of the ligamentum
flavum. Appropriate application of the TGF-β expression level can be used to
predict progression of hypertrophy of the ligamentum flavum.
Collapse
Affiliation(s)
- Aierken Amudong
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Xinjiang Urumqi, China
| | - Aikeremujiang Muheremu
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Xinjiang Urumqi, China
| | - Tuerhongjiang Abudourexiti
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Xinjiang Urumqi, China
| |
Collapse
|
23
|
GEORG-SCHMORL-PRIZE OF THE GERMAN SPINE SOCIETY (DWG) 2016: Comparison of in vitro osteogenic potential of iliac crest and degenerative facet joint bone autografts for intervertebral fusion in lumbar spinal stenosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1408-1415. [PMID: 28324211 DOI: 10.1007/s00586-017-5020-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/25/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The promotion of spinal fusion using bone autografts is largely mediated by the osteoinductive potential of progenitors/mesenchymal stem cells (MSC) that reside in the marrow spaces of cancellous bone. Iliac crest is the common autograft donor site, but its use presents an increased risk for donor site pain, morbidity and infection. Degenerative bone samples harvested during facetectomy might provide an alternative viable source of osteoinductive autografts. In this study, we conducted an intra-individual comparison of the osteogenic potential of isolated low passage MSC from both sources. METHODS Iliac crest and degenerative facet joints were harvested from eight consecutive patients undergoing transforaminal lumbar interspinal fusion due to lumbar spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers. RESULTS Average colony-forming efficiency in osteogenic medium was equal between iliac crest (38 ± 12%) and facet joint (36 ± 11%). Osteogenic potential at the clonal level was 55 ± 26 and 68 ± 17% for iliac crest and facet joint MSC, respectively. Clonogenic and osteogenic potential were significantly negatively associated with donor age. Osteogenic differentiation led to significant induction of ALP activity in iliac crest (sixfold) and facet joint (eightfold) MSC. Matrix mineralization quantified by Alizarin red staining was increased by osteogenic differentiation, yet similar between both MSC sources. Protein expression of type I collagen was enhanced during osteogenesis and significantly greater in iliac crest MSC. Correspondingly, COL1A2 mRNA expression was higher in osteogenically differentiated MSC from iliac crest. Adipocyte numbers showed significant differences between iliac crest (63 ± 60) and facet joint (18 ± 15) MSC under osteogenic conditions. Negative (GREM1) and positive (FABP4) adipogenic markers were not differentially expressed between sources. CONCLUSION MSC from iliac crest and degenerative facet joints largely display similar clonogenic and osteogenic properties in vitro. Differences at the molecular level are not likely to impair the osteoinductive capacity of facet joint MSC. Bone autografts from facetectomy would be viable alternatives as bone autografts for intervertebral spinal fusion in lumbar spinal stenosis.
Collapse
|
24
|
Iatridis JC, Kang J, Kandel R, Risbud MV. New Horizons in Spine Research: Disc biology, spine biomechanics and pathomechanisms of back pain. J Orthop Res 2016; 34:1287-8. [PMID: 27571441 PMCID: PMC5072778 DOI: 10.1002/jor.23375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James Kang
- Department of Orthopedic
Surgery, Brigham and Women’s Hospital, Boston, MA 02115
| | - Rita Kandel
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario, Canada M5G1X5
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|