1
|
Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z, Wang Z, Ning C, Li Q, Zhao H. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Biomater Res 2025; 29:0132. [PMID: 39844867 PMCID: PMC11751208 DOI: 10.34133/bmr.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Tendon/ligament-bone junctions (T/LBJs) are susceptible to damage during exercise, resulting in anterior cruciate ligament rupture or rotator cuff tear; however, their intricate hierarchical structure hinders self-regeneration. Multiphasic strategies have been explored to fuel heterogeneous tissue regeneration and integration. This review summarizes current multiphasic approaches for rejuvenating functional gradients in T/LBJ healing. Synthetic, natural, and organism-derived materials are available for in vivo validation. Both discrete and gradient layouts serve as sources of inspiration for organizing specific cues, based on the theories of biomaterial topology, biochemistry, mechanobiology, and in situ delivery therapy, which form interconnected network within the design. Novel engineering can be constructed by electrospinning, 3-dimensional printing, bioprinting, textiling, and other techniques. Despite these efforts being limited at present stage, multiphasic scaffolds show great potential for precise reproduction of native T/LBJs and offer promising solutions for clinical dilemmas.
Collapse
Affiliation(s)
- Kaiting Chen
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Xinying Zhou
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Wanyu Zheng
- School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zijian Yang
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| |
Collapse
|
2
|
Sasanuma H, Takahashi T, Kawai S, Saitsu A, Kurashina W, Iijima Y, Saito T, Takeshita K. Morphological and histological evaluation of the tendon-bone junction in porcine shoulders to create a rotator cuff tear and repair model. J Orthop Sci 2024; 29:1521-1527. [PMID: 38007298 DOI: 10.1016/j.jos.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND This study aimed to morphologically and histologically examine whether pig is useful as models for rotator cuff tear (RCT). METHODS The morphology of the scapula and humerus bones was evaluated by taking X-ray and three-dimensional computed tomography (3D CT) scans of the right shoulders of five female pigs (age: 4 months). The rotator cuff (RC) footprint at the humeral insertion of these was observed and its shape was measured. Next, they underwent general anesthesia and an acute rotator cuff tear/rotator cuff repair (RCT/RCR) model was created using a deltoid split approach. Four weeks after surgery, the animals were euthanized, the shoulder joints were harvested, and the repaired RC was evaluated by hematoxylin and eosin staining and toluidine blue staining. RESULTS The scapula of the pig had a vestigial acromion, in contrast to that in humans. The supraspinatus and infraspinatus tendons were connected so as to overlap each other and attached to the postero-superior part of the greater tuberosity. These tendons were located extra-articularly, separate from the joint capsule. The average antero-posterior length of the foot print was 17.4 ± 0.7 mm on the medial margin and 19.1 ± 2.2 mm on the lateral margin. The maximum medial-to-lateral width of it was 5.1 ± 0.5 mm. In all RCT/RCR models at 4 weeks after surgery, the repaired RC compound tendon was visually confirmed to be continuous with the footprint. Histologically, it was confirmed that regeneration of the four-layer structure of the bone-tendon junction had occurred. CONCLUSION Porcine supraspinatus and infraspinatus attachment to the greater tuberosity have a structure similar to that of sheep and dogs, which is advantageous for creating the RCT/RCR model. It might be used for future in vivo studies of shoulder joint diseases. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Pigs could potentially serve as a viable model for rotator cuff tears.
Collapse
Affiliation(s)
- Hideyuki Sasanuma
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Tsuneari Takahashi
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shigeo Kawai
- Tochigi Medical Center Shimotsuga, Department of Diagnostic Pathology, 420-1, Ohira, Tochigi, 329-4498, Japan
| | - Akihiro Saitsu
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Wataru Kurashina
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Iijima
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Tomohiro Saito
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Katsushi Takeshita
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
3
|
Huang S, Tam MY, Ho WHC, Wong HK, Zhou M, Zeng C, Xie D, Elmer Ker DF, Ling SK, Tuan RS, Wang DM. Establishing a rabbit model with massive supraspinatus tendon defect for investigating scaffold-assisted tendon repair. Biol Proced Online 2024; 26:31. [PMID: 39367314 PMCID: PMC11453025 DOI: 10.1186/s12575-024-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Shoulder pain and disability from rotator cuff tears remain challenging clinical problem despite advancements in surgical techniques and materials. To advance our understanding of injury progression and develop effective therapeutics using tissue engineering and regenerative medicine approaches, it is crucial to develop and utilize animal models that closely resemble the anatomy and display the pathophysiology of the human rotator cuff. Among various animal models, the rabbit shoulder defect model is particularly favored due to its similarity to human rotator cuff pathology. However, a standardized protocol for creating a massive rotator cuff defect in the rabbits is not well defined. Therefore, the objective of our study was to establish a robust and reproducible model of a rotator cuff defect to evaluate the regenerative efficacy of scaffolds. RESULTS In our study, we successfully developed a rabbit model with a massive supraspinatus tendon defect that closely resembles the common rotator cuff injuries observed in humans. This defect involved a complete transection of the tendon, spanning 10 mm in length and encompassing its full thickness and width. To ensure stable scaffolding, we employed an innovative bridging suture technique that utilized a modified Mason-Allen suture as a structural support. Moreover, to assess the therapeutic effectiveness of the model, we utilized different scaffolds, including a bovine tendon extracellular matrix (ECM) scaffold and a commercial acellular dermal matrix (ADM) scaffold. Throughout the observation period, no scaffold damage was observed. Notably, comprehensive histological analysis demonstrated that the regenerative tissue in the tendon ECM scaffold group exhibited an organized and aligned fiber structure, indicating tendon-like tissue regeneration while the tissue in the ADM group showed comparatively less organization. CONCLUSIONS This study presents a comprehensive description of the implemented procedures for the development of a highly reproducible animal model that induces massive segmental defects in rotator cuff tendons. This protocol can be universally implemented with alternative scaffolds to investigate extensive tendon defects and evaluate the efficacy of regenerative treatments. The application of our animal model offers a standardized and reproducible platform, enabling researchers to systematically evaluate, compare, and optimize scaffold designs. This approach holds significant importance in advancing the development of tissue engineering strategies for effectively repairing extensive tendon defects.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Ming Yik Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Hon Caleb Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Ki Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Zhou
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Samuel Kk Ling
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Durtschi MS, Kim S, Li J, Kim C, Chu C, Cheung E, Safran M, Abrams G, Yang YP. Optimizing Tissue Engineering for Clinical Relevance in Rotator Cuff Repair. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:559-569. [PMID: 38411502 DOI: 10.1089/ten.teb.2023.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Rotator cuff tear (RCT) is the most common cause of disability in the upper extremity. It results in 4.5 million physician visits in the United States every year and is the most common etiology of shoulder conditions evaluated by orthopedic surgeons. Over 460,000 RCT repair surgeries are performed in the United States annually. Rotator cuff (RC) retear and failure to heal remain significant postoperative complications. Literature suggests that the retear rates can range from 29.5% to as high as 94%. Weakened and irregular enthesis regeneration is a crucial factor in postsurgical failure. Although commercially available RC repair grafts have been introduced to augment RC enthesis repair, they have been associated with mixed clinical outcomes. These grafts lack appropriate biological cues such as stem cells and signaling molecules at the bone-tendon interface. In addition, they do little to prevent fibrovascular scar tissue formation, which causes the RC to be susceptible to retear. Advances in tissue engineering have demonstrated that mesenchymal stem cells (MSCs) and growth factors (GFs) enhance RC enthesis regeneration in animal models. These models show that delivering MSCs and GFs to the site of RCT enhances native enthesis repair and leads to greater mechanical strength. In addition, these models demonstrate that MSCs and GFs may be delivered through a variety of methods including direct injection, saturation of repair materials, and loaded microspheres. Grafts that incorporate MSCs and GFs enhance anti-inflammation, osteogenesis, angiogenesis, and chondrogenesis in the RC repair process. It is crucial that the techniques that have shown success in animal models are incorporated into the clinical setting. A gap currently exists between the promising biological factors that have been investigated in animal models and the RC repair grafts that can be used in the clinical setting. Future RC repair grafts must allow for stable implantation and fixation, be compatible with current arthroscopic techniques, and have the capability to deliver MSCs and/or GFs.
Collapse
Affiliation(s)
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Jiannan Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Constance Chu
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Emilie Cheung
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Marc Safran
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Geoff Abrams
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Material Science and Engineering, and Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Villarreal-Espinosa JB, Berreta RS, Boden SA, Khan ZA, Carter AJ, Cole BJ, Verma NN. Inlay Scaffold Augmentation of Rotator Cuff Repairs Enhances Histologic Resemblance to Native Enthesis in Animal Studies: A Systematic Review. Arthroscopy 2024:S0749-8063(24)00499-7. [PMID: 39029812 DOI: 10.1016/j.arthro.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE To investigate the outcomes of inlay positioned scaffolds for rotator cuff healing and regeneration of the native enthesis after augmentation of rotator cuff tendon repairs in preclinical studies. METHODS A literature search was performed using the PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature databases according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Preclinical studies reporting on outcomes after inlay tendon augmentation in rotator cuff repair were included. Preclinical study quality was assessed using an adapted version of the Gold Standard Publication Checklist for animal studies. The level of evidence was defined based on the inclusion of clinical analyses (grade A), biomechanical analyses (grade B), biochemical analyses (grade C), semiquantitative analyses (grade D), and qualitative histologic analyses (grade E). RESULTS Thirteen preclinical studies met the inclusion criteria. Quality assessment scores ranged from 4 to 8 points, and level-of-evidence grades ranged from B to E. Sheep/ewes were the main animal rotator cuff tear model used (n = 7). Demineralized bone matrix or demineralized cortical bone was the most commonly investigated scaffold (n = 6). Most of the preclinical evidence (n = 10) showed qualitative or quantitative differences regarding histologic, biomechanical, and biochemical outcomes in favor of interpositional scaffold augmentation of cuff repairs in comparison to controls. CONCLUSIONS Inlay scaffold positioning in preclinical studies has been shown to enhance the healing biology of the enthesis while providing histologic similarities to its native 4-zone configuration. CLINICAL RELEVANCE Although onlay positioned grafts and scaffolds have shown mixed results in preclinical and early clinical studies, inlay scaffolds may provide enhanced healing and structural support in comparison owing to the ability to integrate with the bone-tendon interface.
Collapse
Affiliation(s)
| | - Rodrigo Saad Berreta
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Stephanie A Boden
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois, U.S.A
| | | | - Andrew J Carter
- Prince of Wales Clinical School, UNSW Medicine at the University of New South Wales, Sydney, Australia
| | - Brian J Cole
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Nikhil N Verma
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois, U.S.A..
| |
Collapse
|
6
|
Zhang K, Zhang P, Shi G, Wang L, Sun C, Xiang W. Tendon extracellular-matrix-derived tissue engineering micro-tissue for Achilles tendon injury regeneration in rats. J Orthop Surg Res 2024; 19:377. [PMID: 38926735 PMCID: PMC11210118 DOI: 10.1186/s13018-024-04863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Achilles tendon is vital in maintaining the stability and function of ankle joint. It is quite difficult to achieve the structural and functional repair of Achilles tendon in tissue engineering. METHODS A tissue-engineered tendon micro-tissue was prepared using rat tail tendon extracellular matrix (TECM) combined with rat adipose stem cells (ADSCs) to repair Achilles tendon injuries. The TECM was prepared by repeated freezing and thawing. The in vitro characteristics of TECM and its effect on ADSCs proliferation were detected. This tissue-engineered tendon micro-tissue for Achilles tendon repair in vivo was evaluated based on general characteristics, gait analysis, ultrasound findings, histological analysis, and biomechanical testing. RESULTS The results showed that the TECM scaffold had good biocompatibility for ADSCs. At 2 weeks post-surgery, collagen types I and III and tenomodulin expression were higher, and vascular endothelial growth factor expression was lower in the micro-tissue group than other groups. At 4 and 8 weeks post-surgery, the results of histological analysis and ultrasound findings showed that the repaired tendon tissue was smooth and lustrous, and was arranged regularly and evenly in the micro-tissue group. Gait analysis confirmed that better motor function recovery was noted in micro-tissue group than other groups. In addition, the mechanical properties of the repaired tendon tissue in micro-tissue group were better than other groups. CONCLUSION Tissue-engineered tendon micro-tissue fabricated by TECM and ADSCs has good biocompatibility and can promote structural and functional repair of tendon in vivo. This composite biomaterial has broad application prospects in tissue engineering.
Collapse
Affiliation(s)
- Kaihong Zhang
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ge Shi
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chen Sun
- Department of Orthopedics, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Su EY, Kennedy CS, Vega-Soto EE, Pallas BD, Lukpat SN, Hwang DH, Bosek DW, Forester CE, Loebel C, Larkin LM. Repairing Volumetric Muscle Loss with Commercially Available Hydrogels in an Ovine Model. Tissue Eng Part A 2024; 30:440-453. [PMID: 38117140 DOI: 10.1089/ten.tea.2023.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Volumetric muscle loss (VML) is the loss of skeletal muscle that exceeds the muscle's self-repair mechanism and leads to permanent functional deficits. In a previous study, we demonstrated the ability of our scaffold-free, multiphasic, tissue-engineered skeletal muscle units (SMUs) to restore muscle mass and force production. However, it was observed that the full recovery of muscle structure was inhibited due to increased fibrosis in the repair site. As such, novel biomaterials such as hydrogels (HGs) may have significant potential for decreasing the acute inflammation and subsequent fibrosis, as well as enhancing skeletal muscle regeneration following VML injury and repair. The goal of the current study was to assess the biocompatibility of commercially available poly(ethylene glycol), methacrylated gelatin, and hyaluronic acid (HA) HGs in combination with our SMUs to treat VML in a clinically relevant large animal model. An acute 30% VML injury created in the sheep peroneus tertius (PT) muscle was repaired with or without HGs and assessed for acute inflammation (incision swelling) and white blood cell counts in blood for 7 days. At the 7-day time point, HA was selected as the HG to use for the combined HG/SMU repair, as it exhibited a reduced inflammation response compared to the other HGs. Six weeks after implantation, all groups were assessed for gross and histological structural recovery. The results showed that the groups repaired with an SMU (SMU-Only and SMU+HA) restored muscle mass to greater degree than the groups with only HG and that the SMU groups had PT muscle masses that were statistically indistinguishable from its uninjured contralateral PT muscle. Furthermore, the HA HG, SMU-Only, and SMU+HA groups displayed notable efficacy in diminishing pro-inflammatory markers and showed an increased number of regenerating muscle fibers in the repair site. Taken together, the data demonstrates the efficacy of HA HG in decreasing acute inflammation and fibrotic response. The combination of HA and our SMUs also holds promise to decrease acute inflammation and fibrosis and increase muscle regeneration, advancing this combination therapy toward clinically relevant interventions for VML injuries in humans.
Collapse
Affiliation(s)
- Eileen Y Su
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher S Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel E Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brooke D Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha N Lukpat
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek H Hwang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - David W Bosek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Celeste E Forester
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudia Loebel
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Larkin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Koo BH, Lee YJ, Park NR, Heo SC, Hudson DM, Fernandes AA, Friday CS, Hast MW, Corr DT, Keene DR, Tufa SF, Dyment NA, Joeng KS. Characterization of TGFβ1-induced tendon-like structure in the scaffold-free three-dimensional tendon cell culture system. Sci Rep 2024; 14:9495. [PMID: 38664570 PMCID: PMC11045825 DOI: 10.1038/s41598-024-60221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-β (TGFβ) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFβ signaling in tendon prompted us to utilize TGFβ1 to induce tendon-like structures in 3D tendon constructs. TGFβ1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFβ1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFβ1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
| | - Yeon-Ju Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
- Research and Development Division, BioBricks Co., Ltd, Pohang, 37673, Republic of Korea
| | - Na Rae Park
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
| | - David M Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Aysel A Fernandes
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Chet S Friday
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
| | - Michael W Hast
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
| | - David T Corr
- Center for Modeling, Simulation, and Imaging in Medicine (CeMSIM), Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Children's, Portland, OR, 97239, USA
| | - Sara F Tufa
- Micro-Imaging Center, Shriners Children's, Portland, OR, 97239, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA
| | - Kyu Sang Joeng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6081, USA.
| |
Collapse
|
9
|
Zeng S, Sun J, Qin B, Liu Y, Liu G, Deng K, Yin Y, Bao D. Semi-Bone Tunnel Technique Using Double-Row Suture Bridge Combined With Platelet-Rich Plasma Hydrogel for Rotator Cuff Repair in a Rabbit Model. Am J Sports Med 2024; 52:1308-1318. [PMID: 38523475 DOI: 10.1177/03635465241235146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND The approach to managing the footprint area and reconstructing the tendon-bone interface (TBI) is critical for optimal healing. PURPOSE To evaluate the outcomes of the semi-bone tunnel (SBT) technique using a double-row suture bridge combined with platelet-rich plasma (PRP) hydrogel for rotator cuff repair in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 New Zealand White rabbits were divided into 4 groups. The supraspinatus tendons were severed at the footprint to create a rotator cuff tear model in the surgical groups. Rabbits were treated with the traditional onto-surface repair (control group), SBT technique (SBT group), and SBT technique combined with PRP hydrogel implantation (SBT+PRP group). The rabbits without surgery were the normal group. At 8 weeks after surgery, macroscopic observation, magnetic resonance imaging (MRI) and micro-computed tomography (μCT) examinations, histological evaluations, and biomechanical tests were performed to assess the curative effects of the given treatments. RESULTS The MRI results showed that the repaired supraspinatus tendon presented a uniform signal, minimal inflammatory response, and the lowest signal-to-noise quotient value in the SBT+PRP group. The μCT results suggested that the SBT technique did not reduce the local bone mineral density in the TBI area compared with the onto-surface repair technique. The histological staining results showed that the regenerated TBI in the SBT+PRP group had a 4-layer structure similar to the natural tissue. The highest values for biomechanical properties were observed in the SBT+PRP group, and there was no significant difference between the SBT+PRP group and normal group. CONCLUSION The SBT technique presented a better tendon-bone healing effect for rotator cuff tear in the rabbit model compared with the traditional onto-surface repair technique. The specimens in the SBT+PRP group had a similar TBI structure and biomechanical properties to the natural tissue. CLINICAL RELEVANCE The SBT technique can be an alternative surgical approach for rotator cuff repair, especially for moderate to large tears and cases requiring scaffold implantation.
Collapse
Affiliation(s)
- Shengqiang Zeng
- Department of Orthopedics, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jiacheng Sun
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Bo Qin
- Department of Orthopedics, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Gang Liu
- Department of Orthopedics, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Kai Deng
- Department of Orthopedics, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yiran Yin
- Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Dingsu Bao
- Department of Orthopedics, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Department of Orthopaedics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Brown ME, Puetzer JL. Enthesis maturation in engineered ligaments is differentially driven by loads that mimic slow growth elongation and rapid cyclic muscle movement. Acta Biomater 2023; 172:106-122. [PMID: 37839633 DOI: 10.1016/j.actbio.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Entheses are complex attachments that translate load between elastic-ligaments and stiff-bone via organizational and compositional gradients. Neither natural healing, repair, nor engineered replacements restore these gradients, contributing to high re-tear rates. Previously, we developed a culture system which guides ligament fibroblasts in high-density collagen gels to develop early postnatal-like entheses, however further maturation is needed. Mechanical cues, including slow growth elongation and cyclic muscle activity, are critical to enthesis development in vivo but these cues have not been widely explored in engineered entheses and their individual contribution to maturation is largely unknown. Our objective here was to investigate how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, individually drive enthesis maturation in our system so to shed light on the cues governing enthesis development, while further developing our tissue engineered replacements. Interestingly, we found these loads differentially drive organizational maturation, with slow stretch driving improvements in the interface/enthesis region, and cyclic load improving the ligament region. However, despite differentially affecting organization, both loads produced improvements to interface mechanics and zonal composition. This study provides insight into how mechanical cues differentially affect enthesis development, while producing some of the most organized engineered enthesis to date. STATEMENT OF SIGNIFICANCE: Entheses attach ligaments to bone and are critical to load transfer; however, entheses do not regenerate with repair or replacement, contributing to high re-tear rates. Mechanical cues are critical to enthesis development in vivo but their individual contribution to maturation is largely unknown and they have not been widely explored in engineered replacements. Here, using a novel culture system, we provide new insight into how slow stretch, mimicking ACL growth rates, and intermittent cyclic loading, mimicking muscle activity, differentially affect enthesis maturation in engineered ligament-to-bone tissues, ultimately producing some of the most organized entheses to date. This system is a promising platform to explore cues regulating enthesis formation so to produce functional engineered replacements and better drive regeneration following repair.
Collapse
Affiliation(s)
- M Ethan Brown
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States.
| |
Collapse
|
11
|
Saveh-Shemshaki N, Barajaa MA, Otsuka T, Mirdamadi ES, Nair LS, Laurencin CT. Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration. Regen Biomater 2023; 10:rbad099. [PMID: 38020235 PMCID: PMC10676522 DOI: 10.1093/rb/rbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials (EAMs) on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of RC muscle degeneration. Further, the review covers the recent studies on EAMs for muscle regeneration including RC muscle. Finally, we will discuss the future direction toward the application of EAMs for the augmentation of RCTs.
Collapse
Affiliation(s)
- Nikoo Saveh-Shemshaki
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammed A Barajaa
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Elnaz S Mirdamadi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Assessing the biocompatibility of bovine tendon scaffold, a step forward in tendon tissue engineering. Cell Tissue Bank 2023; 24:11-24. [PMID: 35596907 DOI: 10.1007/s10561-022-10012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Tendon is a collagen-enriched, tough, and intricately arranged connective tissue that connects muscle to the bone and transmits forces, resulting in joint movement. High mechanical demands can affect normal tissues and may lead to severe disorders, which usually require replacement of the damaged tendon. In recent decades, various decellularization methods have been studied for tissue engineering applications. One of the major challenges in tendon decellularization is preservation of the tendon extracellular matrix (ECM) architecture to maintain natural tissue characteristics. The aim of the present study was to create a decellularized bovine Achilles tendon scaffold to investigate its cytocompatibility with seeded hAd-MSCs (human adipose derived-mesenchymal stem cells) and blastema tissue in vitro. Here, we describe a reliable procedure to decellularize bovine Achilles tendon using a combination of physical and chemical treatments including repetitive freeze-thaw cycles and the ionic detergent SDS, respectively. The decellularization effectiveness and cytocompatibility of the tendon scaffolds were verified by histological studies and scanning electron microscopy for up to 30 days after culture. Histological studies revealed hAd-MSC attachment and penetration into the scaffolds at 5, 10, 15 and 20 days of culture. However, a decrease in cell number was observed on days 25 and 30 after culture in vitro. Moreover, migration of the blastema tissue cells into the scaffold were shown at 10 to 25 days post culture, however, destruction of the scaffolds and reduction in cell number were observed on 30th day after culture. Our results suggest that this decellularization protocol is an effective and biocompatible procedure which supports the maintenance and growth of both hAd-MSCs and blastema cells, and thus might be promising for tendon tissue engineering.
Collapse
|
13
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|
14
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
15
|
Prabhath A, Vernekar VN, Esdaille CJ, Eisenberg E, Lebaschi A, Badon M, Seyedsalehi A, Dzidotor G, Tang X, Dyment N, Thomopoulos S, Kumbar SG, Deymier A, Weber E, Laurencin CT. Pegylated insulin-like growth factor-1 biotherapeutic delivery promotes rotator cuff regeneration in a rat model. J Biomed Mater Res A 2022; 110:1356-1371. [PMID: 35253991 DOI: 10.1002/jbm.a.37378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
Abstract
Tears in the rotator cuff are challenging to repair because of the complex, hypocellular, hypovascular, and movement-active nature of the tendon and its enthesis. Insulin-like Growth Factor-1 (IGF-1) is a promising therapeutic for this repair. However, its unstable nature, short half-life, and ability to disrupt homeostasis has limited its clinical translation. Pegylation has been shown to improve the stability and sustain IGF-1 levels in the systemic circulation without disrupting homeostasis. To provide localized delivery of IGF-1 in the repaired tendons, we encapsulated pegylated IGF-1 mimic and its controls (unpegylated IGF-1 mimic and recombinant human IGF-1) in polycaprolactone-based matrices and evaluated them in a pre-clinical rodent model of rotator cuff repair. Pegylated-IGF-1 mimic delivery reestablished the characteristic tendon-to-bone enthesis structure and improved tendon tensile properties within 8 weeks of repair compared to controls, signifying the importance of pegylation in this complex tissue regeneration. These results demonstrate a simple and scalable biologic delivery technology alternative to tissue-derived grafts for soft tissue repair.
Collapse
Affiliation(s)
- Anupama Prabhath
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Varadraj N Vernekar
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Caldon J Esdaille
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA
| | - Ellen Eisenberg
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, Connecticut, USA
| | - Amir Lebaschi
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Mary Badon
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA
| | - Amir Seyedsalehi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Godwin Dzidotor
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Nathaniel Dyment
- McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA.,Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA.,Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Alix Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Eckhard Weber
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA.,Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
16
|
Chae S, Choi YJ, Cho DW. Mechanically and biologically promoted cell-laden constructs generated using tissue-specific bioinks for tendon/ligament tissue engineering applications. Biofabrication 2022; 14. [PMID: 35086074 DOI: 10.1088/1758-5090/ac4fb6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Tendon and ligament tissues provide stability and mobility crucial for musculoskeletal function, but are particularly prone to injury. Owing to poor innate healing capacity, the regeneration of mature and functional tendon/ligament (T/L) poses a formidable clinical challenge. Advanced bioengineering strategies to develop biomimetic tissue implants are highly desired for the treatment of T/L injuries. Here, we presented a cell-based tissue engineering strategy to generate cell-laden tissue constructs comprising stem cells and tissue-specific bioinks using 3D cell-printing technology. We implemented an in vitro preconditioning approach to guide semi-organized T/L-like formation before the in vivo application of cell-printed implants. During in vitro maturation, tissue-specific decellularized extracellular matrix-based cellular constructs facilitated long-term in vitro culture with high cell viability and promoted tenogenesis with enhanced cellular/structural anisotropy. Moreover, we demonstrated improved cell survival/retention upon in vivo implantation of pre-matured constructs in nude mice with de novo tendon formation and improved mechanical strength. Although in vivo mechanical properties of the cell-printed implants were lower than those of human T/L tissues, the results of this study may have significant implications for future cell-based therapies in tendon and ligament regeneration and translational medicine.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Gyeongsangbuk-do, Pohang, Gyeongsangbuk-do, 37679, Korea (the Republic of)
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science, 797, Changwon-daero, Seongsan-gu, Gyeongsangnam-do, Changwon, 51508, Korea (the Republic of)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, KOREA, Pohang, 37673, Korea (the Republic of)
| |
Collapse
|
17
|
Washington KS, Shemshaki NS, Laurencin CT. The Role of Nanomaterials and Biological Agents on Rotator Cuff Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022; 7:440-449. [PMID: 35005215 DOI: 10.1007/s40883-020-00171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rotator cuff is a musculotendon unit responsible for movement in the shoulder. Rotator cuff tears represent a significant number of musculoskeletal injuries in the adult population. In addition, there is a high incidence of retear rates due to various complications within the complex anatomical structure and the lack of proper healing. Current clinical strategies for rotator cuff augmentation include surgical intervention with autograft tissue grafts and beneficial impacts have been shown, but challenges still exist because of limited supply. For decades, nanomaterials have been engineered for the repair of various tissue and organ systems. This review article provides a thorough summary of the role nanomaterials, stem cells and biological agents have played in rotator cuff repair to date and offers input on next generation approaches for regenerating this tissue.
Collapse
Affiliation(s)
- Kenyatta S Washington
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
18
|
Lui H, Vaquette C, Denbeigh JM, Bindra R, Kakar S, van Wijnen AJ. Multiphasic scaffold for scapholunate interosseous ligament reconstruction: A study in the rabbit knee. J Orthop Res 2021; 39:1811-1824. [PMID: 32579261 PMCID: PMC7758190 DOI: 10.1002/jor.24785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Scapholunate interosseous ligament tears are a common wrist injury in young and active patients that can lead to suboptimal outcomes after repair. This research aims to assess a multiphasic scaffold using 3D-printing for reconstruction of the dorsal scapholunate interosseous ligament. The scaffold was surgically implanted in vivo in the position of the native rabbit medial collateral ligament. Two branches of treatment were implemented in the study. In the first group, the rabbits (n = 8) had the knee joint fixed in flexion for 4 weeks using 1.4 mm K-wires prior to sample harvesting. The second group (n = 8) had the rabbit knee joint immobilized for 4 weeks prior to K-wire removal and mobilization for an additional 4 weeks prior to sample harvesting. Overall, samples were harvested at 4 weeks post-surgery (immobilized group) and eight weeks post-surgery (mobilized group). Mechanical tensile testing (n = 5/group) and histology (n = 3/group) of the constructs were conducted. Tissue integration and maturation were observed resulting in increased mechanical strength of the operated joint at 8 weeks (P < .05). Bone and ligament tissues were regenerated in their respective compartments with structural and mechanical properties approaching those reported for the human dorsal SLIL ligament. Clinical Significance: This proof of concept study has demonstrated that the synthetic multiphasic scaffold was capable of regenerating both bone and ligament while also withstanding the physiological load once implanted in the rabbit knee. The artificial scaffold may provide an alternative to current techniques for reconstruction of scapholunate instability or other ligament injuries in the hand and wrist.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Janet M. Denbeigh
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America
| | - Randip Bindra
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia,Gold Coast University Hospital, Department of Orthopaedic Surgery, Gold Coast, Queensland, Australia
| | - Sanjeev Kakar
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America,Corresponding AuthorsProf Andre van Wijnen, Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, +1-507-293-2105, , Dr Sanjeev Kakar, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,
| | - Andre J. van Wijnen
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America,Corresponding AuthorsProf Andre van Wijnen, Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, +1-507-293-2105, , Dr Sanjeev Kakar, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|
19
|
Rodriguez BL, Vega-Soto EE, Kennedy CS, Nguyen MH, Cederna PS, Larkin LM. A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery. PLoS One 2020; 15:e0239152. [PMID: 32956427 PMCID: PMC7505427 DOI: 10.1371/journal.pone.0239152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023] Open
Abstract
Volumetric muscle loss (VML) is the loss of skeletal muscle that results in significant and persistent impairment of function. The unique characteristics of craniofacial muscle compared trunk and limb skeletal muscle, including differences in gene expression, satellite cell phenotype, and regenerative capacity, suggest that VML injuries may affect craniofacial muscle more severely. However, despite these notable differences, there are currently no animal models of craniofacial VML. In a previous sheep hindlimb VML study, we showed that our lab’s tissue engineered skeletal muscle units (SMUs) were able to restore muscle force production to a level that was statistically indistinguishable from the uninjured contralateral muscle. Thus, the goals of this study were to: 1) develop a model of craniofacial VML in a large animal model and 2) to evaluate the efficacy of our SMUs in repairing a 30% VML in the ovine zygomaticus major muscle. Overall, there was no significant difference in functional recovery between the SMU-treated group and the unrepaired control. Despite the use of the same injury and repair model used in our previous study, results showed differences in pathophysiology between craniofacial and hindlimb VML. Specifically, the craniofacial model was affected by concomitant denervation and ischemia injuries that were not exhibited in the hindlimb model. While clinically realistic, the additional ischemia and denervation likely created an injury that was too severe for our SMUs to repair. This study highlights the importance of balancing the use of a clinically realistic model while also maintaining control over variables related to the severity of the injury. These variables include the volume of muscle removed, the location of the VML injury, and the geometry of the injury, as these affect both the muscle’s ability to self-regenerate as well as the probability of success of the treatment.
Collapse
Affiliation(s)
- Brittany L. Rodriguez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emmanuel E. Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher S. Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew H. Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wang L, Kang Y, Chen S, Mo X, Jiang J, Yan X, Zhu T, Zhao J. Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomater Sci Eng 2020; 7:904-915. [PMID: 33715366 DOI: 10.1021/acsbiomaterials.0c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The postoperative retear rate of direct repair of massive rotator cuff tear has risen up to 40% because of the dissatisfied tendon-to-bone healing and poor regenerative potential of remnant rotator cuff tissue. A biological scaffold that connects the remnant rotator cuff tissue and bone might be a promising substitute. In the present study, we have developed a macroporous three-dimensional scaffold poly(ester-urethane)urea (PEUU), with self-fitting capability employing thermally induced phase separation (TIPS) technique. The scaffold provides oriented connected macropores for cells migration, and promoted tendon-to-bone healing on the basis of surgical repair. The scaffolds were characterized by scanning electron microscopy, stress-strain test and cell biocompatibility study. In vitro studies exhibited that PEUU scaffold with suitable elastic mechanical properties can better support proliferation and migration of rabbit bone mesenchymal stem cells (RBMSCs). After three months postreconstruction of massive rotator cuff tear in a rabbit model using PEUU scaffold, there was complete regeneration of rotator cuff with physical tendon-to-bone interface and continuous tendon tissue, as observed from histological analysis. Further, biomechanical testing demonstrated that rotator cuff induced by PEUU scaffold had no significant difference as compared to normal rotator cuff. This macroporous, mechanically matched scaffold is potentially suitable for the application in massive rotator cuff repair. In conclusion, this study demonstrates the high efficiency of the macroporous 3D scaffold with self-fitting capability in facilitating rotator cuff regeneration.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Sihao Chen
- Multidisciplinary Center for Advanced Materials, Advanced Research Institute, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
21
|
Novakova SS, Rodriguez BL, Vega-Soto EE, Nutter GP, Armstrong RE, Macpherson PCD, Larkin LM. Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery. Tissue Eng Part A 2020; 26:837-851. [PMID: 32013753 DOI: 10.1089/ten.tea.2019.0288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Much effort has been made to fabricate engineered tissues on a scale that is clinically relevant to humans; however, scale-up remains one of the most significant technological challenges of tissue engineering to date. To address this limitation, our laboratory has developed tissue-engineered skeletal muscle units (SMUs) and engineered neural conduits (ENCs), and modularly scaled them to clinically relevant sizes for the treatment of volumetric muscle loss (VML). The goal of this study was to evaluate the SMUs and ENCs in vitro, and to test the efficacy of our SMUs and ENCs in restoring muscle function in a clinically relevant large animal (sheep) model. The animals received a 30% VML injury to the peroneus tertius muscle and were allowed to recover for 3 months. The animals were divided into three experimental groups: VML injury without a repair (VML only), repair with an SMU (VML+SMU), or repair with an SMU and ENC (VML+SMU+ENC). We evaluated the SMUs before implantation and found that our single scaled-up SMUs were characterized by the presence of contracting myotubes, linearly aligned extracellular matrix proteins, and Pax7+ satellite cells. Three months after implantation, we found that the repair groups (VML+SMU and VML+SMU+ENC) had restored muscle mass and tetanic force production to a level that was statistically indistinguishable from the uninjured contralateral muscle after 3 months in vivo. Furthermore, we demonstrated the ability of our ENCs to effectively bridge the gap between native nerve and the repair site by eliciting a muscle contraction through direct electrical stimulation of the re-routed nerve. Impact statement The fabrication of tissues of clinically relevant sizes is one of the largest obstacles preventing engineered tissues from achieving widespread use in the clinic. This study aimed to combat this limitation by developing a fabrication method to scale-up tissue-engineered skeletal muscle for the treatment of volumetric muscle loss in a large animal (sheep) model and evaluating the efficacy of the tissue-engineered constructs after a 3-month recovery.
Collapse
Affiliation(s)
- Stoyna S Novakova
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Brittany L Rodriguez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel E Vega-Soto
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Genevieve P Nutter
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel E Armstrong
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Peter C D Macpherson
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Larkin
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Tarafder S, Brito JA, Minhas S, Effiong L, Thomopoulos S, Lee CH. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication 2019; 12:015008. [PMID: 31561236 PMCID: PMC6904927 DOI: 10.1088/1758-5090/ab48ca] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The long-term success of surgical repair of rotator cuff tears is largely dependent on restoration of a functional tendon-to-bone interface. We implemented micro-precise spatiotemporal delivery of growth factors in three-dimensional printed scaffolds for integrative regeneration of a fibrocartilaginous tendon-to-bone interface. Sustained and spatially controlled release of tenogenic, chondrogenic and osteogenic growth factors was achieved using microsphere-based delivery carriers embedded in thin membrane-like scaffolds. In vitro, the scaffolds embedded with spatiotemporal delivery of growth factors successfully guided regional differentiation of mesenchymal progenitor cells, forming multiphase tissues with tendon-like, cartilage-like and bone-like regions. In vivo, when implanted at the interface between the supraspinatus tendon and the humeral head in a rat rotator cuff repair model, these scaffolds promoted recruitment of endogenous tendon progenitor cells followed by integrative healing of tendon and bone via re-formation of strong fibrocartilaginous interfaces. Our findings demonstrate the potential of in situ tissue engineering of tendon-to-bone interfaces by endogenous progenitor cells. The in situ tissue engineering approach shows translational potential for improving outcomes after rotator cuff repair.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - John A Brito
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - Sumeet Minhas
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - Linda Effiong
- Department of Orthopedic Surgery, Columbia University Medical Center, 650 W. 168th Street, BB14-1408, NY 10032, New York
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University Medical Center, 650 W. 168th Street, BB14-1408, NY 10032, New York
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, NY 10027, New York
| | - Chang H Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| |
Collapse
|
23
|
D’Ambrosi R, Ragone V, Comaschi G, Usuelli FG, Ursino N. Retears and complication rates after arthroscopic rotator cuff repair with scaffolds: a systematic review. Cell Tissue Bank 2019; 20:1-10. [DOI: 10.1007/s10561-019-09750-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/21/2019] [Indexed: 12/25/2022]
|
24
|
Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm 2018; 544:358-371. [PMID: 29317260 DOI: 10.1016/j.ijpharm.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
Abstract
The high incidence of degenerative tears and prevalence of retears (20-95%) after surgical repair makes rotator cuff injuries a significant health problem. This high retear rate is attributed to the failure of the repaired tissue to regenerate the native tendon-to-bone insertion (enthesis). Biological augmentation of surgical repair such as autografts, allografts, and xenografts are confounded by donor site morbidity, immunogenicity, and disease transmission, respectively. In contrast, these risks may be alleviated via growth factor therapy, which can actively influence the healing environment to promote functional repair. Several challenges have to be overcome before growth factor delivery can translate into clinical practice such as the selection of optimal growth factor(s) or combination, identification of the most efficient stage and duration of delivery, and the design considerations for the delivery device. Emerging insight into the injury-repair microenvironment and our understanding of growth factor mechanisms in healing are informing the design of advanced delivery scaffolds to effectively treat rotator cuff tears. Here, we review potential growth factor candidates, design parameters and material selection for growth factor delivery, innovative and dynamic delivery scaffolds, and novel therapeutic targets from tendon and developmental biology for the structural and functional healing of rotator cuff repair.
Collapse
|