1
|
Lee DH, Park KS, Shin HE, Kim SB, Choi H, An SB, Choi H, Kim JP, Han I. Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. Int J Mol Sci 2023; 24:16827. [PMID: 38069151 PMCID: PMC10706656 DOI: 10.3390/ijms242316827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Functionally enhanced mesenchymal stromal cells participate in the repair of intervertebral disc. This study aimed to assess the safety and tolerability of intradiscal administration of matrilin-3-primed adipose-derived stromal cell (ASC) spheroids with hyaluronic acid (HA) in patients with chronic discogenic low back pain (LBP). In this single-arm, open-label phase I clinical trial, eight patients with chronic discogenic LBP were observed over 6 months. Each patient underwent a one-time intradiscal injection of 1 mL of 6.0 × 106 cells/disc combined with HA under real-time fluoroscopic guidance. Safety and feasibility were gauged using Visual Analogue Scale (VAS) pain and Oswestry Disability Index (ODI) scores and magnetic resonance imaging. All participants remained in the trial, with no reported adverse events linked to the procedure or stem cells. A successful outcome-marked by a minimum 2-point improvement in the VAS pain score and a 10-point improvement in ODI score from the start were observed in six participants. Although the modified Pfirrmann grade remained consistent across all participants, radiological improvements were evident in four patients. Specifically, two patients exhibited reduced high-intensity zones while another two demonstrated decreased disc protrusion. In conclusion, the intradiscal application of matrilin-3-primed ASC spheroids with HA is a safe and feasible treatment option for chronic discogenic LBP.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Neurosurgery, Spine Center, The Leon Wiltse Memorial Hospital, Suwon 16480, Republic of Korea;
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Hae Eun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyejeong Choi
- Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Joo Pyung Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| |
Collapse
|
2
|
Chen Z, Lv Z, Zhuang Y, Saiding Q, Yang W, Xiong W, Zhang Z, Chen H, Cui W, Zhang Y. Mechanical Signal-Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300180. [PMID: 37230467 DOI: 10.1002/adma.202300180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The aberrant mechanical microenvironment in degenerated tissues induces misdirection of cell fate, making it challenging to achieve efficient endogenous regeneration. Herein, a hydrogel microsphere-based synthetic niche with integrated cell recruitment and targeted cell differentiation properties via mechanotransduction is constructed . Through the incorporation of microfluidics and photo-polymerization strategies, fibronectin (Fn) modified methacrylated gelatin (GelMA) microspheres are prepared with the independently tunable elastic modulus (1-10Kpa) and ligand density (2 and 10 µg mL-1 ), allowing a wide range of cytoskeleton modulation to trigger the corresponding mechanobiological signaling. The combination of the soft matrix (2Kpa) and low ligand density (2 µg mL-1 ) can support the nucleus pulposus (NP)-like differentiation of intervertebral disc (IVD) progenitor/stem cells by translocating Yes-associated protein (YAP), without the addition of inducible biochemical factors. Meanwhile, platelet-derived growth factor-BB (PDGF-BB) is loaded onto Fn-GelMA microspheres (PDGF@Fn-GelMA) via the heparin-binding domain of Fn to initiate endogenous cell recruitment. In in vivo experiments, hydrogel microsphere-niche maintained the IVD structure and stimulated matrix synthesis. Overall, this synthetic niche with cell recruiting and mechanical training capabilities offered a promising strategy for endogenous tissue regeneration.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Zhendong Lv
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
3
|
Kasamkattil J, Gryadunova A, Schmid R, Gay-Dujak MHP, Dasen B, Hilpert M, Pelttari K, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Front Bioeng Biotechnol 2023; 11:1119009. [PMID: 36865027 PMCID: PMC9971624 DOI: 10.3389/fbioe.2023.1119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raphael Schmid
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Max Hans Peter Gay-Dujak
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,Department of Biomedicine, Institute of Anatomy, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Morgane Hilpert
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,*Correspondence: Olga Krupkova,
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Hu J, Li C, Jin S, Ye Y, Fang Y, Xu P, Zhang C. Salvianolic acid B combined with bone marrow mesenchymal stem cells piggybacked on HAMA hydrogel re-transplantation improves intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:950625. [PMID: 36237221 PMCID: PMC9552300 DOI: 10.3389/fbioe.2022.950625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-based tissue engineering approaches have emerged as a realistic alternative for regenerative disc tissue repair. The multidirectional differentiation potential of bone marrow mesenchymal stem cells (BMSCs) to treat disc degeneration intervertebral disc degeneration has also become a viable option. We used 1% HAMA hydrogel as a carrier and co-encapsulated BMSCs and Salvianolic acid B (SalB) into the hydrogel to reduce the apoptosis of the transplanted cells. The protective effect of SalB on BMSCs was first verified in vitro using the CCK8 method, flow cytometry, and Western-Blotting, and the physical properties and biocompatibility of HAMA hydrogels were verified in vitro. The rat model was then established using the pinprick method and taken at 4 and 8 W, to examine the extent of disc degeneration by histology and immunohistochemistry, respectively. It was found that SalB could effectively reduce the apoptosis of BMSCs in vitro by activating the JAK2-STAT3 pathway. 1% HAMA hydrogels had larger pore size and better water retention, and the percentage of cell survival within the hydrogels was significantly higher after the addition of SalB to the HAMA hydrogels. In the in vivo setting, the HAMA + SalB + BMSCs group had a more pronounced delaying effect on the progression of disc degeneration compared to the other treatment groups. The method used in this study to encapsulate protective drugs with stem cells in a hydrogel for injection into the lesion has potential research value in the field of regenerative medicine.
Collapse
Affiliation(s)
- Jie Hu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Cai Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Shichang Jin
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuchen Ye
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuekun Fang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Panpan Xu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Changchun Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Changchun Zhang,
| |
Collapse
|
5
|
Combination of ultra-purified stem cells with an in situ-forming bioresorbable gel enhances intervertebral disc regeneration. EBioMedicine 2022; 76:103845. [PMID: 35085848 PMCID: PMC8801983 DOI: 10.1016/j.ebiom.2022.103845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Background Lumbar intervertebral disc (IVD) herniations are associated with significant disability. Discectomy is the conventional treatment option for IVD herniations but causes a defect in the IVD, which has low self-repair ability, thereby representing a risk of further IVD degeneration. An acellular, bioresorbable, and good manufacturing practice (GMP)-compliant in situ-forming gel, which corrects discectomy-associated IVD defects and prevents further IVD degeneration had been developed. However, this acellular matrix-based strategy has certain limitations, particularly in elderly patients, whose tissues have low self-repair ability. The aim of this study was to investigate the therapeutic efficacy of using a combination of newly-developed, ultra-purified, GMP-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs) and the gel for IVD regeneration after discectomy in a sheep model of severe IVD degeneration. Methods RECs and nucleus pulposus cells (NPCs) were co-cultured in the gel. In addition, RECs combined with the gel were implanted into IVDs following discectomy in sheep with degenerated IVDs. Findings Gene expression of NPC markers, growth factors, and extracellular matrix increased significantly in the co-culture compared to that in each mono-culture. The REC and gel combination enhanced IVD regeneration after discectomy (up to 24 weeks) in the severe IVD degeneration sheep model. Interpretation These findings demonstrate the translational potential of the combination of RECs with an in situ-forming gel for the treatment of herniations in degenerative human IVDs. Funding Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
|
6
|
Krut Z, Pelled G, Gazit D, Gazit Z. Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration. Cells 2021; 10:cells10092241. [PMID: 34571890 PMCID: PMC8471333 DOI: 10.3390/cells10092241] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) occurs as a result of an imbalance of the anabolic and catabolic processes in the intervertebral disc, leading to an alteration in the composition of the extracellular matrix (ECM), loss of nucleus pulposus (NP) cells, excessive oxidative stress and inflammation. Degeneration of the IVD occurs naturally with age, but mechanical trauma, lifestyle factors and certain genetic abnormalities can increase the likelihood of symptomatic disease progression. IVDD, often referred to as degenerative disc disease (DDD), poses an increasingly substantial financial burden due to the aging population and increasing incidence of obesity in the United States. Current treatments for IVDD include pharmacological and surgical interventions, but these lack the ability to stop the progression of disease and restore the functionality of the IVD. Biological therapies have been evaluated but show varying degrees of efficacy in reversing disc degeneration long-term. Stem cell-based therapies have shown promising results in the regeneration of the IVD, but face both biological and ethical limitations. Exosomes play an important role in intercellular communication, and stem cell-derived exosomes have been shown to maintain the therapeutic benefit of their origin cells without the associated risks. This review highlights the current state of research on the use of stem-cell derived exosomes in the treatment of IVDD.
Collapse
Affiliation(s)
- Zoe Krut
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
7
|
Speer J, Barcellona M, Jing L, Liu B, Lu M, Kelly M, Buchowski J, Zebala L, Luhmann S, Gupta M, Setton L. Integrin-mediated interactions with a laminin-presenting substrate modulate biosynthesis and phenotypic expression for cells of the human nucleus pulposus. Eur Cell Mater 2021; 41:793-810. [PMID: 34160056 PMCID: PMC8378851 DOI: 10.22203/ecm.v041a50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
With aging and pathology, cells of the nucleus pulposus (NP) de-differentiate towards a fibroblast-like phenotype, a change that contributes to degeneration of the intervertebral disc (IVD). Laminin isoforms are a component of the NP extracellular matrix during development but largely disappear in the adult NP tissue. Exposing human adult NP cells to hydrogels made from PEGylated-laminin-111 (PEGLM) has been shown to regulate NP cell behaviors and promote cells to assume a biosynthetically active state with gene/protein expression and morphology consistent with those observed in juvenile NP cells. However, the mechanism regulating this effect has remained unknown. In the present study, the integrin subunits that promote adult degenerative NP cell interactions with laminin-111 are identified by performing integrin blocking studies along with assays of intracellular signaling and cell phenotype. The findings indicate that integrin α3 is a primary regulator of cell attachment to laminin and is associated with phosphorylation of signaling molecules downstream of integrin engagement (ERK 1/2 and GSK3β). Sustained effects of blocking integrin α3 were also demonstrated including decreased expression of phenotypic markers, reduced biosynthesis, and altered cytoskeletal organization. Furthermore, blocking both integrin α3 and additional integrin subunits elicited changes in cell clustering, but did not alter the phenotype of single cells. These findings reveal that integrin- mediated interactions through integrin α3 are critical in the process by which NP cells sense and alter phenotype in response to culture upon laminin and further suggest that targeting integrin α3 has potential for reversing or slowing degenerative changes to the NP cell.
Collapse
Affiliation(s)
- J. Speer
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - L. Jing
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - B. Liu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Lu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Kelly
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - J. Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Zebala
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - S. Luhmann
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - M. Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Setton
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA,Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA,Address for correspondence: Dr. Lori A. Setton, Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA. Telephone number: +1 3149356164,
| |
Collapse
|
8
|
A Hyaluronan and Platelet-Rich Plasma Hydrogel for Mesenchymal Stem Cell Delivery in the Intervertebral Disc: An Organ Culture Study. Int J Mol Sci 2021; 22:ijms22062963. [PMID: 33803999 PMCID: PMC7999916 DOI: 10.3390/ijms22062963] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present pilot study was to evaluate the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) as a carrier for human mesenchymal stem cells (hMSCs) for intervertebral disc (IVD) regeneration using a disc organ culture model. HA was mixed with batroxobin (BTX) and PRP to form a hydrogel encapsulating 1 × 106 or 2 × 106 hMSCs. Bovine IVDs were nucleotomized and filled with hMSCs suspended in ~200 μL of the PRP/HA/BTX hydrogel. IVDs collected at day 0 and nucleotomized IVDs with no hMSCs and/or hydrogel alone were used as controls. hMSCs encapsulated in the hydrogel were also cultured in well plates to evaluate the effect of the IVD environment on hMSCs. After 1 week, tissue structure, scaffold integration, hMSC viability and gene expression of matrix and nucleus pulposus (NP) cell markers were assessed. Histological analysis showed a better preservation of the viability of the IVD tissue adjacent to the gel in the presence of hMSCs (~70%) compared to the hydrogel without hMSCs. Furthermore, disc morphology was maintained, and the hydrogel showed signs of integration with the surrounding tissues. At the gene expression level, the hydrogel loaded with hMSCs preserved the normal metabolism of the tissue. The IVD environment promoted hMSC differentiation towards a NP cell phenotype by increasing cytokeratin-19 (KRT19) gene expression. This study demonstrated that the hydrogel composed of HA/PRP/BTX represents a valid carrier for hMSCs being able to maintain a good cell viability while stimulating cell activity and NP marker expression.
Collapse
|
9
|
Zhang Y, Hu Y, Wang W, Guo Z, Yang F, Cai X, Xiong L. Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Front Bioeng Biotechnol 2021; 8:629088. [PMID: 33553131 PMCID: PMC7862573 DOI: 10.3389/fbioe.2020.629088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentian Wang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Guo
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc. Int J Mol Sci 2020; 21:ijms21249423. [PMID: 33322051 PMCID: PMC7763454 DOI: 10.3390/ijms21249423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix (ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR), immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched the percentage of Tie2+ in NPCs’ population from ~10% to ~36%. Moreover, the spheroid-formation assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture system could be successfully applied to the culture and expansion of tissue-specific progenitors.
Collapse
|
11
|
Exosomes Derived from Human Urine-Derived Stem Cells Inhibit Intervertebral Disc Degeneration by Ameliorating Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6697577. [PMID: 33488928 PMCID: PMC7787770 DOI: 10.1155/2020/6697577] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at determining the effects of human urine-derived stem cell-derived exosomes (USCs-exos) on pressure-induced nucleus pulposus cell (NPC) apoptosis and intervertebral disc degeneration (IDD) and on the ERK and AKT signaling pathways. Methods The NPCs were obtained from patients with herniated lumbar discs. Western blot analysis (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine endoplasmic reticulum (ER) stress levels of NPCs under stress. Human USCs were identified using an inverted microscope, three-line differentiation experiments, and flow cytometry. A transmission microscope, nanoparticle size analysis, and WB procedures were used to identify the extracted exosomes and observe NPC uptake. A control group, a 48 h group, and a USCs-exos group were established. The control group was untreated, and the 48 h group was pressure-trained for 48 h, while the USCs-exos group was pressure-trained for 48 h and treated with USCs-exos. WB, qRT-PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis were used to determine the ER stress levels in stress conditions and after exosomal treatment. The AKT and ERK pathways were partially detected. Magnetic Resonance Imaging (MRI) and computed tomography (CT) were used to evaluate cell degeneration while exosomal effects on the intervertebral disc (IVD) tissue were determined by hematoxylin and eosin (HE) staining, Safranin O-fast green staining, immunohistochemical staining (IHC), nuclear magnetic resonance (NMR), spectrometric detection, and total correlation spectroscopy (TOCSY). IVD metabolites were also identified and quantified. Results After pressure culture, ER stress markers (GRP78 and C/EBP homologous protein (CHOP)) in the NPCs were significantly elevated with time (p < 0.05). Human USCs are short and spindle-shaped. They can successfully undergo osteogenic, adipogenic, and chondrogenic differentiation. In this study, these stem cells were found to be positive for CD29, CD44, and CD73. The exosomes were centrally located with a diameter of 50-100 nm. CD63 and Tsg101 were highly expressed while the expression of Calnexin was suppressed. The exosomes can be ingested by NPCs. USCs-exos significantly improved ER stress responses and inhibited excessive activation of the unfolded protein response (UPR) as well as cell apoptosis and disc degeneration through the AKT and ERK signaling pathways (p < 0.05). Conclusion Through the AKT and ERK signaling pathways, USCs-exos significantly inhibit ER stress-induced cell apoptosis and IDD under pressure conditions. It is, therefore, a viable therapeutic strategy.
Collapse
|
12
|
Dregalla RC, Uribe Y, Bodor M. Human mesenchymal stem cells respond differentially to platelet preparations and synthesize hyaluronic acid in nucleus pulposus extracellular matrix. Spine J 2020; 20:1850-1860. [PMID: 32565315 DOI: 10.1016/j.spinee.2020.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT In recent years, autologous platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) have been used as treatments for disc-related pain. A better understanding of the effects of leukocyte-rich (LR) versus leukocyte poor (LP-) PRP on bone marrow derived human mesenchymal stem/progenitor cells (hMSCs) is likely to improve future research studies, clinical practice and care for patients with chronic discogenic back pain. PURPOSE The primary aim of this study is to determine the effects of LR-PRP and LP-PRP on the proliferation and migration of hMSCs in pig nucleus pulposus (NP) extracellular matrix (ECM). The secondary aim is to characterize hMSC-dependent expression of the matrix remodeling enzymes metalloproteinases MMP-2, MMP-3, MMP-9 and tissue inhibitor of metalloproteinases TIMP-2, and to determine whether transplanted hMSCs can synthesize hyaluronic acid (HA). STUDY DESIGN Controlled laboratory study. METHODS Bone marrow-derived culture expanded hMSCs were seeded onto pig NP and cultured with LR-PRP, LP-PRP or serum/platelet releasate (PR). The same conditions without hMSCs were used as controls. hMSC proliferation, migration and dispersion was assessed via fluorescent microscopy, while HA synthesis, MMP-2, MMP-3, MMP-9, and TIMP-2 protein levels were assessed via enzyme linked immunosorbent assay. All funding was provided by a 501c(3) research foundation and does not have any commercial or sponsorship interests. RESULTS LP-PRP and PR cultures resulted in higher hMSC proliferation, migration, dispersion, and MMP-2 expression. LP-PRP cultures resulted in the highest HA production. LR-PRP cultures resulted in lower hMSC proliferation, negligible migration and dispersion, increased MMP-9 expression and lower HA production. CONCLUSIONS Human bone marrow-derived hMSCs seeded onto pig NP ECM are capable of synthesizing HA, indicating a transition towards a NP cell phenotype. This process was most enhanced by LP-PRP and marked by increased hMSC proliferation, MMP-2 production, HA synthesis and reduced MMP-9 levels. CLINICAL SIGNIFICANCE LP-PRP and PR, with or without hMSCs, may provide better outcomes than LR-PRP in lab investigations and clinical trials for discogenic pain. Bone marrow-derived hMSCs may hold promise as a treatment for disc degeneration.
Collapse
Affiliation(s)
- Ryan C Dregalla
- Napa Medical Research Foundation, 3421 Villa Lane, Suite 2C, Napa, CA, USA
| | - Yvette Uribe
- Napa Medical Research Foundation, 3421 Villa Lane, Suite 2C, Napa, CA, USA
| | - Marko Bodor
- Napa Medical Research Foundation, 3421 Villa Lane, Suite 2C, Napa, CA, USA; Bodor Clinic, 3421 Villa Lane, Suite 2B, Napa, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
13
|
Yan HS, Hang C, Chen SW, Wang KK, Bo P. Salvianolic acid B combined with mesenchymal stem cells contributes to nucleus pulposus regeneration. Connect Tissue Res 2020; 61:435-444. [PMID: 31023105 DOI: 10.1080/03008207.2019.1611794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate whether salvianolic acid B is able to enhance repair of degenerated intervertebral discs by mesenchymal stem cells (MSCs) through the promotion of MSC differentiation into nucleus pulposus cells in a nucleus-pulposus-like environment and by enhancing the trophic effect of MSCs on residual nucleus pulposus cells (mediated by transforming growth factor-β1). MATERIALS AND METHODS Successful intervertebral disc degeneration models, established by aspiration of the nucleus pulposus in New Zealand white rabbits, were randomly divided into eight groups: Group A was treated with MSC transplantation. Group B was treated with MSC transplantation and salvianolic acid B, with the subgroups B1, B2, B3, and B4 receiving 0.01 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L salvianolic acid B, respectively. Groups C and D were treated with phosphate buffer saline and sham graft, respectively. Group E was the normal control group. At the end of week 8, the type II collagen, proteoglycan, transforming growth factor-β1, and water contents in each group were examined by semi-quantitative immunohistochemistry, spectrophotometry, enzyme-linked immunosorbent assay, and magnetic resonance, respectively. RESULTS The content of type II collagen, proteoglycan, transforming growth factor-β1, and water in groups B3 and B4 were significantly higher than those in group A (p < 0.01). CONCLUSIONS Salvianolic acid B (1 mg/L to 10 mg/L) plus MSC transplantation was more effective in repairing degenerated intervertebral discs than was stem cell transplantation alone.
Collapse
Affiliation(s)
- Hui-Shen Yan
- Medical College, Yangzhou University , Yangzhou, China.,Department of Medical Science, Yangzhou Polytechnic College , Yangzhou, China
| | - Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University , Suzhou, China
| | - Shu-Wen Chen
- Department of Mathematics and Information Technology, Jiangsu Second Normal University , Nanjing, China
| | - Ke-Ke Wang
- Department of Medical Science, Yangzhou Polytechnic College , Yangzhou, China
| | - Ping Bo
- Medical College, Yangzhou University , Yangzhou, China
| |
Collapse
|
14
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|
15
|
Ukeba D, Sudo H, Tsujimoto T, Ura K, Yamada K, Iwasaki N. Bone marrow mesenchymal stem cells combined with ultra-purified alginate gel as a regenerative therapeutic strategy after discectomy for degenerated intervertebral discs. EBioMedicine 2020; 53:102698. [PMID: 32143180 PMCID: PMC7057222 DOI: 10.1016/j.ebiom.2020.102698] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Because the regenerative ability of intervertebral discs (IVDs) is restricted, defects caused by discectomy may induce insufficient tissue repair leading to further IVD degeneration. An acellular bioresorbable biomaterial based on ultra-purified alginate (UPAL) gel was developed to fill the IVD cavity and prevent IVD degeneration. However, an acellular matrix-based strategy may have limitations, particularly in the elderly population, who exhibit low self-repair capability. Therefore, further translational studies involving product combinations, such as UPAL gel plus bone marrow-derived mesenchymal stem cells (BMSCs), are required to evaluate the regenerative effects of BMSCs embedded in UPAL gel on degenerated IVDs. METHODS Rabbit BMSCs and nucleus pulposus cells (NPCs) were co-cultured in a three-dimensional (3D) system in UPAL gel. In addition, rabbit or human BMSCs combined with UPAL gel were implanted into IVDs following partial discectomy in rabbits with degenerated IVDs. FINDINGS Gene expression of NPC markers, growth factors, and extracellular matrix was significantly increased in the NPC and BMSC 3D co-culture compared to that in each 3D mono-culture. In vivo, whereas UPAL gel alone suppressed IVD degeneration as compared to discectomy, the combination of BMSCs and UPAL gel exerted a more potent effect to induce IVD regeneration. Similar IVD regeneration was observed using human BMSCs. INTERPRETATION These findings demonstrate the therapeutic potential of BMSCs combined with UPAL gel as a regenerative strategy following discectomy for degenerated IVDs. FUNDING Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
Affiliation(s)
- Daisuke Ukeba
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideki Sudo
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan; Faculty of Medicine and Graduate of Medicine, Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Takeru Tsujimoto
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuro Ura
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuhisa Yamada
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan; Faculty of Medicine and Graduate of Medicine, Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
16
|
Diaz-Rodriguez P, Erndt-Marino J, Chen H, Diaz-Quiroz JF, Samavedi S, Hahn MS. A Bioengineered In Vitro Osteoarthritis Model with Tunable Inflammatory Environments Indicates Context-Dependent Therapeutic Potential of Human Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Ma K, Chen S, Li Z, Deng X, Huang D, Xiong L, Shao Z. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage 2019; 27:41-48. [PMID: 30243946 DOI: 10.1016/j.joca.2018.08.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 02/02/2023]
Abstract
Intervertebral disc (IVD) degeneration is frequently associated with Low back pain (LBP), which can severely reduce the quality of human life and cause enormous economic loss. However, there is a lack of long-lasting and effective therapies for IVD degeneration at present. Recently, stem cell based tissue engineering techniques have provided novel and promising treatment for the repair of degenerative IVDs. Numerous studies showed that stem/progenitor cells exist naturally in IVDs and could migrate from their niche to the IVD to maintain the quantity of nucleus pulposus (NP) cells. Unfortunately, these endogenous repair processes cannot prevent IVD degeneration as effectively as expected. Therefore, theoretical basis for regeneration of the NP in situ can be obtained from studying the mechanisms of endogenous repair failure during IVD degeneration. Although there have been few researches to study the mechanism of cell death and migration of stem/progenitor cells in IVD so far, studies demonstrated that the major inducing factors (compression and hypoxia) of IVD degeneration could decrease the number of NP cells by regulating apoptosis, autophagy, and necroptosis, and the particular chemokines and their receptors played a vital role in the migration of mesenchymal stem cells (MSCs). These studies provide a clue for revealing the mechanisms of endogenous repair failure during IVD degeneration. This article reviewed the current research situation and progress of the mechanisms through which IVD stem/progenitor cells failed to repair IVD tissues during IVD degeneration. Such studies provide an innovative research direction for endogenous repair and a new potential treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- K Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - D Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - L Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Mesenchymal Stem Cells Protect Nucleus Pulposus Cells from Compression-Induced Apoptosis by Inhibiting the Mitochondrial Pathway. Stem Cells Int 2017; 2017:9843120. [PMID: 29387092 PMCID: PMC5745742 DOI: 10.1155/2017/9843120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/21/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Objective Excessive apoptosis of nucleus pulposus cells (NPCs) induced by various stresses, including compression, contributes to the development of intervertebral disc degeneration (IVDD). Mesenchymal stem cells (MSCs) can benefit the regeneration of NPCs and delay IVDD, but the underlying molecular mechanism is poorly understood. This study aimed to evaluate the antiapoptosis effects of bone marrow-derived MSC (BMSC) on rat NPCs exposed to compression and investigate whether the mitochondrial pathway was involved. Methods BMSCs and NPCs were cocultured in the compression apparatus at 1.0 MPa for 36 h. Cell viability, apoptosis, mitochondrial function, and the expression of apoptosis-related proteins were evaluated. Results The results showed that coculturing with BMSCs increased the cell viability and reduced apoptosis of NPCs exposed to compression. Meanwhile, BMSCs could relieve the compression-induced mitochondrial damage of NPCs by decreasing reactive oxygen species level and maintaining mitochondrial membrane potential as well as mitochondrial integrity. Furthermore, coculturing with BMSCs suppressed the activated caspase-3 and activated caspase-9, decreased the expressions of cytosolic cytochrome c and Bax, and increased the expression of Bcl-2. Conclusions Our results suggest that BMSCs can protect against compression-induced apoptosis of NPCs by inhibiting the mitochondrial pathway and thus enhance our understanding on the MSC-based therapy for IVDD.
Collapse
|
19
|
Cheng X, Zhang G, Zhang L, Hu Y, Zhang K, Sun X, Zhao C, Li H, Li YM, Zhao J. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 2017; 22:261-276. [PMID: 28805297 PMCID: PMC5742691 DOI: 10.1111/jcmm.13316] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022] Open
Abstract
Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC‐derived exosomes (MSC‐exosomes) on NPC apoptosis and IVD degeneration and investigate the regulatory effect of miRNAs in MSC‐exosomes and associated mechanisms for NPC apoptosis. MSC‐exosomes were isolated from MSC medium, and its anti‐apoptotic effect was assessed in a cell and rat model. The down‐regulated miRNAs in apoptotic NPCs were identified, and their contents in MSC‐exosomes were detected. The target genes of eligible miRNAs and possible downstream pathway were investigated. Purified MSC‐exosomes were taken up by NPCs and suppressed NPC apoptosis. The levels of miR‐21 were down‐regulated in apoptotic NPCs while MSC‐exosomes were enriched in miR‐21. The exosomal miR‐21 could be transferred into NPCs and alleviated TNF‐α induced NPC apoptosis by targeting phosphatase and tensin homolog (PTEN) through phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Intradiscal injection of MSC‐exosomes alleviated the NPC apoptosis and IVD degeneration in the rat model. In conclusion, MSC‐derived exosomes prevent NPCs from apoptotic process and alleviate IVD degeneration, at least partly, via miR‐21 contained in exosomes. Exosomal miR‐21 restrains PTEN and thus activates PI3K/Akt pathway in apoptotic NPCs. Our work confers a promising therapeutic strategy for IVD degeneration.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Guoying Zhang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Liang Zhang
- Department of Orthopedics, Subei People's Hospital of Jiangsu Province, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Hu
- Department of Toxicity Evaluation, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Kai Zhang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaojiang Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqing Zhao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hua Li
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan Michael Li
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Peroglio M, Douma LS, Caprez TS, Janki M, Benneker LM, Alini M, Grad S. Intervertebral disc response to stem cell treatment is conditioned by disc state and cell carrier: An ex vivo study. J Orthop Translat 2017; 9:43-51. [PMID: 29662798 PMCID: PMC5822953 DOI: 10.1016/j.jot.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
In vitro and in vivo studies evidenced that mesenchymal stem cells (MSCs) contribute to intervertebral disc (IVD) regeneration by differentiation towards the disc phenotype and matrix synthesis and/or by paracrine signalling to endogenous cells, thereby promoting a healthier disc phenotype in degenerative discs. The aim of this study was to investigate IVD response to human MSC (hMSC) treatment based on the disc degenerative state and hMSC carrier. Bovine caudal IVDs with endplates were cultured in a bioreactor under simulated physiological (0.1 Hz load and sufficient glucose) or degenerative (10 Hz load and limited glucose) conditions for 7 days. Discs were partially nucleotomised, restored with hMSCs in either fibrin gel or saline solution and cultured under physiological conditions for 7 days. Controls included fibrin and saline without hMSCs. Cell viability, histology, disc height, and gene expression analyses were performed to evaluate regeneration. hMSCs in fibrin were viable and homogenously distributed following 7 days of culture under dynamic loading in partially nucleotomised discs. IVD response to hMSCs was conditioned by both disc degenerative state and hMSC carrier. The effect of the regenerative treatment was stronger on simulated-degenerative discs than on simulated-physiological discs. hMSCs in fibrin induced a superior anabolic response in degenerative IVDs compared with fibrin alone, thus suggesting an added value of the cellular therapy compared with an acellular solution. When comparing fibrin and saline as a hMSC carrier, a significantly higher anabolic response was observed in IVDs treated with hMSCs in fibrin. Moreover, it was found that the degenerative state of the disc influenced hMSC differentiation. Indeed, a significantly higher expression of specific discogenic markers (ACAN and CA12) was observed in hMSCs implanted into physiological discs than in those implanted into degenerative discs. In conclusion, host disc cells and donor hMSC response depend on the degenerative state of the host disc and carrier used for hMSC delivery, and these two aspects need to be considered for a successful translation of hMSC therapies for the treatment of IVD degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
21
|
Iatridis JC, Kang J, Kandel R, Risbud MV. New horizons in spine research: Intervertebral disc repair and regeneration. J Orthop Res 2017; 35:5-7. [PMID: 28114734 PMCID: PMC5482231 DOI: 10.1002/jor.23499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - James Kang
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Rita Kandel
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario M5G1X5, Canada
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|