1
|
Magallanes J, Liu NQ, Zhang J, Ouyang Y, Mkaratigwa T, Bian F, Van Handel B, Skorka T, Petrigliano FA, Evseenko D. A new mouse model of post-traumatic joint injury allows to identify the contribution of Gli1+ mesenchymal progenitors in arthrofibrosis and acquired heterotopic endochondral ossification. Front Cell Dev Biol 2022; 10:954028. [PMID: 36092701 PMCID: PMC9448851 DOI: 10.3389/fcell.2022.954028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 01/26/2023] Open
Abstract
Complex injury and open reconstructive surgeries of the knee often lead to joint dysfunction that may alter the normal biomechanics of the joint. Two major complications that often arise are excessive deposition of fibrotic tissue and acquired heterotopic endochondral ossification. Knee arthrofibrosis is a fibrotic joint disorder where aberrant buildup of scar tissue and adhesions develop around the joint. Heterotopic ossification is ectopic bone formation around the periarticular tissues. Even though arthrofibrosis and heterotopic ossification pose an immense clinical problem, limited studies focus on their cellular and molecular mechanisms. Effective cell-targeted therapeutics are needed, but the cellular origin of both knee disorders remains elusive. Moreover, all the current animal models of knee arthrofibrosis and stiffness are developed in rats and rabbits, limiting genetic experiments that would allow us to explore the contribution of specific cellular targets to these knee pathologies. Here, we present a novel mouse model where surgically induced injury and hyperextension of the knee lead to excessive deposition of disorganized collagen in the meniscus, synovium, and joint capsule in addition to formation of extra-skeletal bone in muscle and soft tissues within the joint capsule. As a functional outcome, arthrofibrosis and acquired heterotopic endochondral ossification coupled with a significant increase in total joint stiffness were observed. By employing this injury model and genetic lineage tracing, we also demonstrate that Gli1+ mesenchymal progenitors proliferate after joint injury and contribute to the pool of fibrotic cells in the synovium and ectopic osteoblasts within the joint capsule. These findings demonstrate that Gli1+ cells are a major cellular contributor to knee arthrofibrosis and acquired heterotopic ossification that manifest after knee injury. Our data demonstrate that genetic manipulation of Gli1+ cells in mice may offer a platform for identification of novel therapeutic targets to prevent knee joint dysfunction after chronic injury.
Collapse
Affiliation(s)
- Jenny Magallanes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Jiankang Zhang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Ouyang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Tadiwanashe Mkaratigwa
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Fangzhou Bian
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Tautis Skorka
- Department of Radiology, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Frank A. Petrigliano
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States,*Correspondence: Denis Evseenko,
| |
Collapse
|
2
|
Effect of Unilateral Knee Extension Restriction on the Lumbar Region during Gait. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1151753. [PMID: 36046010 PMCID: PMC9424019 DOI: 10.1155/2022/1151753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Unilateral knee extension restriction might change trunk alignment and increase mechanical load on the lumbar region during walking. We aimed to clarify lumbar region mechanical load during walking with restricted knee extension using a musculoskeletal model simulation. Seventeen healthy adult males were enrolled in this study. Participants walked 10 m at a comfortable velocity with and without restricted right knee extension of 15° and 30° using a knee brace. L4-5 joint moment, joint reaction force, and muscle forces around the lumbar region during walking were calculated for each condition. Peaks of kinetic data were compared among three gait conditions during 0%-30% and 50%-80% of the right gait cycle. Lumbar extension moment at early stance of the bilateral lower limbs was significantly increased in the 30° restricted condition (p ≤ 0.021). Muscle force of the multifidus showed peaks at stance phase of the contralateral side during walking, and the erector spinae showed force peaks at early stance of the bilateral lower limb. Muscle force of the multifidus and erector spinae increased with increasing degree of knee flexion (p ≤ 0.010), with a large effect size (η 2 = 0.273-0.486). The joint force acting on L4-5 showed two peaks at early stance of the bilateral lower limbs during the walking cycle. The anterior and vertical joint force on L4-5 increased by 14.2%-36.5% and 10.0%-23.0% in walking with restricted knee extension, respectively (p ≤ 0.010), with a large effect size (η 2 = 0.149-0.425). Restricted knee joint extension changed trunk alignment and increased the muscle force and the vertical and anterior joint force on the L4-5 joint during walking; this tendency became more obvious with increased restriction angle. Our results provide important information for therapists engaged in the rehabilitation of patients with knee contracture.
Collapse
|
3
|
Tokuda K, Yamanaka Y, Kosugi K, Nishimura H, Okada Y, Tsukamoto M, Tajima T, Suzuki H, Kawasaki M, Uchida S, Nakamura E, Wang KY, Sakai A. Development of a novel knee contracture mouse model by immobilization using external fixation. Connect Tissue Res 2022; 63:169-182. [PMID: 33602048 DOI: 10.1080/03008207.2021.1892088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Several studies have used animal models to examine knee joint contracture; however, few reports detail the construction process of a knee joint contracture model in a mouse. The use of mouse models is beneficial, as genetically modified mice can be used to investigate the pathogenesis of joint contracture. Compared to others, mouse models are associated with a lower cost to evaluate therapeutic effects. Here, we describe a novel knee contracture mouse model by immobilization using external fixation. METHODS The knee joints of mice were immobilized by external fixation using a splint and tape. The passive extension range of motion (ROM), histological and immunohistochemical changes, and expression levels of fibrosis-related genes at 2 and 4 weeks were compared between the immobilized (Im group) and non-immobilized (Non-Im group) groups. RESULTS The extension ROM at 4 weeks was significantly lower in the Im group than in the Non-Im group (p < 0.01). At 2 and 4 weeks, the thickness and area of the joint capsule were significantly greater in the Im group than in the Non-Im group (p < 0.01 in all cases). At 2 weeks, the mRNA expression levels of the fibrosis-related genes, except for the transforming growth factor-β1, and the protein levels of cellular communication network factor 2 and vimentin in the joint capsule were significantly higher in the Im group (p < 0.01 in all cases). CONCLUSION This mouse model may serve as a useful tool to investigate the etiology of joint contracture and establish new treatment methods.
Collapse
Affiliation(s)
- Kotaro Tokuda
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Kenji Kosugi
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Soshi Uchida
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of the University of Occupational and Environmental Health, Fukuoka, Japan
| | - Eiichiro Nakamura
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
4
|
Chen X, Wang Z, Huang Y, Deng W, Zhou Y, Chu M. Identification of novel biomarkers for arthrofibrosis after total knee arthroplasty in animal models and clinical patients. EBioMedicine 2021; 70:103486. [PMID: 34311327 PMCID: PMC8325099 DOI: 10.1016/j.ebiom.2021.103486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background Arthrofibrosis is a debilitating complication after total knee arthroplasty (TKA) which becomes a considerable burden for both patients and clinical practitioners. Our study aimed to identify novel biomarkers and therapeutic targets for drug discovery. Methods Potential biomarker genes were identified based on bioinformatic analysis. Twelve male New Zealand white rabbits underwent surgical fixation of unilateral knees to mimics the joint immobilization of the clinical scenario after TKA surgery. Macroscopic assessment, hydroxyproline content determination, and histological analysis of tissue were performed separately after 3-days, 1-week, 2-weeks, and 4-weeks of fixation. We also enrolled 46 arthrofibrosis patients and 92 controls to test the biomarkers. Clinical information such as sex, age, range of motion (ROM), and visual analogue scale (VAS) was collected by experienced surgeons Findings Base on bioinformatic analysis, transforming growth factor-beta receptor 1 (TGFBR1) was identified as the potential biomarkers. The level of TGFBR1 was significantly raised in the rabbit synovial tissue after 4-weeks of fixation (p<0.05). TGFBR1 also displayed a highly positive correlation with ROM loss and hydroxyproline contents in the animal model. TGFBR1 showed a significantly higher expression level in arthrofibrosis patients with a receiver operating characteristic (ROC) area under curve (AUC) of 0.838. TGFBR1 also performed positive correlations with VAS baseline (0.83) and VAS after 1 year (0.76) while negatively correlated with ROM baseline (-0.76) in clinical patients. Interpretation Our findings provided novel biomarkers for arthrofibrosis diagnosis and uncovered the role of TGFBR1. This may contribute to arthrofibrosis prevention and therapeutic drug discovery.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China; Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China
| | - Zhaolun Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yong Huang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Wang Deng
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China.
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China.
| |
Collapse
|