1
|
Black GG, Vaeth AM, Kochheiser M, Chen Y, Truong AY, Reif T, Rozbruch SR, Henry MW, Otterburn DM. Infection After Lower-Limb Osseointegration: A Single-Center Retrospective Evaluation of Pathogens, Management, and Outcomes. Ann Plast Surg 2024; 92:S96-S100. [PMID: 38556655 DOI: 10.1097/sap.0000000000003856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
PURPOSE Osseointegration (OI) is a novel alternative to traditional socket-suspended prostheses for lower-limb amputees, eliminating the socket-skin interface and allowing for weight bearing directly on the skeletal system. However, the stoma through which the implant attaches to the external prosthesis creates an ingress route for bacteria, and infection rates as high as 66% have been reported. The aims of this study are to classify infection management and long-term outcomes in this patient population to maximize implant salvage. METHODS An institutional review board-approved retrospective analysis was performed on all patients who underwent lower-limb OI at our institution between 2017 and 2022. Demographic, operative, and outcome data were collected for all patients. Patients were stratified by the presence and severity of infection. Chi-square and t tests were performed on categorical and continuous data, respectively, using an alpha of 0.05. RESULTS One hundred two patients met our study criteria; 62 had transfemoral OI and 40 had transtibial OI. Patients were followed for 23.8 months on average (range, 3.5-63.7). Osteomyelitis was more likely than soft tissue infection to be polymicrobial in nature (71% vs 23%, P < 0.05). Infections at the stoma were mostly (96%) managed with oral antibiotics alone, whereas deeper soft tissue infections also required intravenous antibiotics (75%) or operative washout (19%). Osteomyelitis was managed with intravenous antibiotics and required operative attention; 5 (71%) underwent washout and 2 (29%) underwent explantation. Both implants were replaced an average of 3.5 months after explantation. There was no correlation between history of soft tissue infection and development of osteomyelitis (P > 0.05). The overall implant salvage rate after infection was 96%. CONCLUSIONS This study describes our institution's experience managing infection after OI and soft tissue reconstruction. Although infections do occur, they are easily treatable and rarely require operative intervention. Explantation due to infection is rare and can be followed up with reimplantation, reaffirming that OI is a safe and effective treatment modality.
Collapse
Affiliation(s)
- Grant G Black
- From the Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine
| | - Anna M Vaeth
- From the Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine
| | - Makayla Kochheiser
- From the Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine
| | - Yunchan Chen
- From the Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine
| | - Albert Y Truong
- From the Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine
| | - Taylor Reif
- Limb Lengthening and Complex Reconstruction Service
| | | | - Michael W Henry
- Division of Infectious Diseases, Hospital for Special Surgery, New York, NY
| | - David M Otterburn
- From the Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine
| |
Collapse
|
2
|
Miller A, Jeyapalina S, Agarwal JP, Beck JP. Association between blood markers and the progression of osseointegration in percutaneous prostheses patients-A pilot study. J Biomed Mater Res B Appl Biomater 2024; 112:e35398. [PMID: 38456331 DOI: 10.1002/jbm.b.35398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Patients implanted with osseointegrated (OI) prosthetic systems have reported vastly improved upper and lower extremity prosthetic function compared with their previous experience with socket-suspension systems. However, OI systems have been associated with superficial and deep-bone infections and implant loosening due, in part, to a failure of the osseointegration process. Although monitoring the osseointegration using circulating biomarkers has clinical relevance for understanding the progression of osseointegration with these devices, it has yet to be established. Ten patients were enrolled in this study. Blood samples were collected at pre-selected times, starting before implantation surgery, and continuing to 12 months after the second surgery. Bone formation markers, bone resorption markers, and circulating amino acids were measured from blood samples. A linear mixed model was generated for each marker, incorporating patient ID and age with the normalized marker value as the response variable. Post hoc comparisons were made between 1 week before Stage 1 Surgery and all subsequent time points for each marker, followed by multiple testing corrections. Serial radiographic imaging of the residual limb containing the implant was obtained during follow-up, and the cortical index (CI) was calculated for the bone at the porous region of the device. Two markers of bone formation, specifically bone-specific alkaline phosphatase (Bone-ALP) and amino-terminal propeptide of type I procollagen (PINP), exhibited significant increases when compared with the baseline levels of unloaded residual bone prior to the initial surgery, and they subsequently returned to their baseline levels by the 12-month mark. Patients who experienced clinically robust osseointegration experienced increased cortical bone thickness at the porous coated region of the device. A medium correlation was observed between Bone-ALP and the porous CI values up to PoS2-M1 (p = .056), while no correlation was observed for PINP. An increase in bone formation markers and the lack of change observed in bone resorption markers likely reflect increased cortical bone formation induced by the end-loading design of the Utah OI device used in this study. A more extensive study is required to validate the correlation observed between Bone-ALP and porous CI values.
Collapse
Affiliation(s)
- Andrew Miller
- Research, George E. Wahlen Department of Veteran Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Utah, School of Medicine, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah School of Engineering, Salt Lake City, Utah, USA
| | - Sujee Jeyapalina
- Research, George E. Wahlen Department of Veteran Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Utah, School of Medicine, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah School of Engineering, Salt Lake City, Utah, USA
| | - Jayant P Agarwal
- Research, George E. Wahlen Department of Veteran Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - James Peter Beck
- Research, George E. Wahlen Department of Veteran Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Utah, School of Medicine, Salt Lake City, Utah, USA
- Department of Orthopaedics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Alam SH, Hoellwarth J, Tetsworth K, Oomatia A, Taylor T, Al Muderis M. Development of an evidence-based diagnostic algorithm for infection in patients with transcutaneous osseointegration following amputation. J Bone Jt Infect 2024; 9:49-57. [PMID: 38600998 PMCID: PMC11002918 DOI: 10.5194/jbji-9-49-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 04/12/2024] Open
Abstract
Introduction: Transcutaneous osseointegration following amputation (TOFA) confers better mobility and quality of life for most patients versus socket prosthesis rehabilitation. Peri-TOFA infection remains the most frequent complication and lacks an evidence-based diagnostic algorithm. This study's objective was to investigate preoperative factors associated with positive intraoperative cultures among patients suspected of having peri-TOFA infection in order to create an evidence-based diagnostic algorithm. Methods: We conducted a retrospective study of 83 surgeries (70 patients) performed to manage suspected lower-extremity peri-TOFA infection at a specialty orthopedic practice and tertiary referral hospital in a major urban center. The diagnosis of infection was defined as positive intraoperative cultures. Preoperative patient history (fevers, subjective pain, increased drainage), physician examination findings (local cellulitis, purulent discharge, implant looseness), and laboratory data (white blood cell count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and external swab culture) were evaluated for association with subsequent positive intraoperative cultures using regression and area under receiver-operator curve (AUC) modeling. Results: Peri-implant limb pain (highly correlated with infection), ESR > 30 (highly correlated against infection), positive preoperative swab (moderately correlated with infection), gross implant motion (moderately correlated against infection), and erythema or cellulitis of the transcutaneous region (mildly correlated with infection) were variables included in the best AUC model, which achieved an 85 % positive predictive value. Other clinical findings and laboratory values (notably CRP and WBC) were non-predictive of infection. Conclusions: This seminal investigation to develop a preoperative diagnostic algorithm for peri-TOFA infection suggests that the clinical examination remains paramount. Further evaluation of a wider spectrum of clinical, laboratory, and imaging data, consistently and routinely collected with prospective data techniques in larger cohorts of patients, is necessary to create a robust predictive algorithm.
Collapse
Affiliation(s)
- Shafaf Hasin Alam
- Princess Alexandra Hospital, 199 Ipswich Rd, Woolloongabba, Queensland, 4102, Australia
| | - Jason S. Hoellwarth
- Limb Lengthening and Complex Reconstruction Service, Osseointegration Limb Replacement Center, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Kevin Tetsworth
- Department of Orthopaedic Surgery, Royal Brisbane and Women's Hospital, Queensland, Australia
| | - Atiya Oomatia
- Limb Reconstruction Centre, Macquarie University Hospital, Macquarie University, Macquarie Park, Australia
| | - Tristen N. Taylor
- Baylor College of Medicine, Houston TX. 1 Baylor Plaza, Houston, TX 77030, USA
| | - Munjed Al Muderis
- Limb Reconstruction Centre, Macquarie University Hospital, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
4
|
Aschoff HH, Örgel M, Sass M, Fischer DC, Mittlmeier T. Transcutaneous Osseointegrated Prosthesis Systems (TOPS) for Rehabilitation After Lower Limb Loss: Surgical Pearls. JBJS Essent Surg Tech 2024; 14:e23.00010. [PMID: 38268768 PMCID: PMC10805461 DOI: 10.2106/jbjs.st.23.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Background The biology of osseointegration of any intramedullary implant depends on the design, the press-fit anchoring, and the loading history of the endoprosthesis. In particular, the material and surface of the endoprosthetic stem are designed to stimulate on- and in-growth of bone as the prerequisite for stable and long-lasting integration1-8. Relative movement between a metal stem and the bone wall may stimulate the formation of a connective-tissue interface, thereby increasing the risk of peri-implant infections and implant loss9-12. The maximum achievable press-fit (i.e., the force closure between the implant and bone wall) depends on the diameter and length of the residual bone and thus on the amputation level. Beyond this, the skin-penetrating connector creates specific medical and biological challenges, especially the risk of ascending intramedullary infections. On the one hand, bacterial colonization of the skin-penetrating area (i.e., the stoma) with a gram-positive taxon is obligatory and almost impossible to avoid9,10. On the other hand, a direct structural and functional connection between the osseous tissue and the implant, without intervening connective tissue, has been shown to be a key for infection-free osseointegration11,12. Description We present a 2-step implantation process for the standard Endo-Fix Stem (ESKA Orthopaedic Handels) into the residual femur and describe the osseointegration of the prosthesis13. In addition, we demonstrate the single-step implantation of a custom-made short femoral implant and a custom-made humeral BADAL X implant (OTN Implants) in a patient who experienced a high-voltage injury with the loss of both arms and the left thigh. Apart from the standard preparation procedures (e.g., marking the lines for skin incisions, preparation of the distal part of the residual bone), special attention must be paid when performing the operative steps that are crucial for successful osseointegration and utilization of the prosthesis. These include shortening of the residual bone to the desired length, preparation of the intramedullary cavity for hosting of the prosthetic stem, precise trimming of the soft tissue, and wound closure. Finally, we discuss the similarities and differences between the Endo-Fix Stem and the BADAL X implant in terms of their properties, intramedullary positioning, and the mechanisms leading to successful osseointegration. Alternatives Socket prostheses for transfemoral or transtibial amputees have been the gold standard for decades. However, such patients face many challenges to recover autonomous mobility, and an estimated 30% of all amputees report unsatisfactory rehabilitation and 10% cannot use a socket prosthesis at all. Rationale Transcutaneous osseointegrated prosthetic systems especially benefit patients who are unable to tolerate socket suspension systems, such as those with short residual limbs and/or bilateral limb loss. The use of a firmly integrated endoprosthetic stem allows patients and surgeons to avoid many of the limitations associated with conventional socket prostheses, such as the need to continually fit and refit the socket to match an ever-changing stump6,14-19. Discussion between patients who are considering an osseointegrated prosthesis and those who have already received one ("peer patients") has proven to be a powerful tool to prevent unrealistic expectations. Patients with a transhumeral amputation especially benefit from the stable connection between the residual limb and exoprosthesis. Motion of the affected and even the contralateral shoulder is no longer impaired, as straps and belts are dispensable. Furthermore, transmission of myoelectric signals from surrounding muscles to the prosthesis is fundamentally improved. However, comorbidities such as diabetes mellitus or peripheral arterial disease require careful counseling, even if these conditions were not responsible for the loss of the limb. Transcutaneous osseointegrated prosthetic systems for replacement of an upper or lower limb might not be an option in patients who are unable, for any reason, to take adequate care of the stoma. Expected Outcomes Despite subtle differences between the systems utilized for the intramedullary anchoring of the prosthetic stem, all data indicate that mobility and quality of life significantly increase while the frequency of stoma infections is remarkably low as long as the patient is able to follow simple postoperative care protocols2-5,9,10,13-19. Important Tips The impaction pressure of the implant depends on the diameter of the implant and the quality of the residual bone (i.e., the time interval between the amputation and the implantation of the prosthetic stem). The extent of reaming of the inner cortex of the residual bone must be adapted to these conditions. The standard Endo-Fix Stem and BADAL X implant are both slightly curved to adapt to the physiological shape of the femur. Thus, the surgeon must be sure to insert the implant in the right position and at the correct rotational alignment. When preparing a short femoral stump, carefully identify the exact transection level in order to obtain enough bone stock to anchor the implant in the correct intramedullary position for an additional locking screw into the femoral neck and head. Depending on the residual length of the humerus and the press-fit stability of the implant, the utilization of locking screws is optional, as a notch at the distal end of the implant guarantees primary rotational stability. Acronyms and Abbreviations TOPS = transcutaneous osseointegrated prosthesis systemsEEP = endo-exo prosthesisMRSA = methicillin-resistant staphylococcus aureusa.p. = anteroposteriorK-wire = Kirschner wireCT = computed tomographyDCA = double conus adapterOFP = osseointegrated femur prosthesis.
Collapse
Affiliation(s)
- Horst H. Aschoff
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Centre, Rostock, Germany
| | - Marcus Örgel
- Department of Traumatology, Hannover Medical School, Hannover, Germany
| | - Marko Sass
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Centre, Rostock, Germany
| | - Dagmar-C. Fischer
- Department of Pediatrics, University Medical Centre Rostock, Rostock, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
5
|
Örgel M, Aschoff HH, Sedlacek L, Graulich T, Krettek C, Roth S, Ranker A. Twenty-four months of bacterial colonialization and infection rates in patients with transcutaneous osseointegrated prosthetic systems after lower limb amputation-A prospective analysis. Front Microbiol 2022; 13:1002211. [PMID: 36386723 PMCID: PMC9659948 DOI: 10.3389/fmicb.2022.1002211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND Transcutaneous osseointegrated prosthesis systems (TOPS) are alternative rehabilitation methods to socket prosthetics, after limb amputation. TOPS compromise a two-step surgery: starting with the implantation of the stem which is then followed by the creation of the transcutaneous stoma through which the exoprosthesis can be connected. Immediately after surgery, this opening is permanently exposed to pathogens. This study aimed to investigate the dynamics of bacterial colonization of the stoma to analyze whether obligate bacterial colonization leads to a risk of periprosthetic infections after TOPS treatment. METHODS This prospective study analyzed data from 66 patients (aged 26-75 years) after TOPS treatment between 2017 and 2019. Microbiological swabs from the stoma were analyzed on the first postoperative day and 3, 6, 12, and 24 months after stoma creation. Infection rates, laboratory values (CRP, leukocyte count, hemoglobin), and body temperature were recorded at these points in time. Statistical analysis was performed using SPSS 28. RESULTS The results show the formation of a stable environment dominated by Gram-positive bacteria in the stoma of TOPS patients over 24 months. Staphylococcus aureus, Staphylococcus spp., and Streptococcus spp. were the most common species found. With regard to the cohort up to the 3 months follow-up, 7.9% (five patients) developed infections surrounding the TOPS procedure. In relation to the whole cohort with loss to follow-up of 80.3% at the 24 months follow-up the infection rates increased up to 38.3%. CONCLUSION The soft tissue inside and around the transcutaneous stoma is colonialized by multiple taxa and changes over time. A stable Gram-positive dominated bacterial taxa could be a protective factor for ascending periprosthetic infections and could possibly explain the relatively low infection rate in this study as well as in literature.
Collapse
Affiliation(s)
- Marcus Örgel
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | | | - Ludwig Sedlacek
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Tilman Graulich
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | | | - Sabine Roth
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | - Alexander Ranker
- Department of Rehabilitation Medicine, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
6
|
Wankier Z, Taylor C, Drew A, Kubiak E, Agarwal J, Sinclair S. Use of computer tomography imaging for analyzing bone remodeling around a percutaneous osseointegrated implant. J Orthop Res 2022; 40:2065-2075. [PMID: 34910325 DOI: 10.1002/jor.25247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 02/04/2023]
Abstract
Osseointegration (OI) is being used for the direct skeletal attachment of prosthetic limbs using an intramedullary stem that extends percutaneously from the subject's residual limb. For this technology to be successful, bone ingrowth and remodeling around the implant must occur. Physicians need an effective way to assess bone remodeling to make informed treatment and rehabilitation decisions. Previous studies utilizing two-dimensional imaging X-ray as a tool to monitor bone-remodeling around OI devices have limitations. This study describes methodology that was developed utilizing computed tomography (CT) imaging as a tool for analyzing bone remodeling around a percutaneous OI implant. Six transfemoral amputees implanted with a percutaneous osseointegrated prosthesis (POP) had CT scans taken of their residual femur at 6 and 52 weeks postoperatively. Three-dimensional femoral models were processed using custom MATLAB script to collect cortical and medullary morphology measurements. Morphology data from 6- and 52-week scans were compared to quantify bone remodeling around the POP implant. Fifty-two weeks after implantation of the POP device, increases in cortical bone area and thickness were observed around the porous-coated stem. Minimal changes were observed in the medullary canal parameters within the periprosthetic regions. This study successfully utilized CT imaging and three-dimensional modeling techniques to analyze longitudinal data of bone remodeling around a transfemoral percutaneous implant. These methods have the potential to be used as a clinical tool for evaluating orthopedic implants in vivo. Data collected suggests that the POP device achieved the desired bone remodeling around the porous-coated region of the implanted stem.
Collapse
Affiliation(s)
- Zakary Wankier
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Carolyn Taylor
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Alex Drew
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Erik Kubiak
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopedic Surgery, University of Nevada Las Vegas, Las Vegas, Nevada, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jayant Agarwal
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,Division of Plastic Surgery, Salt Lake City, Utah, USA
| | - Sarina Sinclair
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
The First FDA Approved Early Feasibility Study of a Novel Percutaneous Bone Anchored Prosthesis for Transfemoral Amputees: A Prospective One-year Follow-up Cohort Study. Arch Phys Med Rehabil 2022; 103:2092-2104. [DOI: 10.1016/j.apmr.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
|
8
|
Miller A, Jeyapalina S, Agarwal J, Mansel M, Beck JP. A preliminary, observational study using whole-blood RNA sequencing reveals differential expression of inflammatory and bone markers post-implantation of percutaneous osseointegrated prostheses. PLoS One 2022; 17:e0268977. [PMID: 35617338 PMCID: PMC9135298 DOI: 10.1371/journal.pone.0268977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Abstract
AIMS While the benefits of direct skeletal attachment of artificial limbs are well recognized, device failure due to infection and insufficient osseointegration remain obstacles to obtaining consistently successful outcomes. Currently, the potential for device failure is assessed by subjective pain, clinical function scores, radiographic evidence of bone atrophy, and the presence of radiolucent lines at the bone-implant interface, and subjective pain and function scores. Our hypothesis is that measurable biological indices might add another objective means to assess trends toward bone and stomal healing. This longitudinal cohort study was undertaken to identify potential serological biomarkers suggestive of bone remodeling and the presence of stomal tissue inflammation. METHODS Ten unilateral transfemoral amputee veterans, who were implanted with a percutaneous osseointegrated (OI) skeletal limb docking system, were recruited to participate in this IRB-approved study. Venous blood samples were obtained from before the Stage 1 Surgery up to 1 year following the Stage 2 Surgery. Whole-blood RNA was extracted, sequenced, mapped, and analyzed. Of the significant differentially expressed (DEGs) genes (p<0.05) identified, four genes of interest (IL12B, IL33, COL2A1, and SOST) were validated using qPCR. Enrichment analysis was performed to identify significant (p<0.01) Gene Ontology (GO) terms. RESULTS Most differentially expressed genes were only detected at PoS1 immediately after the first surgery. Of the significant genes identified, IL12B and IL33 were related to inflammation, and COL2A1 and SOST were associated with bone remodeling. These four genes were identified with greater than 20 log fold-change. CONCLUSION Whole-blood RNA-seq data from 10 patients who previously underwent percutaneous osseointegrated lower limb implantation revealed four genes of interest that are known to be involved in inflammation or bone remodeling. If verified in future studies, these genes may serve as markers for predicting optimal bone remodeling and stomal tissue healing following OI device implantation.
Collapse
Affiliation(s)
- Andrew Miller
- Research, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Engineering, University of Utah School of Engineering, Salt Lake City, Utah, United States of America
| | - Sujee Jeyapalina
- Research, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Jay Agarwal
- Research, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Mitchell Mansel
- Undergraduate Research Opportunities Program, University of Utah, Salt Lake City, Utah, United States of America
| | - James Peter Beck
- Research, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
9
|
Johansson ML, Hultén L, Jonsson O, Ben Amara H, Thomsen P, Edwin B. Achieving stomal continence with an ileal pouch and a percutaneous implant. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:7. [PMID: 34982258 PMCID: PMC8727424 DOI: 10.1007/s10856-021-06633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
In this study, a soft-tissue-anchored, percutaneous port used as a mechanical continence-preserving valve in reservoir ileo- and urostomies was functionally and morphologically evaluated in eight dogs. During follow-up, the skin failed to attach to the implant, but the intestine inside the stoma port appeared to be attached to the mesh. After reaching adequate reservoir volume, the urostomies were rendered continent by attaching a lid to the implant. The experiments were ended at different time intervals due to implant-related adverse events. In only one case did the histological evaluation reveal integration at both the implant-intestine and implant-skin interfaces, with a low degree of inflammation and the absence of bacterial colonisation. In the remaining cases, integration was not obtained and instead mucosal downgrowth and biofilm formation were observed. The skin-implant junction was characterised by the absence of direct contact between the epidermis and the implant. Varying degrees of epidermal downgrowth, granulation tissue formation, inflammatory cell infiltration and bacterial growth and biofilm formation were prominent findings. In contrast, the subcutaneously located anchor part of the titanium port was well integrated and encapsulated by fibrous tissue. These results demonstrate the opportunity to achieve integration between a soft-tissue-anchored titanium port, skin and intestine. However, predictable long-term function could not be achieved in these animal models due to implant- and non-implant-related adverse events. Unless barriers at both the implant-skin and implant-intestine junctions are created, epidermal and mucosal downward migration and biofilm formation will jeopardise implant performance.
Collapse
Affiliation(s)
- Martin L Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Leif Hultén
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Jonsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bjørn Edwin
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Sartori M, Borsari V, Maglio M, Brogini S, Bragonzoni L, Zaffagnini S, Fini M. Skin adhesion to the percutaneous component of direct bone anchored systems: systematic review on preclinical approaches and biomaterials. Biomater Sci 2021; 9:7008-7023. [PMID: 34549759 DOI: 10.1039/d1bm00707f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Nowadays, direct bone anchored systems are an increasingly adopted approach in the therapeutic landscape for amputee patients. However, the percutaneous nature of these devices poses a major challenge to obtain a stable and lasting proper adhesion between the implant surface and the skin. A systematic review was carried out in three databases (PubMed, Scopus, Web of Science) to provide an overview of the innovative strategies tested with preclinical models (in vitro and in vivo) in the last ten years to improve the skin adhesion of direct bone anchored systems. Fifty five articles were selected after screening, also employing PECO question and inclusion criteria. A modified Cochrane RoB 2.0 tool for the in vitro studies and the SYRCLE tool for in in vivo studies were used to assess the risk of bias. The evidence collected suggests that the implementation of porous percutaneous structures could be one of the most favorable approach to improve proper skin adhesion, especially in association with bioactive coatings, as hydroxyapatite, and exploiting the field of nanostructure. Some issues still remain open as (a) the identification and characterization of the best material/coating association able to limit the shear stresses at the interface and (b) the role of keratinocyte turnover on the skin/biomaterial adhesion and integration processes.
Collapse
Affiliation(s)
- Maria Sartori
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Veronica Borsari
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Melania Maglio
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Silvia Brogini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Laura Bragonzoni
- University of Bologna - Department for Life Quality Studies, Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS - Istituto Ortopedico Rizzoli, II Orthopaedic and Traumatologic Clinic, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
11
|
Örgel M, Ranker A, Harb A, Krettek C, Aschoff HH. [Transcutaneous osseointegrated prosthetic systems after major amputation of the lower extremity : A retrospective 3-year analysis]. DER ORTHOPADE 2021; 50:4-13. [PMID: 33231740 DOI: 10.1007/s00132-020-04031-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Transcutaneous osseointegrated prosthetic systems (TOPS) are an established optional procedure for the prosthetic treatment of amputations. Under the term endo-exo-prosthesis (EEP), the endosteal adapted exo-prosthesis (Dr. Grundei®) is currently used as the only standard prosthesis for clinical application in Germany. The prosthetic treatment with EEP involves a two-stage surgical procedure. In a first surgical step, the endo-fixed stem is implanted into the bone; in a second operation, approx. 2-6 weeks later, the skin/soft tissue stoma is created, through which the exoprosthetic components can be coupled transcutaneously. AIM The aim of this manuscript was to retrospectively collect descriptive 3‑year statistics (2017-2019) from clinical follow-ups and to analyze them with regard to possible effects of TOPS on the mobility level measured by k‑levels. In addition, a brief description of the current standard of care in Germany regarding TOPS will be given. METHODS All patients who underwent EEP after major amputation from February 2017 to December 2019 (n = 72, with 76 implants) were included in this study. The data of the EEP patients were collected in standardized follow-ups. K‑levels were compared preoperatively to 6 months postoperatively. RESULTS A total of N = 72 patients (N = 76 implantations) was analyzed in the described period. The main cause of amputations was trauma (68.9%). Main complications were myofascial complaints. Implant loosening and deep infections were observed in two cases (2.7%) during this period. Stoma problems occurred with a 3-year average of 25.7%. In terms of K‑levels, there was a high significant increase from preoperative 1.8 ± 0.8 to 3.0 ± 0.4 after a 6-month period. CONCLUSION TOPS is an established optional procedure for the treatment of limb loss. In Germany, only one implant is currently regularly implanted (endo-exo prosthesis), and the restoration is currently focused on the lower limb. The restoration of patients with major amputation of the lower extremity by means of TOPS can lead to an increase in mobility and, thus, to an increase in daily activities and participation in daily living.
Collapse
Affiliation(s)
- Marcus Örgel
- Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Deutschland.
| | - Alexander Ranker
- Klinik für Rehabilitationsmedizin, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Deutschland.
| | - Afif Harb
- Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Deutschland
| | - Christian Krettek
- Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Deutschland
| | - Horst-Heinrich Aschoff
- Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Deutschland
| |
Collapse
|
12
|
Characterizing loads at transfemoral osseointegrated implants. Med Eng Phys 2020; 84:103-114. [PMID: 32977907 DOI: 10.1016/j.medengphy.2020.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 11/23/2022]
Abstract
Establishing normative and outlying loads on transfemoral osseointegrated devices will assist development of preclinical mechanical testing strategies to inform manufacturers and government regulators. Therefore, force and moment data from osseointegrated transfemoral transcutaneous implants were collated to better understand baseline load levels. Load data were also collected from other devices including transfemoral socket prostheses, instrumented hip stems, instrumented knee devices, instrumented limb salvage femoral endoprostheses, as well as estimated loads on transfemoral prostheses using data from able-bodied subjects. These additional data were assessed for their ability to bolster the limited osseointegrated device data. Several activities of daily living were investigated to characterize normative loading. Falling events were investigated to characterize outlying loads. Results revealed that limited loading data exist for osseointegrated devices. The most often reported activity was level walking. While these normative data may inform fatigue testing, they may not fully characterize fatigue loads during all activities of daily living. Socket prosthetics and able-bodied individuals may provide supplementary data, but significance is limited by sample sizes. Falling data are sparse, and insufficient data exist for characterizing adverse loads on osseointegrated devices. Future data collection should include more activities of daily living and adverse events to better define osseointegrated device loading profiles.
Collapse
|
13
|
Ranker A, Örgel M, Beck JP, Krettek C, Aschoff HH. Transkutane osseointegrierte Prothesensysteme (TOPS) zur Versorgung
Oberschenkelamputierter. REHABILITATION 2020; 59:357-365. [DOI: 10.1055/a-1223-3205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zusammenfassung
Ziel Der Studie Durchgeführt wurde eine retrospektive Analyse der
klinischen Ergebnisse und Komplikationsraten aller oberschenkelamputierten
Patienten eines Zentrums, die mit dem neuesten Implantatdesign der sogenannten
Endo-Exo-Femur-Prothese (EEFP, dritte Generation) versorgt wurden. Ziel ist es,
spezifische Informationen zu Langzeitkomplikationen dieser
Amputationsversorgungsform zu gewinnen.
Methodik Im Januar 2019 wurden Daten aller Oberschenkelamputierten, die
von 2010 bis 2016 an einer Akutklinik aus Schleswig-Holstein mit TOPS versorgt
wurden, retrospektiv analysiert. Dies geschah unter besonderer
Berücksichtigung der postoperativen Komplikationen. Hierfür
wurden alle Untersuchungsbefunde der klinischen Routine-Nachsorge-Untersuchungen
herangezogen. Die Komplikationen wurden unterteilt in Stomaprobleme,
orthopädie-technische Probleme, Frakturen und Explantationen. Alle EEFPs
besaßen das gleiche Implantatdesign (dritte Generation). Dieses
Implantat findet derzeit als einziges TOPS in Deutschland klinische Anwendung.
Eine deskriptive Statistik des Patientenkollektivs, sowie
Verhältnisangaben über aufgetretene Komplikationen wurden
berechnet.
Ergebnisse Insgesamt wurden in diesem Zeitraum 68 Implantationen
durchgeführt. Durchschnittliche Beobachtungszeit war 6,32 Jahre
(±2,16 Jahre). Das mittlere Alter der Patienten betrug 51,84
Jahre±12,12 Jahre. Ursache der Amputation waren überwiegend
Traumata (82,35%). Stoma-assoziierte Probleme zeigten mit 7% die
höchste Inzidenz innerhalb aller beobachteten, patientenassoziierten
Komplikationen und stellten die größten Herausforderungen
während des Rehabilitationsprozesses dar. Betrachtet man nur die
chirurgischen Komplikationen, so hatten 81% überhaupt keine
Komplikationen. Insgesamt wiesen 15% orthopädie-technische
Probleme auf, 6% eine peri-prothetische Fraktur, 7% Probleme am
Stoma und 3% mussten aufgrund einer Infektion explantiert werden.
Schlussfolgerung Die erhobene Datenanalyse zeigt, dass TOPS (hier die
EEFP der dritten Generation) eine erfolgreiche alternative Behandlungsmethode
zur Schaftprothesenversorgung für Patienten mit
Oberschenkelknochenverlust darstellen können. Die Indikation sollte erst
nach dem Versagen einer Schaftversorgung erfolgen und Kontraindikationen
müssen umfassend ausgeschlossen werden. Die größten
Herausforderungen im Rehabilitationsprozess stellen die Vermeidung von
Stomakomplikationen, Infektionen und orthopädie-technischen Problemen
dar. Die Rehabilitation von Amputierten, die mit TOPS behandelt werden,
erfordert daher ein interdisziplinäres, spezialisiertes
Rehabilitations-Team und eine lebenslange rehabilitative Versorgung.
Collapse
Affiliation(s)
- Alexander Ranker
- Klinik für Rehabilitationsmedizin, Medizinische Hochschule
Hannover
- Klinik für Unfallchirurgie, Medizinische Hochschule
Hannover
| | - Marcus Örgel
- Klinik für Unfallchirurgie, Medizinische Hochschule
Hannover
| | | | | | | |
Collapse
|