1
|
Huang J, Wu T, Jiang YR, Zheng XQ, Wang H, Liu H, Wang H, Leng HJ, Fan DW, Yuan WQ, Song CL. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Res 2024; 12:18. [PMID: 38514644 PMCID: PMC10958005 DOI: 10.1038/s41413-024-00321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the β-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-βAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.
Collapse
Affiliation(s)
- Jie Huang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Tong Wu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Xuan-Qi Zheng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Huan Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hao Liu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Hui-Jie Leng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Dong-Wei Fan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Wan-Qiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Chun-Li Song
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China.
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China.
| |
Collapse
|
2
|
Adl Amini D, Wu CH, Perka C, Bäcker HC. Cure rate of infections is not an argument for spacer in two-stage revision arthroplasty of the hip. Arch Orthop Trauma Surg 2023; 143:2199-2207. [PMID: 35534712 PMCID: PMC10030410 DOI: 10.1007/s00402-022-04463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION A devastating complication after total hip arthroplasty (THA) is chronic periprosthetic joint infection (PJI). Most frequently spacers (Sp) with or without antibiotics are implanted in a two-stage procedure even though not always indicated due to unknown pathogen, femoral and acetabular defects or muscular insufficiency. MATERIALS AND METHODS A retrospective analysis of a prospectively collected database was conducted, analyzing the treatment of 44 consecutive cases with chronic PJI undergoing two-stage revision using a Girdlestone situation (GS) in the interim period between 01/2015 and 12/2018. Diagnostics included intraoperative microbiological cultures, histological analysis, sonication of the initial implant, analysis of hip aspiration, as well as laboratory diagnostics and blood cultures. We analyzed the general and age-group-specific success rate of treatment using GS. Furthermore, we compared our data with the current literature on spacer implantation regarding common complications. RESULTS In total, 21 female and 23 male patients at a mean age of 59.3 ± 9.6 years were included. Age groups were divided into young, mid-age, and elderly. In most patients, microbiology revealed Staphylococcus epidermidis in 39.1% of cases, following Staphylococcus lugdunensis and Staphylococcus aureus in 10.9% after THA explantation. For histology, Krenn and Morawietz type 2 (infectious type) was diagnosed in 40.9%, type 3 (infectious and abrade-induced type) in 25.0%. With GS, the total cure rate was 84.1% compared to 90.1% (range 61-100%) using Sp as described in the literature. Among age-groups, cure rate varied between 77.8 and 100%. Other complications, which only occurred in the mid-age and elderly group, included the necessity of transfusion in 31.1%, and in total, one periprosthetic fracture was identified (2.3%). CONCLUSION GS shows an acceptable cure rate at a minimum of 2 years when compared to the cure rate reported in the literature for Sp without major complications. For patients with increased risks for treatment failure using spacer, GS seems to be an alternative for chronic PJI when looking at the success rate of treatment. LEVEL OF EVIDENCE III, Retrospective trial.
Collapse
Affiliation(s)
- Dominik Adl Amini
- Department of Orthopedic Surgery and Traumatology, Charité, University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Chia H Wu
- Department of Orthopedics & Sports Medicine, Baylor College of Medicine Medical Center, Houston, TX, USA
| | - Carsten Perka
- Department of Orthopedic Surgery and Traumatology, Charité, University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Henrik C Bäcker
- Department of Orthopedic Surgery and Traumatology, Charité, University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
3
|
Zhang C, Zhu J, Jia J, Guan Z, Sun T, Zhang W, Yuan W, Wang H, Leng H, Song C. Once-weekly parathyroid hormone combined with ongoing long-term alendronate treatment promotes osteoporotic fracture healing in ovariectomized rats. J Orthop Res 2021; 39:2103-2115. [PMID: 33325546 DOI: 10.1002/jor.24953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
This study examined the effect of once-weekly parathyroid hormone (PTH) combined with alendronate upon osteoporotic fracture healing after long-term alendronate anti-osteoporosis therapy. Seventy-six 12-week-old female Sprague-Dawley rats were either sham operated or bilaterally ovariectomized (OVX). Following confirmation of osteoporosis 3 months after OVX, the remaining 64 animals received alendronate therapy. After 3 months of alendronate treatment, all rats underwent unilateral transverse tibial osteotomy. Animals were immediately randomly assigned to one of four groups: (1) alendronate followed by vehicle (ALN-VEH), (2) continuation of alendronate (ALN-ALN), (3) alendronate followed by once-weekly PTH alone (ALN-PTH), (4) continuation of alendronate combined with once-weekly PTH (ALN-ALN + PTH) until collection at 4 or 8 weeks after osteotomy. The fractured tibia was assessed using x-ray, dual-energy x-ray absorptiometry, microcomputed tomography, biomechanical testing, histology, and sequential fluorescence labeling. The ALN-ALN + PTH treatment significantly increased total callus volume, mineralized callus volume, mineralized callus volume/total callus volume, and biomechanical strength of the callus relative to ALN-VEH and ALN-PTH treatments at both 4 and 8 weeks and produced more mature trabecular bone compared with ALN-ALN treatment at 8 weeks. RANKL/osteoprotegerin (OPG) are osteoclastogenesis markers, while cluster of differentiation 31 (CD31) is an important marker of angiogenesis. Qualitative immunohistochemical analysis revealed that CD31 and OPG expression was was strong after ALN-ALN + PTH compared with ALN-ALN treatment, whereas RANKL expression was weak after ALN-ALN + PTH versus ALN-PTH treatment. Our study showed that once-weekly PTH combined with alendronate was beneficial in promoting the healing of fractures acquired after long-term alendronate therapy in OVX-induced osteoporotic rats.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Tiantong Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
4
|
Zhu J, Zhang C, Jia J, Yuan W, Zhang M, Leng H, Song C. Effect of weekly teriparatide injections on osteoporotic fracture healing: protocol for a double-blind, randomised controlled trial. BMJ Open 2021; 11:e043137. [PMID: 33795297 PMCID: PMC8021745 DOI: 10.1136/bmjopen-2020-043137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Both animal studies and clinical trials have shown that daily parathyroid hormone administration promotes bone fracture healing. We previously found that weekly injections of the recombinant human parathyroid hormone teriparatide at a dosage of 20 μg/kg promoted tibial fracture healing to the same extent as daily injections of teriparatide at a dosage of 10 μg/kg in a rodent model. However, the effect of weekly teriparatide administration on human fracture healing is unreported. This protocol describes a randomised controlled clinical trial designed to evaluate whether weekly administration of teriparatide accelerates fracture repair in humans. METHODS AND ANALYSIS This single-centre, double-blind, randomised controlled trial will be conducted in Peking University Third Hospital. Eligible patients with Colles' fracture incurred within 48 hours will be randomly divided into two groups (n=40 per group) that will receive 14 weekly subcutaneous injections of either saline or teriparatide (40 μg/week). The primary outcome will be the time taken to achieve radiographic healing, as assessed using the modified radiographic union scale for tibial fractures. The secondary outcomes will be functional assessments, including the self-administered Patient-Rated Wrist Evaluation questionnaire, grip strength and rate of fracture non-union. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Peking University Third Hospital Medical Science Research Ethics Committee (M2020207). The findings will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT04473989: protocol version: 1.
Collapse
Affiliation(s)
- Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Min Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
5
|
Ota M, Takahata M, Shimizu T, Momma D, Hamano H, Hiratsuka S, Amizuka N, Hasegawa T, Iwasaki N. Optimal administration frequency and dose of teriparatide for acceleration of biomechanical healing of long-bone fracture in a mouse model. J Bone Miner Metab 2019; 37:256-263. [PMID: 29721806 DOI: 10.1007/s00774-018-0930-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 01/05/2023]
Abstract
Despite preclinical studies demonstrating the effectiveness of teriparatide for skeletal repair in small animals, inconclusive data from clinical trials have raised questions regarding the optimal teriparatide dosing regimen for bone repair. To address this, we assessed the effect of teriparatide frequency and dose on long-bone healing using a mouse femur osteotomy/fracture model. Eight-week-old male ICR mice were subjected to open femur osteotomies, then randomized into following five groups (n = 8 per group): vehicle; low dose/high frequency: 3 μg/kg/dose, 3 times/day; low dose/low frequency: 9 μg/kg/dose, 1 time/day; high dose/high frequency: 9 μg/kg/dose, 3 times/day; high dose/low frequency: 27 μg/kg/dose, 1 time/day. Skeletal repair was assessed by microcomputed tomography, mechanical testing, and histology 4 weeks after surgery. High-dose and/or high-frequency teriparatide treatment increased callus bone volume but failed to have a significant impact on the biomechanical recovery of fractured femurs, possibly because of impaired cortical shell formation in fracture calluses. Meanwhile, low-dose/low-frequency teriparatide therapy enhanced callus bone formation without interfering with cortical shell formation despite a lesser increase in callus bone volume, leading to significant two and fourfold increases in ultimate load and stiffness, respectively. Our findings demonstrate that administering teriparatide at higher doses and/or higher frequencies raises fracture callus volume but does not always accelerate the biomechanical recovery of fractured bone, which points to the importance of finding the optimal teriparatide dosing regimen for accelerating skeletal repair.
Collapse
Affiliation(s)
- Masahiro Ota
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Momma
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroki Hamano
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shigeto Hiratsuka
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
6
|
Abstract
Orthobiologics are a group of biological materials and substrates that promote bone, ligament, muscle, and tendon healing. These substances include bone autograft, bone allograft, demineralized bone matrix, bone graft substitutes, bone marrow aspirate concentrate, platelet-rich plasma, bone morphogenetic proteins, platelet-derived growth factor, parathyroid hormone, and vitamin D and calcium. Properties of orthobiologics in bone healing include osteoconduction, osteoinduction, and osteogenesis. This article discusses the important properties of orthobiologics in bone healing, many of the orthobiologics currently available for bone healing, the related literature, their current clinical uses in sports medicine, and systemic factors that inhibit bone healing.
Collapse
Affiliation(s)
- Jacob G Calcei
- Department of Sports Medicine and Shoulder, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA.
| | - Scott A Rodeo
- Department of Sports Medicine and Shoulder, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA
| |
Collapse
|
7
|
Makino T, Tsukazaki H, Ukon Y, Tateiwa D, Yoshikawa H, Kaito T. The Biological Enhancement of Spinal Fusion for Spinal Degenerative Disease. Int J Mol Sci 2018; 19:ijms19082430. [PMID: 30126106 PMCID: PMC6121547 DOI: 10.3390/ijms19082430] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
In this era of aging societies, the number of elderly individuals who undergo spinal arthrodesis for various degenerative diseases is increasing. Poor bone quality and osteogenic ability in older patients, due to osteoporosis, often interfere with achieving bone fusion after spinal arthrodesis. Enhancement of bone fusion requires shifting bone homeostasis toward increased bone formation and reduced resorption. Several biological enhancement strategies of bone formation have been conducted in animal models of spinal arthrodesis and human clinical trials. Pharmacological agents for osteoporosis have also been shown to be effective in enhancing bone fusion. Cytokines, which activate bone formation, such as bone morphogenetic proteins, have already been clinically used to enhance bone fusion for spinal arthrodesis. Recently, stem cells have attracted considerable attention as a cell source of osteoblasts, promising effects in enhancing bone fusion. Drug delivery systems will also need to be further developed to assure the safe delivery of bone-enhancing agents to the site of spinal arthrodesis. Our aim in this review is to appraise the current state of knowledge and evidence regarding bone enhancement strategies for spinal fusion for degenerative spinal disorders, and to identify future directions for biological bone enhancement strategies, including pharmacological, cell and gene therapy approaches.
Collapse
Affiliation(s)
- Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tsukazaki
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Kumabe Y, Lee SY, Waki T, Iwakura T, Takahara S, Arakura M, Kuroiwa Y, Fukui T, Matsumoto T, Matsushita T, Nishida K, Kuroda R, Niikura T. Triweekly administration of parathyroid hormone (1-34) accelerates bone healing in a rat refractory fracture model. BMC Musculoskelet Disord 2017; 18:545. [PMID: 29268728 PMCID: PMC5740882 DOI: 10.1186/s12891-017-1917-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Some reports have shown that intermittent parathyroid hormone (PTH) (1-34) treatment for patients with delayed union or nonunion have led to successful healing. In this study, we investigated whether systemic intermittent administration of PTH (1-34) has a beneficial effect on bone healing in a rat refractory fracture model. METHODS We created a refractory femoral fracture model in 32 rats with periosteal cauterization that leads to atrophic nonunion at 8 weeks after surgery. Half the rats received subcutaneous intermittent human PTH (1-34) injections at a dosage of 100 μg/kg, thrice a week for 8 weeks. The other half received the vehicle only. At 8 weeks after fracture, radiographic, histological and mechanical assessments were performed. RESULTS Radiographic assessments showed that the union rate was significantly higher in the PTH group than in the control group (P < 0.05). The degree of fracture repair as scored using the Allen grading system in histological assessment was significantly greater in the PTH group than in the control group (P < 0.05). The ultimate stress and stiffness measurements were significantly greater in the PTH group than in the control group (p < 0.05). CONCLUSIONS We demonstrated that triweekly administration of PTH (1-34) increased union rate and accelerated bone healing in a rat refractory fracture model, suggesting that systemic administration of PTH (1-34) could become a novel and useful therapy for accelerating fracture healing in patients at high risk of delayed union or nonunion.
Collapse
Affiliation(s)
- Yohei Kumabe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sang Yang Lee
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Takahiro Waki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takashi Iwakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shunsuke Takahara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michio Arakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yu Kuroiwa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|