1
|
Kim W, Sakai Y, Matsuoka M, Hosokawa Y, Fukuda R, Homan K, Onodera T, Iwasaki N. CCR7 depletion alleviates bony growth imbalance following physeal injury in mice. Sci Rep 2024; 14:24891. [PMID: 39438569 PMCID: PMC11496618 DOI: 10.1038/s41598-024-75877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Growth plates are the frequent sites of skeletal injury in children, leading to skeletal growth imbalances. Chemokines, including the receptor CCR7, play a crucial role in stem cell recruitment and cartilage homeostasis, with previous studies linking CCR7 to osteoarthritis progression. However, its role in growth plate cartilage remains unclear. We analyzed the role of CCR7 in the physeal cartilage repair process in mice model. Physeal injury was created in the proximal tibia in 3-week-old C57BL/6 mice (WT) and CCR7-knockout mice (CCR7-/-). Tibial length was measured macroscopically and sections of the physeal injury were analyzed histologically and immunohistochemically. Height and bone volume of the tibial growth plate and bone mineral density (BMD) of the subchondral area were measured by micro-CT. Mesenchymal stem cells (MSCs) were harvested and gene expression after osteogenic differentiation was analyzed using qRT-PCR. At 1, 3 and 5 weeks postoperatively, injured tibiae of CCR7-/- mice were less shortened than those of WT mice. Bone volume of the physeal bridge was significantly lower in CCR7-/- mice than in WT mice. In contrast, BMD of the subchondral area was comparable between CCR-/- and WT mice, and between sham and operated tibiae. In osteogenic differentiation, CCR7-/- mice showed significantly lowered expression of osteogenic markers such as Osterix, Runx2 and Type X collagen. We demonstrated CCR7 depletion in mice inhibited physeal bridge formation and ameliorated growth imbalances after physeal injury.
Collapse
Affiliation(s)
- WooYoung Kim
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuko Sakai
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshiaki Hosokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ryuichi Fukuda
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
2
|
Oláh T, Cucchiarini M, Madry H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage 2024; 32:1220-1234. [PMID: 38876436 DOI: 10.1016/j.joca.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA). METHOD Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity. RESULTS The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points. Microstructural changes of the subarticular spongiosa are comprehensively described; those of the subchondral bone plate are not. In mouse models, global subchondral bone alterations are unidirectional, involving an advancing sclerosis of the trabecular structure over time. In rats, biphasic subchondral bone alterations begin with an osteopenic degeneration and loss of subchondral trabeculae, progressing to a late sclerosis of the entire subchondral bone. Rat models, independently from the applied technique, relatively faithfully mirror the early bone loss detected in larger animals, and the late subchondral bone sclerosis observed in human advanced OA. CONCLUSION Mice and rats allow us to study the microstructural consequences of compromising meniscus integrity at high temporal detail. Thickening of the subchondral bone plate, an early loss of thinner subarticular trabecular elements, followed by a subsequent sclerosis of the entire subchondral bone are all important and reliable hallmarks that occur in parallel with the advancing articular cartilage degeneration. Thoughtful decisions on the study design, laterality, selection of controls and volumes of interest are crucial to obtain meaningful data.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
3
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. A standardized approach to evaluation and reporting of synovial histopathology in two surgically induced murine models of osteoarthritis. Osteoarthritis Cartilage 2024; 32:1273-1282. [PMID: 38823432 PMCID: PMC11408105 DOI: 10.1016/j.joca.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA 19104, United States.
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW 2065, Australia.
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
4
|
Choi SH, Kim HC, Jang SG, Lee YJ, Heo JY, Kweon GR, Ryu MJ. Effects of a Combination of Polynucleotide and Hyaluronic Acid for Treating Osteoarthritis. Int J Mol Sci 2024; 25:1714. [PMID: 38338992 PMCID: PMC10855695 DOI: 10.3390/ijms25031714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Knee osteoarthritis (OA), an age-related degenerative disease characterized by severe pain and disability, is treated using polynucleotides (PNs) and hyaluronic acid (HA). The intra-articular (IA) injection of HA has been studied extensively in both animal models and in humans; however, the efficacy and mechanisms of action remain unclear. In addition, there has been a paucity of research regarding the use of PN alone or in combination with HA in OA. To investigate the effect of the combined injection of PN and HA in vivo, pathological and behavioral changes were assessed in an OA model. Anterior cruciate ligament transection and medial meniscectomy were performed in Sprague-Dawley rats to create the OA animal model. The locomotor activity improved following PNHA injection, while the OARSI grade improved in the medial tibia and femur. In mild OA, TNFα levels decreased histologically in the PN, HA, and PNHA groups but only the PNHA group showed behavioral improvement in terms of distance. In conclusion, PNHA exhibited anti-inflammatory effects during OA progression and improved locomotor activity regardless of the OARSI grade.
Collapse
Affiliation(s)
- Seung Hee Choi
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Hyun Chul Kim
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Seul Gi Jang
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Yeon Jae Lee
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Jun Young Heo
- Department of Biochemistry, College of Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; (J.Y.H.); (G.R.K.)
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; (J.Y.H.); (G.R.K.)
| | - Min Jeong Ryu
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| |
Collapse
|
5
|
Edderkaoui B. Chemokines in Cartilage Regeneration and Degradation: New Insights. Int J Mol Sci 2023; 25:381. [PMID: 38203552 PMCID: PMC10779035 DOI: 10.3390/ijms25010381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Cartilage plays a crucial role in the human body by forming long bones during development and growth to bear loads on joints and intervertebral discs. However, the increasing prevalence of cartilage degenerative disorders is a growing public health concern, especially due to the poor innate regenerative capacity of cartilage. Chondrocytes are a source of several inflammatory mediators that play vital roles in the pathogenesis of cartilage disorders. Among these mediators, chemokines have been explored as potential contributors to cartilage degeneration and regeneration. Our review focuses on the progress made during the last ten years in identifying the regulators and roles of chemokines and their receptors in different mechanisms related to chondrocytes and cartilage. Recent findings have demonstrated that chemokines influence cartilage both positively and negatively. Their induction and involvement in either process depends on the local molecular environment and is both site- and time-dependent. One of the challenges in defining the role of chemokines in cartilage pathology or regeneration is the apparent redundancy in the interaction of chemokines with their receptors. Hence, it is crucial to determine, for each situation, whether targeting specific chemokines or their receptors will help in developing effective therapeutic strategies for cartilage repair.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA;
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
6
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. Recommendations For a Standardized Approach to Histopathologic Evaluation of Synovial Membrane in Murine Models of Experimental Osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562259. [PMID: 37904981 PMCID: PMC10614774 DOI: 10.1101/2023.10.14.562259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA. Methods Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue) and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations in the medial and lateral compartments. Inter-reader reliability of each feature was determined. Results There was acceptable to very good agreement between raters. After DMM, increased hyperplasia and cellularity and a trend towards increased fibrosis were observed 6 weeks after DMM in the medial locations, and persisted up to 16 weeks. In the PMX model, cellularity and hyperplasia were evident in both medial and lateral compartments while fibrotic changes were largely seen on the medial side. Synovial changes were consistent from section to section in the mid-joint area mice. H&E, T-blue, and Saf-O stains resulted in comparable reliability. Conclusions To allow for a standard evaluation that can be implemented and compared across labs and studies, we recommend using 3 readers to evaluate a minimum set of 3 pathological features at standardized anatomic areas. Pre-defining areas to be scored, and reliability for each pathologic feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia PA 19104
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Zhang Y, Liu D, Vithran DTA, Kwabena BR, Xiao W, Li Y. CC chemokines and receptors in osteoarthritis: new insights and potential targets. Arthritis Res Ther 2023; 25:113. [PMID: 37400871 PMCID: PMC10316577 DOI: 10.1186/s13075-023-03096-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease accompanied by the activation of innate and adaptive immune systems-associated inflammatory responses. Due to the local inflammation, the expression of various cytokines was altered in affected joints, including CC motif chemokine ligands (CCLs) and their receptors (CCRs). As essential members of chemokines, CCLs and CCRs played an important role in the pathogenesis and treatment of OA. The bindings between CCLs and CCRs on the chondrocyte membrane promoted chondrocyte apoptosis and the release of multiple matrix-degrading enzymes, which resulted in cartilage degradation. In addition, CCLs and CCRs had chemoattractant functions to attract various immune cells to osteoarthritic joints, further leading to the aggravation of local inflammation. Furthermore, in the nerve endings of joints, CCLs and CCRs, along with several cellular factors, contributed to pain hypersensitivity by releasing neurotransmitters in the spinal cord. Given this family's diverse and complex functions, targeting the functional network of CCLs and CCRs is a promising strategy for the prognosis and treatment of OA in the future.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Bosomtwe Richmond Kwabena
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Subburaman M, Edderkaoui B. Evaluation of CCL21 role in post-knee injury inflammation and early cartilage degeneration. PLoS One 2021; 16:e0247913. [PMID: 33651836 PMCID: PMC7924772 DOI: 10.1371/journal.pone.0247913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
The expression of some chemokines and chemokine receptors is induced during the development of post-traumatic osteoarthritis (PTOA), but their involvement in the pathogenesis of the disease is unclear. The goal of this study was to test whether CCL21 and CXCL13 play a role in PTOA development. For this purpose, we evaluated the expression profiles of the chemokines Ccl21 and Cxcl13, matrix metalloproteinase enzymes Mmp3 and Mmp13, and inflammatory cell markers in response to partial medial meniscectomy and destabilization (MMD). We then assessed the effect of local administration of CCL21 neutralizing antibody on PTOA development and post-knee injury inflammation. The mRNA expression of both Ccl21 and Cxcl13 was induced early post-surgery, but only Ccl21 mRNA levels remained elevated 4 weeks post-surgery in rat MMD-operated knees compared to controls. This suggests that while both CXCL13 and CCL21 are involved in post-surgery inflammation, CCL21 is necessary for development of PTOA. A significant increase in the mRNA levels of Cd4, Cd8 and Cd20 was observed during the first 3 days post-surgery. Significantly, treatment with CCL21 antibody reduced post-surgical inflammation that was accompanied by a reduction in the expression of Mmp3 and Mmp13 and post-MMD cartilage degradation. Our findings are consistent with a role for CCL21 in mediating changes in early inflammation and subsequent cartilage degeneration in response to knee injury. Our results suggest that targeting CCL21 signaling pathways may yield new therapeutic approaches effective in delaying or preventing PTOA development following injury.
Collapse
Affiliation(s)
- Mohan Subburaman
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare System, Loma Linda, California, United States of America
- Departments of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Departments of Orthopedics, Loma Linda University, Loma Linda, California, United States of America
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare System, Loma Linda, California, United States of America
- Departments of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
von Loga IS, Miotla-Zarebska J, Huang YS, Williams R, Jostins L, Vincent TL. Comparison of LABORAS with static incapacitance testing for assessing spontaneous pain behaviour in surgically-induced murine osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100101. [PMID: 33381766 PMCID: PMC7762826 DOI: 10.1016/j.ocarto.2020.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Evoked responses following mechanical or thermal stimulation are typically used to assess pain behaviour in murine osteoarthritis (OA). However, there is no consensus on how best to measure spontaneous pain behaviour. Method OA by partial meniscectomy (PMX), or sham surgery was performed in 10-week old C57BL/6 male mice. Collagen-induced arthritis (CIA) was induced in 10 week old DBA1 male mice. Spontaneous pain behaviour, either at the time of active inflammatory disease (CIA), or over the 12 weeks after induction of OA, was assessed by static incapacitance testing (measuring percentage of weight placed through each hindlimb), and Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS) (translating cage vibrations of singly house animals into specific activities). Data were analysed by repeated measures two way ANOVA with post hoc testing comparing experimental groups with either sham operated or naïve controls. Results By incapacitance testing, two phases of painful behaviour were evident after PMX: a transient, post-operative phase, which resolved within one week, and a late OA pain phase starting 8 weeks post surgery and reaching statistical significance at week 12 (95% CI: sham 89.51-98.19, PMX 76.18-98.16). LABORAS, was able to detect pain behaviour in mice with CIA, but no statistically significant pain behaviour was observed in OA mice either post operatively (once analgesia had been controlled for) or at any later time points for any activity compared with the sham group. Conclusion Static incapacitance testing is superior to LABORAS for measuring spontaneous pain behaviour in surgically induced murine OA.
Collapse
Affiliation(s)
- Isabell S von Loga
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Yi-Shu Huang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Richard Williams
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Luke Jostins
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
10
|
Bansal S, Miller LM, Patel JM, Meadows KD, Eby MR, Saleh KS, Martin AR, Stoeckl BD, Hast M, Elliott DM, Zgonis MH, Mauck RL. Transection of the medial meniscus anterior horn results in cartilage degeneration and meniscus remodeling in a large animal model. J Orthop Res 2020; 38:2696-2708. [PMID: 32285971 PMCID: PMC7735384 DOI: 10.1002/jor.24694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
The meniscus plays a central load-bearing role in the knee joint. Unfortunately, meniscus injury is common and can lead to joint degeneration and osteoarthritis (OA). In small animal models, progressive degenerative changes occur with the unloading of the meniscus via destabilization of the medial meniscus (DMM). However, few large animal models of DMM exist and the joint-wide initiation of the disease has not yet been defined in these models. Thus, the goal of this study is to develop and validate a large animal model of surgically induced DMM and to use multimodal (mechanical, histological, and magnetic resonance imaging) and multiscale (joint to tissue level) quantitative measures to evaluate degeneration in both the meniscus and cartilage. DMM was achieved using an arthroscopic approach in 13 Yucatan minipigs. One month after DMM, joint contact area decreased and peak pressure increased, indicating altered load transmission as a result of meniscus destabilization. By 3 months, the joint had adapted to the injury and load transmission patterns were restored to baseline, likely due to the formation and maturation of a fibrovascular scar at the anterior aspect of the meniscus. Despite this, we found a decrease in the indentation modulus of the tibial cartilage and an increase in cartilage histopathology scores at 1 month compared to sham-operated animals; these deleterious changes persisted through 3 months. Over this same time course, meniscus remodeling was evident through decreased proteoglycan staining in DMM compared to sham menisci at both 1 and 3 months. These findings support that arthroscopic DMM results in joint degeneration in the Yucatan minipig and provide a new large animal testbed in which to evaluate therapeutics and interventions to treat post-traumatic OA that originates from a meniscal injury.
Collapse
Affiliation(s)
- Sonia Bansal
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jay M. Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Kyle D. Meadows
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michael R. Eby
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Anthony R. Martin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Brendan D. Stoeckl
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Michael Hast
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.,Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Miltiadis H. Zgonis
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Vincent TL. Of mice and men: converging on a common molecular understanding of osteoarthritis. THE LANCET. RHEUMATOLOGY 2020; 2:e633-e645. [PMID: 32989436 PMCID: PMC7511206 DOI: 10.1016/s2665-9913(20)30279-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a robust target in osteoarthritis pain in phase 2-3 trials. These studies, both positive and negative, align well with those in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our collective chance of success.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis, Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Alves CJ, Couto M, Sousa DM, Magalhães A, Neto E, Leitão L, Conceição F, Monteiro AC, Ribeiro-da-Silva M, Lamghari M. Nociceptive mechanisms driving pain in a post-traumatic osteoarthritis mouse model. Sci Rep 2020; 10:15271. [PMID: 32943744 PMCID: PMC7499425 DOI: 10.1038/s41598-020-72227-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
In osteoarthritis (OA), pain is the dominant clinical symptom, yet the therapeutic approaches remain inadequate. The knowledge of the nociceptive mechanisms in OA, which will allow to develop effective therapies for OA pain, is of utmost need. In this study, we investigated the nociceptive mechanisms involved in post-traumatic OA pain, using the destabilization of the medial meniscus (DMM) mouse model. Our results revealed the development of peripheral pain sensitization, reflected by augmented mechanical allodynia. Along with the development of pain behaviour, we observed an increase in the expression of calcitonin gene-related peptide (CGRP) in both the sensory nerve fibers of the periosteum and the dorsal root ganglia. Interestingly, we also observed that other nociceptive mechanisms commonly described in non-traumatic OA phenotypes, such as infiltration of the synovium by immune cells, neuropathic mechanisms and also central sensitization were not present. Overall, our results suggest that CGRP in the sensory nervous system is underlying the peripheral sensitization observed after traumatic knee injury in the DMM model, highlighting the CGRP as a putative therapeutic target to treat pain in post-traumatic OA. Moreover, our findings suggest that the nociceptive mechanisms involved in driving pain in post-traumatic OA are considerably different from those in non-traumatic OA.
Collapse
Affiliation(s)
- C J Alves
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.
| | - M Couto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - D M Sousa
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - A Magalhães
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - E Neto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - L Leitão
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - F Conceição
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - A C Monteiro
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - M Ribeiro-da-Silva
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal.,Serviço de Ortopedia e Traumatologia, Centro Hospitalar São João, Porto, Portugal
| | - M Lamghari
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| |
Collapse
|
13
|
Miller RE, Tran PB, Ishihara S, Syx D, Ren D, Miller RJ, Valdes AM, Malfait AM. Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. Osteoarthritis Cartilage 2020; 28:581-592. [PMID: 31982564 PMCID: PMC7214125 DOI: 10.1016/j.joca.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Following destabilization of the medial meniscus (DMM), mice develop experimental osteoarthritis (OA) and associated pain behaviors that are dependent on the stage of disease. We aimed to describe changes in gene expression in knee-innervating dorsal root ganglia (DRG) after surgery, in order to identify molecular pathways associated with three pre-defined pain phenotypes: "post-surgical pain", "early-stage OA pain", and "persistent OA pain". DESIGN We performed DMM or sham surgery in 10-week old male C57BL/6 mice and harvested L3-L5 DRG 4, 8, and 16 weeks after surgery or from age-matched naïve mice (n = 3/group). RNA was extracted and an Affymetrix Mouse Transcriptome Array 1.0 was performed. Three pain phenotypes were defined: "post-surgical pain" (sham and DMM 4-week vs 14-week old naïve), "early OA pain" (DMM 4-week vs sham 4-week), and "persistent OA pain" (DMM 8- and 16-week vs naïve and sham 8- and 16-week). 'Top hit' genes were defined as P < 0.001. Pathway analysis (Ingenuity Pathway Analysis) was conducted using differentially expressed genes defined as P < 0.05. In addition, we performed qPCR for Ngf and immunohistochemistry for F4/80+ macrophages in the DRG. RESULTS For each phenotype, top hit genes identified a small number of differentially expressed genes, some of which have been previously associated with pain (7/67 for "post-surgical pain"; 2/14 for "early OA pain"; 8/37 for "persistent OA pain"). Overlap between groups was limited, with 8 genes differentially regulated (P < 0.05) in all three phenotypes. Pathway analysis showed that in the persistent OA pain phase many of the functions of differentially regulated genes are related to immune cell recruitment and activation. Genes previously linked to OA pain (CX3CL1, CCL2, TLR1, and NGF) were upregulated in this phenotype and contributed to activation of the neuroinflammation canonical pathway. In separate sets of mice, we confirmed that Ngf was elevated in the DRG 8 weeks after DMM (P = 0.03), and numbers of F4/80+ macrophages were increased 16 weeks after DMM (P = 0.002 vs Sham). CONCLUSION These transcriptomics findings support the idea that distinct molecular pathways discriminate early from persistent OA pain. Pathway analysis suggests neuroimmune interactions in the DRG contribute to initiation and maintenance of pain in OA.
Collapse
Affiliation(s)
- Rachel E. Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Phuong B. Tran
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Delfien Syx
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago IL
| | | | - Ana M. Valdes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham UK
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| |
Collapse
|
14
|
Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis Cartilage 2020; 28:562-571. [PMID: 31862470 PMCID: PMC6951330 DOI: 10.1016/j.joca.2019.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
In this narrative review, we discuss the emerging role of innate immunity in osteoarthritis (OA) joint pain. First, we give a brief description of the pain pathway in the context of OA. Then we consider how neuro-immune signaling pathways may promote OA pain. First, activation of neuronal Pattern Recognition Receptors by mediators released in a damaged joint can result in direct excitation of nociceptors, as well as in production of chemokines and cytokines. Secondly, indirect neuro-immune signaling may occur when innate immune cells produce algogenic factors, including chemokines and cytokines, that act on the pain pathway. Neuro-immune crosstalk occurs at different levels of the pathway, starting in the joint but also in the innervating dorsal root ganglia and in the dorsal horn. Synovitis is characterized by recruitment of immune cells, including macrophages, mast cells, and CD4+ lymphocytes, which may contribute to nociceptor sensitization and OA pain through production of algogenic factors that amplify the activation of sensory neurons. We discuss examples where this scenario has been suggested by findings in human OA and in animal models. Overall, increasing evidence suggests that innate immune pathways play an initiating as well as facilitating role in pain, but information on how these pathways operate in OA remains limited. Since these innate pathways are eminently targetable, future studies in this area may provide fruitful leads towards a better management of symptomatic OA.
Collapse
|
15
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
16
|
Joutoku Z, Onodera T, Matsuoka M, Homan K, Momma D, Baba R, Hontani K, Hamasaki M, Matsubara S, Hishimura R, Iwasaki N. CCL21/CCR7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults. Sci Rep 2019; 9:5165. [PMID: 30914733 PMCID: PMC6435673 DOI: 10.1038/s41598-019-41621-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile tissue healing is capable of extensive scarless healing that is distinct from the scar-forming process of the adult healing response. Although many growth factors can be found in the juvenile healing process, the molecular mechanisms of juvenile tissue healing are poorly understood. Here we show that juvenile mice deficient in the chemokine receptor CCR7 exhibit diminished large-scale healing potential, whereas CCR7-depleted adult mice undergo normal scar-forming healing similar to wild type mice. In addition, the CCR7 ligand CCL21 was transiently expressed around damaged cartilage in juvenile mice, whereas it is rarely expressed in adults. Notably, exogenous CCL21 administration to adults decreased scar-forming healing and enhanced hyaline-cartilage repair in rabbit osteochondral defects. Our data indicate that the CCL21/CCR7 axis may play a role in the molecular control mechanism of juvenile cartilage repair, raising the possibility that agents modulating the production of CCL21 in vivo can improve the quality of cartilage repair in adults. Such a strategy may prevent post-traumatic arthritis by mimicking the self-repair in juvenile individuals.
Collapse
Affiliation(s)
- Zenta Joutoku
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan. .,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo, Japan.
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Momma
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rikiya Baba
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazutoshi Hontani
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanari Hamasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinji Matsubara
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryosuke Hishimura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability worldwide. OA-associated pain is usually refractory to classically used analgesics, and disease-modifying therapies are still lacking. Therefore, a better understanding of mechanisms and mediators contributing to the generation and maintenance of OA pain is critical for the development of efficient and safe pain-relieving therapies. RECENT FINDINGS Both peripheral and central mechanisms contribute to OA pain. Clinical evidence suggests that a strong peripheral nociceptive drive from the affected joint maintains pain and central sensitization associated with OA. Mediators present in the OA joint, including nerve growth factor, chemokines, cytokines, and inflammatory cells can contribute to sensitization. Furthermore, structural alterations in joint innervation and nerve damage occur in the course of OA. Several interrelated pathological processes, including joint damage, structural reorganization of joint afferents, low-grade inflammation, neuroplasticity, and nerve damage all contribute to the pain observed in OA. It can be anticipated that elucidating exactly how these mechanisms are operational in the course of progressive OA may lead to the identification of novel targets for intervention.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University, De Pintelaan 185, Ghent, Belgium
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Phuong B Tran
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA.
| |
Collapse
|