1
|
Kalbas Y, Kumabe Y, Karl-Ludwig F, Halvachizadeh S, Teuben MPJ, Weisskopf M, Cesarovic N, Hülsmeier AJ, Märsmann S, Hierholzer C, Hildebrand F, Hornemann T, Pfeifer R, Cinelli P, Pape HC. Systemic acylcarnitine levels are affected in response to multiple injuries and hemorrhagic shock: An analysis of lipidomic changes in a standardized porcine model. J Trauma Acute Care Surg 2024; 97:248-257. [PMID: 38556639 DOI: 10.1097/ta.0000000000004328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Along with recent advances in analytical technologies, tricarboxylic acid-cycle intermediates are increasingly identified as promising makers for cellular ischemia and mitochondrial dysfunction during hemorrhagic shock. For traumatized patients, the knowledge of the role of lipid oxidation substrates is sparse. In this study, we aimed to analyze the dynamics of systemic acylcarnitine (AcCa) release in a standardized polytrauma model with hemorrhagic shock. METHODS Fifty-two male pigs (50 ± 5 kg) were randomized into two groups: group isolated fracture was subject to a standardized femur shaft fracture, and group polytrauma was subject to a femur fracture, followed by blunt chest trauma, liver laceration, and a pressure-controlled hemorrhagic shock for 60 minutes. Resuscitation was performed with crystalloids. Fractures were stabilized by intramedullary nailing. Venous samples were collected at six time points (baseline, trauma, resuscitation, 2 hours, 4 hours, and 6 hours). Lipidomic analysis was performed via liquid chromatography coupled mass spectrometry. Measurements were collated with clinical markers and near-infrared spectrometry measurements of tissue perfusion. Longitudinal analyses were performed with linear mixed models, and Spearman's correlations were calculated. A p value of 0.05 was defined as threshold for statistical significance. RESULTS From a total of 303 distinct lipids, we identified two species of long-chain AcCas. Both showed a highly significant ( p < 0.001) twofold increase after hemorrhagic shock in group polytrauma that promptly normalized after resuscitation. This increase was associated with a significant decrease of the base excess ( p = 0.005), but recovery after resuscitation was faster. For both AcCas, there were significant correlations with decreased muscle tissue oxygen delivery ( p = 0.008, p = 0.003) and significant time-lagged correlations with the increase of creatine kinase ( p < 0.001, p < 0.001). CONCLUSION Our results point to plasma AcCas as a possible indicator for mitochondrial dysfunction and cellular ischemia in hemorrhagic shock. The more rapid normalization after resuscitation in comparison with acid base changes may warrant further investigation.
Collapse
Affiliation(s)
- Yannik Kalbas
- From the Department of Trauma Surgery (Y. Kalbas, F.K.-L., S.H., M.P.J.T., R.P., P.C., H.-C.P.), University Hospital Zurich, Harald-Tscherne Laboratory for Orthopaedic and Trauma Research (Y. Kalbas, Y. Kumabe, F.K.-L., S.H., M.P.J.T., S.M., C.H., R.P., P.C., H.-C.P.), Center for Preclinical Development (M.W.), University Hospital of Zurich, University of Zurich; Department of Health Sciences and Technology (N.C.), Swiss Federal Institute of Technology; Institute of Clinical Chemistry (A.J.H., T.H.), University Hospital Zurich, University of Zurich, Zurich, Switzerland; and Department of Orthopaedic Trauma and Reconstructive Surgery (F.H.), University Hospital RWTH, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yao Z, Chen Y, Li D, Li Y, Liu Y, Fan H. HEMORRHAGIC SHOCK ASSESSED BY TISSUE MICROCIRCULATORY MONITORING: A NARRATIVE REVIEW. Shock 2024; 61:509-519. [PMID: 37878487 DOI: 10.1097/shk.0000000000002242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Hemorrhagic shock (HS) is a common complication after traumatic injury. Early identification of HS can reduce patients' risk of death. Currently, the identification of HS relies on macrocirculation indicators such as systolic blood pressure and heart rate, which are easily affected by the body's compensatory functions. Recently, the independence of the body's overall macrocirculation from microcirculation has been demonstrated, and microcirculation indicators have been widely used in the evaluation of HS. In this study, we reviewed the progress of research in the literature on the use of microcirculation metrics to monitor shock. We analyzed the strengths and weaknesses of each metric and found that microcirculation monitoring could not only indicate changes in tissue perfusion before changes in macrocirculation occurred but also correct tissue perfusion and cell oxygenation after the macrocirculation index returned to normal following fluid resuscitation, which is conducive to the early prediction and prognosis of HS. However, microcirculation monitoring is greatly affected by individual differences and environmental factors. Therefore, the current limitations of microcirculation assessments mean that they should be incorporated as part of an overall assessment of HS patients. Future research should explore how to better combine microcirculation and macrocirculation monitoring for the early identification and prognosis of HS patients.
Collapse
Affiliation(s)
| | | | | | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | | | | |
Collapse
|
3
|
Wise PM, Saiz AM, Haller J, Wenke JC, Schaer T, Schneider P, Morshed S, Bahney CS. Preclinical models of orthopaedic trauma: Orthopaedic Research Society (ORS) and Orthopaedic Trauma Association (OTA) symposium 2022. OTA Int 2024; 7:e303. [PMID: 38487400 PMCID: PMC10936151 DOI: 10.1097/oi9.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Orthopaedic trauma remains a leading cause of patient morbidity, mortality, and global health care burden. Although significant advances have been made in the diagnosis, treatment, and rehabilitation of these injuries, complications such as malunion, nonunion, infection, disuse muscle atrophy and osteopenia, and incomplete return to baseline function still occur. The significant inherent clinical variability in fracture care such as differing patient demographics, injury patterns, and treatment protocols make standardized and replicable study, especially of cellular and molecular based mechanisms, nearly impossible. Hence, the scientists dedicated to improving therapy and treatments for patients with orthopaedic trauma rely on preclinical models. Preclinical models have proven to be invaluable in understanding the timing between implant insertion and bacterial inoculation on the bioburden of infection. Posttraumatic arthritis (PTOA) can take years to develop clinically, but with a porcine pilon fracture model, posttraumatic arthritis can be reliably induced, so different surgical and therapeutic strategies can be tested in prevention. Conversely, the racehorse presents a well-accepted model of naturally occurring PTOA. With preclinical polytrauma models focusing on chest injury, abdominal injury, multiple fractures, and/or head injury, one can study how various injury patterns affect fracture healing can be systemically studied. Finally, these preclinical models serve as a translational bridge to for clinical application in human patients. With selection of the right preclinical model, studies can build a platform to decrease the risk of emerging technologies and provide foundational support for therapeutic clinical trials. In summary, orthopaedic trauma preclinical models allow scientists to simplify a complex clinical challenge, to understand the basic pathways starting with lower vertebrate models. Then, R&D efforts progress to higher vertebrate models to build in more complexity for translation of findings to the clinical practice.
Collapse
Affiliation(s)
- Patrick M. Wise
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA
| | - Augustine M. Saiz
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA
| | - Justin Haller
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT
| | - Joseph C. Wenke
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch at Galveston, Galveston, TX
- Shriners Children's Texas, Galveston, TX
| | - Thomas Schaer
- Department of Clinical Studies, New Bolton Center University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - Prism Schneider
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Saam Morshed
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA
| | - Chelsea S. Bahney
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA
- Center for Regenerative and Personalized Medicine, The Steadman Clinic & Steadman Philippon Research Institute, Vail, CO
| |
Collapse
|
4
|
Halvachizadeh S, Kalbas Y, Teuben MPJ, Teuber H, Cesarovic N, Weisskopf M, Cinelli P, Pape HC, Pfeifer R. Effects of Occult Hypoperfusion on Local Circulation and Inflammation - An Analysis in a Standardized Polytrauma Model. Front Immunol 2022; 13:894270. [PMID: 35799796 PMCID: PMC9254728 DOI: 10.3389/fimmu.2022.894270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionOccult hypoperfusion (OH) is defined as persistent lactic acidosis despite normalization of vital parameters following trauma. The aim of this study was to analyze the association of occult hypoperfusion with local circulation and inflammation of injured soft tissue in a porcine polytrauma model.MethodsThis experimental study was performed with male landrace pigs who suffered a standardized polytrauma, including a femoral fracture, blunt chest trauma, liver laceration and a mean arterial pressure (MAP) controlled hemorrhagic shock. One hour after induction of trauma, the animals were resuscitated with retrograde femoral nailing, liver packing and volume replacement. Animals were stratified into Group Norm (normalizing lactate levels after resuscitation) and Group occult hypoperfusion (OH) (persistent lactate levels above 2 mmol/l with normalizing vital parameters after resuscitation). Local circulation (oxygen saturation, hemoglobin amount, blood flow) was measured with optical sensors at the subcutaneous soft tissue at the fractured extremity as well as at the stomach and colon. Local inflammatory parameters [interleukin (IL) 6, 8, 10, and heat shock protein (HSP)] were analyzed in the subcutaneous tissue of the fractured extremity.ResultsGroup Norm (n = 19) and Group OH (n = 5) were comparable in baseline vital and laboratory parameters. The shock severity and total amount of blood loss were comparable among Group Norm and Group OH. Following resuscitation Group OH had significantly lower local relative hemoglobin amount at the injured soft tissue of the fractured extremity when compared with Group Norm (39.4, SD 5.3 vs. 63.9, SD 27.6 A.U., p = 0.031). The local oxygenation was significantly lower in Group OH compared to Group Norm (60.4, SD 4.6 vs. 75.8, SD 12.8, p = 0.049). Local IL-6 in the fatty tissue was significantly higher in Group OH (318.3, SD 326.6 [pg/ml]) when compared with Group Norm (73.9,SD 96.3[pg/ml], p = 0.03). The local circulation at the abdominal organs was comparable in both groups.ConclusionOH is associated with decreased local circulation and increased local inflammation at the injured soft tissue of the extremity in polytrauma. OH might reflect the severity of local soft tissue injuries, and guide treatment strategies.
Collapse
Affiliation(s)
- Sascha Halvachizadeh
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
- Harald Tscherne Research Laboratory, University of Zurich, Zurich, Switzerland
- *Correspondence: Sascha Halvachizadeh,
| | - Yannik Kalbas
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
- Harald Tscherne Research Laboratory, University of Zurich, Zurich, Switzerland
| | | | - Henrik Teuber
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Center for Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
- Harald Tscherne Research Laboratory, University of Zurich, Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
- Harald Tscherne Research Laboratory, University of Zurich, Zurich, Switzerland
| | - Roman Pfeifer
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
- Harald Tscherne Research Laboratory, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Wong YC, Wang LJ, Wu CH, Chen HW, Yuan KC, Hsu YP, Lin BC, Kang SC. Differences of liver CT perfusion of blunt trauma treated with therapeutic embolization and observation management. Sci Rep 2020; 10:19612. [PMID: 33184342 PMCID: PMC7661500 DOI: 10.1038/s41598-020-76618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Massive hepatic necrosis after therapeutic embolization has been reported. We employed a 320-detector CT scanner to compare liver perfusion differences between blunt liver trauma patients treated with embolization and observation. This prospective study with informed consent was approved by institution review board. From January 2013 to December 2016, we enrolled 16 major liver trauma patients (6 women, 10 men; mean age 34.9 ± 12.8 years) who fulfilled inclusion criteria. Liver CT perfusion parameters were calculated by a two-input maximum slope model. Of 16 patients, 9 received embolization and 7 received observation. Among 9 patients of embolization group, their arterial perfusion (78.1 ± 69.3 versus 163.1 ± 134.3 mL/min/100 mL, p = 0.011) and portal venous perfusion (74.4 ± 53.0 versus 160.9 ± 140.8 mL/min/100 mL, p = 0.008) were significantly lower at traumatic parenchyma than at non-traumatic parenchyma. Among 7 patients of observation group, only portal venous perfusion was significantly lower at traumatic parenchyma than non-traumatic parenchyma (132.1 ± 127.1 vs. 231.1 ± 174.4 mL/min/100 mL, p = 0.018). The perfusion index between groups did not differ. None had massive hepatic necrosis. They were not different in age, injury severity score and injury grades. Therefore, reduction of both arterial and portal venous perfusion can occur when therapeutic embolization was performed in preexisting major liver trauma, but hepatic perfusion index may not be compromised.
Collapse
Affiliation(s)
- Yon-Cheong Wong
- Emergency and Critical Care Radiology, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, 5 Fu-Hsin Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Li-Jen Wang
- Emergency and Critical Care Radiology, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, 5 Fu-Hsin Street, Gueishan, Taoyuan, 333, Taiwan
| | - Cheng-Hsien Wu
- Emergency and Critical Care Radiology, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, 5 Fu-Hsin Street, Gueishan, Taoyuan, 333, Taiwan
| | - Huan-Wu Chen
- Emergency and Critical Care Radiology, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, 5 Fu-Hsin Street, Gueishan, Taoyuan, 333, Taiwan
| | - Kuo-Ching Yuan
- Division of Trauma and Emergency Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Pao Hsu
- Division of Trauma and Emergency Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Being-Chuan Lin
- Division of Trauma and Emergency Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Ching Kang
- Division of Trauma and Emergency Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Abstract
Microvascular dysfunction is a frequent complication of many chronic and acute conditions, especially in the critically ill. Moreover, the severity of microvascular alterations is associated with development of organ dysfunction and poor outcome. The complexities and heterogeneity of critical illness, especially in the elderly patient, requires more mechanistically oriented clinical trials that monitor the effectiveness of existing therapies and of those to come. Recent advances in the ability to obtain physiologically based assessments of microcirculatory function at the bedside will make microcirculatory-guided resuscitation a point of care reality.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals and Université Libre de Bruxelles, Bd du Triomphe 201, 1160 Brussels, Belgium
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611, Little Rock, AR 72212, USA.
| |
Collapse
|
7
|
Haffner-Luntzer M, Hankenson KD, Ignatius A, Pfeifer R, Khader BA, Hildebrand F, van Griensven M, Pape HC, Lehmicke M. Review of Animal Models of Comorbidities in Fracture-Healing Research. J Orthop Res 2019; 37:2491-2498. [PMID: 31444806 DOI: 10.1002/jor.24454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
Abstract
There is clinical evidence that patient-specific comorbidities like osteoporosis, concomitant tissue injury, and ischemia may strongly interfere with bone regeneration. However, underlying mechanisms are still unclear. To study these mechanisms in detail, appropriate animal models are needed. For decades, bone healing has been studied in large animals, including dogs, rabbits, pigs, or sheep. However, large animal models display a limited ability to study molecular pathways and cellular functions. Therefore in recent years, mice and rats have become increasingly popular as a model organism for fracture healing research due to the availability of molecular analysis tools and transgenic models. Both large and small animals can be used to study comorbidities and risk factors, modelling the human clinical situation. However, attention has to be paid when choosing an appropriate model due to species differences between large animals, rodents, and humans. This review focuses on large and small animal models for the common comorbidities ischemic injury/reduced vascularization, osteoporosis, and polytrauma, and critically discusses the translational and molecular aspects of these models. Here, we review material which was presented at the workshop "Animal Models of Comorbidities in Fracture Healing Research" at the 2019 ORS Annual Meeting in Austin Texas. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2491-2498, 2019.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Basel A Khader
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Michael Lehmicke
- Alliance for Regenerative Medicine, Washington, District of Columbia
| |
Collapse
|
8
|
Cinelli P, Rauen K, Halvazishadeh S, Pape HC. Translational research: what is the value of experimental studies in comparison with clinical studies to help understand clinical problems? Eur J Trauma Emerg Surg 2018; 44:645-647. [PMID: 30209526 DOI: 10.1007/s00068-018-1003-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Paolo Cinelli
- Department of Trauma, Universitaetsspital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, IREM, University of Zurich, Campus Schlieren, Wagistrasse 12, Schlieren, 8952, Zurich, Switzerland
| | - Sascha Halvazishadeh
- Department of Trauma, Universitaetsspital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hans Christoph Pape
- Department of Trauma, Universitaetsspital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
9
|
Kalbas Y, Qiao Z, Horst K, Teuben M, Tolba RH, Hildebrand F, Pape HC, Pfeifer R. Early local microcirculation is improved after intramedullary nailing in comparison to external fixation in a porcine model with a femur fracture. Eur J Trauma Emerg Surg 2018; 44:689-696. [PMID: 30159661 DOI: 10.1007/s00068-018-0991-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The local circulatory changes induced by intramedullary reaming are not fully understood. This study aimed to analyse the short-term local microcirculation associated with different surgical strategies in a porcine model with a mid-shaft fracture. METHODS German landrace pigs were subjected to a standardised femoral fracture under standard anaesthesia and intensive care monitoring. One group was subjected to intramedullary reaming and nailing (nail group), while a second group was stabilised with external fixation (fix ex group). Microcirculation [e.g. relative blood flow (flow), oxygen saturation and relative haemoglobin concentration] was measured in the vastus lateralis muscle adjacent to the fracture using an O2C (oxygen to see, LEA Medizintechnik GMBH) device at 0 (before fracture, baseline), 6 (90-min posttreatment), 24, 48 and 72 h. RESULTS A total of 24 male pigs were used (nail group, n = 12; fix ex group, n = 12). During the observation period, a significant increase of flow was found at 6 (P = 0.048), 48 (P = 0.023) and 72 h (P = 0.042) in comparison with baseline levels. Local oxygen delivery was significantly higher at 48 (P = 0.017) and 72 h (P = 0.021) in animals in the nail group compared to animals in the external fixation group. CONCLUSION This study used a standardised porcine femoral fracture model and determined a significant increase in local blood microcirculation (e.g. flow and oxygen delivery) in animals treated with intramedullary reaming compared to external fixation. These changes may be of importance for fracture healing and local and systemic inflammatory responses. Further studies in this area are justified.
Collapse
Affiliation(s)
- Yannik Kalbas
- Department of Trauma Surgery and Harald-Tscherne Laboratory, University Hospital Zurich, University of Zurich, Ramistr. 100, 8091, Zurich, Switzerland
| | - Zhi Qiao
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Klemens Horst
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Michel Teuben
- Department of Trauma Surgery and Harald-Tscherne Laboratory, University Hospital Zurich, University of Zurich, Ramistr. 100, 8091, Zurich, Switzerland
| | - René H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Hans-Christoph Pape
- Department of Trauma Surgery and Harald-Tscherne Laboratory, University Hospital Zurich, University of Zurich, Ramistr. 100, 8091, Zurich, Switzerland
| | - Roman Pfeifer
- Department of Trauma Surgery and Harald-Tscherne Laboratory, University Hospital Zurich, University of Zurich, Ramistr. 100, 8091, Zurich, Switzerland.
| |
Collapse
|