1
|
Doi K, Moazamian D, Namiranian B, Statum S, Afsahi AM, Yamamoto T, Cheng KY, Chung CB, Jerban S. The Correlation between the Elastic Modulus of the Achilles Tendon Enthesis and Bone Microstructure in the Calcaneal Crescent. Tomography 2024; 10:1665-1675. [PMID: 39453039 PMCID: PMC11511113 DOI: 10.3390/tomography10100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The calcaneal enthesis, an osseous footprint where the Achilles tendon seamlessly integrates with the bone, represents a complex interface crucial for effective force transmission. Bone adapts to mechanical stress and remodels based on the applied internal and external forces. This study explores the relationship between the elasticity of the Achilles tendon enthesis and the bone microstructure in the calcaneal crescent. METHODS In total, 19 calcaneal-enthesis sections, harvested from 10 fresh-frozen human cadaveric foot-ankle specimens (73.8 ± 6.0 years old, seven female), were used in this study. Indentation tests were performed at the enthesis region, and Hayes' elastic modulus was calculated for each specimen. Micro-CT scanning was performed at 50-micron voxel size to assess trabecular bone microstructure within six regions of interest (ROIs) and the cortical bone thickness along the calcaneal crescent. RESULTS Significant Spearman correlations were observed between the enthesis elastic modulus and trabecular bone thickness in the distal entheseal (ROI 3) and proximal plantar (ROI 4) regions (R = 0.786 and 0.518, respectively). CONCLUSION This study highlights the potential impacts of Achilles tendon enthesis on calcaneal bone microstructure, which was pronounced in the distal calcaneal enthesis, suggesting regional differences in load transfer mechanism that require further investigation.
Collapse
Affiliation(s)
- Kenichiro Doi
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Department of Orthopedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 810-0180, Japan
| | - Dina Moazamian
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Behnam Namiranian
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Sheronda Statum
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System—San Diego, La Jolla, CA 92161, USA
| | - Amir Masoud Afsahi
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Takuaki Yamamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 810-0180, Japan
| | - Karen Y. Cheng
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Christine B. Chung
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System—San Diego, La Jolla, CA 92161, USA
| | - Saeed Jerban
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System—San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
2
|
Liu N, Jiang J, Liu T, Chen H, Jiang N. Compositional, Structural, and Biomechanical Properties of Three Different Soft Tissue-Hard Tissue Insertions: A Comparative Review. ACS Biomater Sci Eng 2024; 10:2659-2679. [PMID: 38697939 DOI: 10.1021/acsbiomaterials.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.
Collapse
Affiliation(s)
- Nian Liu
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jialing Jiang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Tiancheng Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan 610207, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology and the Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Tits A, Blouin S, Rummler M, Kaux JF, Drion P, van Lenthe GH, Weinkamer R, Hartmann MA, Ruffoni D. Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater 2023; 166:409-418. [PMID: 37088163 DOI: 10.1016/j.actbio.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liège, Liège, Belgium
| | | | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| |
Collapse
|
4
|
Putera KH, Kim J, Baek SY, Schlecht SH, Beaulieu ML, Haritos V, Arruda EM, Ashton-Miller JA, Wojtys EM, Banaszak Holl MM. Fatigue-driven compliance increase and collagen unravelling in mechanically tested anterior cruciate ligament. Commun Biol 2023; 6:564. [PMID: 37237052 PMCID: PMC10219950 DOI: 10.1038/s42003-023-04948-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Approximately 300,000 anterior cruciate ligament (ACL) tears occur annually in the United States, half of which lead to the onset of knee osteoarthritis within 10 years of injury. Repetitive loading is known to result in fatigue damage of both ligament and tendon in the form of collagen unravelling, which can lead to structural failure. However, the relationship between tissue's structural, compositional, and mechanical changes are poorly understood. Herein we show that repetitive submaximal loading of cadaver knees causes an increase in co-localised induction of collagen unravelling and tissue compliance, especially in regions of greater mineralisation at the ACL femoral enthesis. Upon 100 cycles of 4× bodyweight knee loading, the ACL exhibited greater unravelled collagen in highly mineralized regions across varying levels of stiffness domains as compared to unloaded controls. A decrease in the total area of the most rigid domain, and an increase in the total area of the most compliant domain was also found. The results highlight fatigue-driven changes in both protein structure and mechanics in the more mineralized regions of the ACL enthesis, a known site of clinical ACL failure. The results provide a starting point for designing studies to limit ligament overuse injury.
Collapse
Affiliation(s)
- Kevin H Putera
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Jinhee Kim
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - So Young Baek
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mélanie L Beaulieu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Victoria Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Ashton-Miller
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia.
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Orthopaedic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Hart DA, Ahmed AS, Ackermann P. Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design. Front Sports Act Living 2023; 4:1081129. [PMID: 36685063 PMCID: PMC9853460 DOI: 10.3389/fspor.2022.1081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Tendons are dense connective tissues of the musculoskeletal system that link bones with muscles to foster mobility. They have complex structures and exist in varying biomechanical, metabolic and biological environments. In addition, tendon composition and mechanical properties can change over the lifespan as an individual ages. Many tendons function in high stress conditions with a low vascular and neuronal supply, conditions often leading to development of chronic tendinopathies, and in some cases, overt rupture of the tissues. Given their essential nature for human mobility and navigation through the environment, the effective repair and regeneration of different tendons after injury or damage is critical for quality of life, and for elite athletes, the return to sport participation at a high level. However, for mainly unknown reasons, the outcomes following injury are not always successful and lead to functional compromise and risk for re-injury. Thus, there is a need to identify those patients who are at risk for developing tendon problems, as well those at risk for poor outcomes after injury and to design interventions to improve outcomes after injury or rupture to specific tendons. This review will discuss recent advances in the identification of biomarkers prognostic for successful and less successful outcomes after tendon injury, and the mechanistic implications of such biomarkers, as well as the potential for specific biologic interventions to enhance outcomes to improve both quality of life and a return to participation in sports. In addition, the implication of these biomarkers for clinical trial design is discussed, as is the issue of whether such biomarkers for successful healing of one tendon can be extended to all tendons or are valid only for tendons in specific biomechanical and biological environments. As maintaining an active lifestyle is critical for health, the successful implementation of these advances will benefit the large number of individuals at risk.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada,Correspondence: David A. Hart
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Zhang H, Ma Y, Wang Y, Niu L, Zou R, Zhang M, Liu H, Genin GM, Li A, Xu F. Rational Design of Soft-Hard Interfaces through Bioinspired Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204498. [PMID: 36228093 DOI: 10.1002/smll.202204498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Soft-hard tissue interfaces in nature present a diversity of hierarchical transitions in composition and structure to address the challenge of stress concentrations that would otherwise arise at their interface. The translation of these into engineered materials holds promise for improved function of biomedical interfaces. Here, soft-hard tissue interfaces found in the body in health and disease, and the application of the diverse, functionally graded, and hierarchical structures that they present to bioinspired engineering materials are reviewed. A range of such bioinspired engineering materials and associated manufacturing technologies that are on the horizon in interfacial tissue engineering, hydrogel bioadhesion at the interfaces, and healthcare and medical devices are described.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|
8
|
Hart DA, Nakamura N, Shrive NG. Perspective: Challenges Presented for Regeneration of Heterogeneous Musculoskeletal Tissues that Normally Develop in Unique Biomechanical Environments. Front Bioeng Biotechnol 2021; 9:760273. [PMID: 34650964 PMCID: PMC8505961 DOI: 10.3389/fbioe.2021.760273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Perspective: Musculoskeletal (MSK) tissues such as articular cartilage, menisci, tendons, and ligaments are often injured throughout life as a consequence of accidents. Joints can also become compromised due to the presence of inflammatory diseases such as rheumatoid arthritis. Thus, there is a need to develop regenerative approaches to address such injuries to heterogeneous tissues and ones that occur in heterogeneous environments. Such injuries can compromise both the biomechanical integrity and functional capability of these tissues. Thus, there are several challenges to overcome in order to enhance success of efforts to repair and regenerate damaged MSK tissues. Challenges: 1. MSK tissues arise during development in very different biological and biomechanical environments. These early tissues serve as a template to address the biomechanical requirements evolving during growth and maturation towards skeletal maturity. Many of these tissues are heterogeneous and have transition points in their matrix. The heterogeneity of environments thus presents a challenge to replicate with regard to both the cells and the ECM. 2. Growth and maturation of musculoskeletal tissues occurs in the presence of anabolic mediators such as growth hormone and the IGF-1 family of proteins which decline with age and are low when there is a greater need for the repair and regeneration of injured or damaged tissues with advancing age. Thus, there is the challenge of re-creating an anabolic environment to enhance incorporation of implanted constructs. 3. The environments associated with injury or chronic degeneration of tissues are often catabolic or inflammatory. Thus, there is the challenge of creating a more favorable in vivo environment to facilitate the successful implantation of in vitro engineered constructs to regenerate damaged tissues. Conclusions: The goal of regenerating MSK tissues has to be to meet not only the biological requirements (components and structure) but also the heterogeneity of function (biomechanics) in vivo. Furthermore, for many of these tissues, the regenerative approach has to overcome the site of injury being influenced by catabolism/inflammation. Attempts to date using both endogenous cells, exogenous cells and scaffolds of various types have been limited in achieving long term outcomes, but progress is being made.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Norimasa Nakamura
- Institute for Medical Science in Sport, Osaka Health Science University, Osaka, Japan
| | - Nigel G Shrive
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Tits A, Plougonven E, Blouin S, Hartmann MA, Kaux JF, Drion P, Fernandez J, van Lenthe GH, Ruffoni D. Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci Rep 2021; 11:16534. [PMID: 34400706 PMCID: PMC8367976 DOI: 10.1038/s41598-021-95917-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium
| | - Erwan Plougonven
- Chemical Engineering Department, University of Liège, Liège, Belgium
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery Unit, GIGA and Credec, University of Liege, Liege, Belgium
| | - Justin Fernandez
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium.
| |
Collapse
|
10
|
Tits A, Ruffoni D. Joining soft tissues to bone: Insights from modeling and simulations. Bone Rep 2021; 14:100742. [PMID: 34150954 PMCID: PMC8190669 DOI: 10.1016/j.bonr.2020.100742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Entheses are complex multi-tissue regions of the musculoskeletal system serving the challenging task of connecting highly dissimilar materials such as the compliant tendon to the much stiffer bone, over a very small region. The first aim of this review is to highlight mathematical and computational models that have been developed to investigate the many attachment strategies present at entheses at different length scales. Entheses are also relevant in the medical context due to the high prevalence of orthopedic injuries requiring the reattachment of tendons or ligaments to bone, which are associated with a rather poor long-term clinical outcome. The second aim of the review is to report on the computational works analyzing the whole tendon to bone complex as well as targeting orthopedic relevant issues. Modeling approaches have provided important insights on anchoring mechanisms and surgical repair strategies, that would not have been revealed with experiments alone. We intend to demonstrate the necessity of including, in future models, an enriched description of enthesis biomechanical behavior in order to unravel additional mechanical cues underlying the development, the functioning and the maintaining of such a complex biological interface as well as to enhance the development of novel biomimetic adhesive, attachment procedures or tissue engineered implants.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Xie WQ, He M, He YQ, Yu DJ, Jin HF, Yu F, Li YS. The effects of posterior cruciate ligament rupture on the biomechanical and histological characteristics of the medial collateral ligament: an animal study. J Orthop Surg Res 2021; 16:330. [PMID: 34020667 PMCID: PMC8139104 DOI: 10.1186/s13018-021-02443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the effect of complete rupture of the posterior cruciate ligament (PCL) on the biomechanics and histology of the medial collateral ligament (MCL). Materials and methods Seventy-two male rabbits were randomly divided into two groups: the ruptured group was treated with complete PCL amputation, while the intact group was only subjected to PCL exposure without amputation. Eighteen rabbits were randomly sacrificed at 8, 16, 24, and 40 weeks after the operation, and their specimens were processed for mechanical tensile testing, nano-indentation experiments, hematoxylin-eosin (HE) staining, and picrosirius-polarization staining. Results There was no significant difference in the length and maximum displacement of the MCL between the ruptured group and the intact group at each time point. The maximum load of the ruptured group was significantly smaller than that of the intact group at 40 W. The elastic modulus and micro-hardness of the ruptured group increased significantly at 24 W and decreased significantly at 40 W. At 16 W and 24 W after PCL rupture, the number of type I collagen fibers and type III collagen fibers in the MCL of the ruptured group was significantly increased compared with that of the intact group. While the type I collagen fibers of the ruptured group were significantly decreased compared with the intact group at 40 W, there was no significant difference in type III collagen fibers between the ruptured group and the intact group. Conclusion PCL rupture has no significant effect on the mechanical and histological properties of MCL in a short period of time under physiological loading, but the histological and mechanical properties of MCL decrease with time.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Miao He
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yu-Qiong He
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Deng-Jie Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Hong-Fu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Fang Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|