1
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Yang HY, Sankaranarayanan J, Seon JK. Polynucleotides Suppress Inflammation and Stimulate Matrix Synthesis in an In Vitro Cell-Based Osteoarthritis Model. Int J Mol Sci 2023; 24:12282. [PMID: 37569659 PMCID: PMC10418450 DOI: 10.3390/ijms241512282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is characterized by degeneration of the joint cartilage, inflammation, and a change in the chondrocyte phenotype. Inflammation also promotes cell hypertrophy in human articular chondrocytes (HC-a) by activating the NF-κB pathway. Chondrocyte hypertrophy and inflammation promote extracellular matrix degradation (ECM). Chondrocytes depend on Smad signaling to control and regulate cell hypertrophy as well as to maintain the ECM. The involvement of these two pathways is crucial for preserving the homeostasis of articular cartilage. In recent years, Polynucleotides Highly Purified Technology (PN-HPT) has emerged as a promising area of research for the treatment of OA. PN-HPT involves the use of polynucleotide-based agents with controlled natural origins and high purification levels. In this study, we focused on evaluating the efficacy of a specific polynucleotide sodium agent, known as CONJURAN, which is derived from fish sperm. Polynucleotides (PN), which are physiologically present in the matrix and function as water-soluble nucleic acids with a gel-like property, have been used to treat patients with OA. However, the specific mechanisms underlying the effect remain unclear. Therefore, we investigated the effect of PN in an OA cell model in which HC-a cells were stimulated with interleukin-1β (IL-1β) with or without PN treatment. The CCK-8 assay was used to assess the cytotoxic effects of PN. Furthermore, the enzyme-linked immunosorbent assay was utilized to detect MMP13 levels, and the nitric oxide assay was utilized to determine the effect of PN on inflammation. The anti-inflammatory effects of PN and related mechanisms were investigated using quantitative PCR, Western blot analysis, and immunofluorescence to examine and analyze relative markers. PN inhibited IL-1β induced destruction of genes and proteins by downregulating the expression of MMP3, MMP13, iNOS, and COX-2 while increasing the expression of aggrecan (ACAN) and collagen II (COL2A1). This study demonstrates, for the first time, that PN exerted anti-inflammatory effects by partially inhibiting the NF-κB pathway and increasing the Smad2/3 pathway. Based on our findings, PN can potentially serve as a treatment for OA.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hyung-Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Ju-Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Seok-Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Hong-Yeol Yang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| | - Jong-Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Republic of Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Republic of Korea
| |
Collapse
|
2
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
3
|
Li M, Ning J, Wang J, Yan Q, Zhao K, Jia X. SETD7 regulates chondrocyte differentiation and glycolysis via the Hippo signaling pathway and HIF‑1α. Int J Mol Med 2021; 48:210. [PMID: 34617577 PMCID: PMC8510680 DOI: 10.3892/ijmm.2021.5043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are well adapted to hypoxia and produce more functional extracellular matrix in low oxygen environments in vitro. In our previous study, methyltransferase SET domain containing (SETD)7 regulated chondrocyte activity in hypoxic conditions. However, the precise association between SETD7 and chondrocyte differentiation under low oxygen partial pressure remains unclear. The association between SETD7 and chondrocyte differentiation was studied by silencing SETD7 in chondrocytes in vitro. The results showed that the silencing of SETD7 in ATDC5 cells inhibited the Hippo signaling pathway, decreased Yes-associated protein (YAP) phosphorylation and increased the levels of YAP and hypoxia inducible factor-1α (HIF-1α) in the nucleus. YAP combined with HIF-1α to form a complex that promoted the expression of genes involved in chondrogenic differentiation and the glycolytic pathway. Thus, SETD7 inhibited chondrocyte differentiation and glycolysis via the Hippo signaling pathway. The present study demonstrated that SETD7 was a potential molecular target that maintained the chondrocyte phenotype during cartilage tissue engineering and cartilage-associated disease.
Collapse
Affiliation(s)
- Maoquan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinqiu Ning
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiwei Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Qiqian Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
4
|
Xiaoshi J, Maoquan L, Jiwei W, Jinqiu N, Ke Z. SETD7 mediates the vascular invasion in articular cartilage and chondrocytes apoptosis in osteoarthriis. FASEB J 2021; 35:e21283. [PMID: 33617050 DOI: 10.1096/fj.202000373rrrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022]
Abstract
The pathological characteristics of osteoarthritis are cartilage matrix degradation, chondrocytes apoptosis, and low-grade inflammation of the joint. Recent studies have shown that blood vessels grow from the subchondral bone to the articular cartilage. However, the relationship among inflammation, angiogenesis, and chondrocyte apoptosis is still unclear. We found that chondrocytes could secrete chemokines and VEGF to promote the migration of vascular endothelial cells in response to TNF-α stimulation. The invasion of blood vessels leads to increased oxygen tension in the local environment, which increased the expression of SETD7 in chondrocytes by activating the JAK-STAT5 pathway. The bond of phosphorylated STAT5 and the specific locus in the promoter of SETD7 directly increased the transcription of SETD7. On the one hand, SETD7-regulated chemokine expression by forming a positive loop; on the other hand, SETD7-mediated chondrocyte apoptosis by inhibiting the nuclear localization of HIF-1α. In this study, we discovered a novel function of chondrocytes as mediators of inflammation and angiogenesis. Our study demonstrates that SETD7 is a potential molecular target to prevent OA development and progression.
Collapse
Affiliation(s)
- Jia Xiaoshi
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangzhou, China
| | - Li Maoquan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangzhou, China
| | - Wang Jiwei
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Jinqiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangzhou, China
| | - Zhao Ke
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangzhou, China
| |
Collapse
|
5
|
Sha Y, Cai W, Mohanad Khalid A, Chi Q, Wang J, Sun T, Wang C. Pretreatment with mechano growth factor E peptide attenuates osteoarthritis through improving cell proliferation and extracellular matrix synthesis in chondrocytes under severe hypoxia. Int Immunopharmacol 2021; 97:107628. [PMID: 34015701 DOI: 10.1016/j.intimp.2021.107628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Osteoarthritis (OA) is characterized by pain and declining gait function associated with degeneration of cartilage. A severe hypoxic environment occurs due to tissue injury in the joint cavity and may aggravate the development of OA. In this study, the effects of severe hypoxia and treatment with mechano growth factor (MGF) E peptide on metabolism of the extracellular matrix (ECM) during the progression of OA were determined. The results showed that cell viability, cell proliferation, and type II collagen expression in chondrocytes were significantly inhibited by cobalt chloride (CoCl2)-simulated severe hypoxia, whereas cell apoptosis and expression levels of hypoxia inducible factor 1 alpha, type I collagen, and matrix metalloproteinases 1/13 were clearly induced. Pretreatment with MGF E peptide reduced the abovementioned adverse effects induced by CoCl2-simulated severe hypoxia in chondrocytes. Pretreatment also upregulated the proliferation of chondrocytes under severe hypoxia through the PI3K-Akt and MEK-ERK1/2 signaling pathways. In a rat model of monosodium iodoacetate (MIA)-induced OA. MIA treatment induced tissue necrosis and cartilage degeneration, and histological score was significantly decreased. The levels of type II collagen and aggrecan were reduced after MIA treatment for 4 or 6 weeks, and abnormal distribution of ECM occurred in the inner epicondyle after 6 weeks. MGF E peptide also reduced the progression of MIA-induced OA by retarding cartilage degeneration, upregulating type II collagen synthesis, and improving ECM distribution after 4 or 6 weeks. Our findings suggest that MGF attenuates the progression of OA, and thus may be applied for the treatment of OA in the clinic.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Wenjie Cai
- Departments of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Alani Mohanad Khalid
- Department of Microbiology, College of Medicine, Tikrit University, Tikrīt, Sallahaldin 009642, Iraq
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, Hubei 430070, PR China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|