1
|
Johnson AS, Brismée JM, Hooper TL, Hintz CN, Hando BR. Incidence and Risk Factors for Bone Stress Injuries in United States Air Force Special Warfare Trainees. Mil Med 2024; 189:e1790-e1796. [PMID: 38324749 DOI: 10.1093/milmed/usae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES To determine (1) the incidence rate of lower extremity (LE) bone stress injuries (BSIs) in United States Air Force Special Warfare (AFSPECWAR) trainees during the first 120 days of training, and (2) factors associated with sustaining a LE BSI. DESIGN Retrospective cohort study. METHODS AFSPECWAR Airmen (n = 2,290, mean age = 23.7 ± 3.6 years) entering an intensive 8-week preparatory course "SW-Prep" between October 2017 and May 2021. We compared anthropometric measurements, previous musculoskeletal injury (MSKI), fitness measures, and prior high-impact sports participation in those that did and did not suffer a BSI during the 120-day observation period using independent t-tests and chi-square tests. A multivariable binary logistic regression was used to determine factors associated with suffering a BSI. RESULTS A total of 124 AFSPECWAR trainees suffered a BSI during the surveillance period, yielding an incidence proportion of 5.41% and an incidence rate of 1.4 BSIs per 100 person-months. The multivariate logistic regression revealed that lower 2-minute sit-up scores, no prior history of participation in a high-impact high-school sport, and a history of prior LE MSKI were associated with suffering a BSI. A receiver operator characteristic curve analysis yielded an area under the curve (AUC) of 0.727. CONCLUSION BSI incidence proportion for our sample was similar to those seen in other military settings. Military trainees without a history of high-impact sports participation who achieve lower scores on sit-ups tests and have a history of LE MSKI have a higher risk for developing a LE BSI during the first 120 days of AFSPECWAR training.
Collapse
Affiliation(s)
- Andrew S Johnson
- Operational Medicine Squadron, USAF Special Warfare, San Antonio, TX 78245, USA
| | - Jean-Michel Brismée
- Department of Rehabilitation Sciences, Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Troy L Hooper
- Department of Rehabilitation Sciences, Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Courtney N Hintz
- Operational Medicine Squadron, USAF Special Warfare, San Antonio, TX 78245, USA
| | | |
Collapse
|
2
|
Eastman K, O’Leary TJ, Carswell A, Walsh N, Izard R, Fraser W, Greeves J. Distal Tibial Bone Properties and Bone Stress Injury Risk in Young Men Undergoing Arduous Physical Training. Calcif Tissue Int 2023; 113:317-328. [PMID: 37481657 PMCID: PMC10449708 DOI: 10.1007/s00223-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Trabecular microarchitecture contributes to bone strength, but its role in bone stress injury (BSI) risk in young healthy adults is unclear. Tibial volumetric BMD (vBMD), geometry, and microarchitecture, whole-body areal BMD, lean and fat mass, biochemical markers of bone metabolism, aerobic fitness, and muscle strength and power were measured in 201 British Army male infantry recruits (age 20.7 [4.3] years, BMI 24.0 ± 2.7 kg·m2) in week one of basic training. Tibial scans were performed at the ultra-distal site, 22.5 mm from the distal endplate of the non-dominant leg using High Resolution Peripheral Quantitative Computed Tomography (XtremeCT, Scanco Medical AG, Switzerland). Binary logistic regression analysis was performed to identify associations with lower body BSI confirmed by MRI. 20 recruits (10.0%) were diagnosed with a lower body BSI. Pre-injured participants had lower cortical area, stiffness and estimated failure load (p = 0.029, 0.012 and 0.011 respectively) but tibial vBMD, geometry, and microarchitecture were not associated with BSI incidence when controlling for age, total body mass, lean body mass, height, total 25(OH)D, 2.4-km run time, peak power output and maximum dynamic lift strength. Infantry Regiment (OR 9.3 [95%CI, 2.6, 33.4]) Parachute versus Line Infantry, (p ≤ 0.001) and 2.4-km best effort run time (1.06 [95%CI, 1.02, 1.10], p < 0.033) were significant predictors. Intrinsic risk factors, including ultradistal tibial density, geometry, and microarchitecture, were not associated with lower body BSI during arduous infantry training. The ninefold increased risk of BSI in the Parachute Regiment compared with Line Infantry suggests that injury propensity is primarily a function of training load and risk factors are population-specific.
Collapse
Affiliation(s)
- Katharine Eastman
- Norwich Medical School, University of East Anglia, Norwich, UK
- Army Health and Performance Research, Army Headquarters, Andover, UK
- HQ DPHC, Coltman House, DMS Whittington, Lichfield, WS14 9PY UK
| | - Thomas J. O’Leary
- Army Health and Performance Research, Army Headquarters, Andover, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | | | - Neil Walsh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rachel Izard
- Science and Technology Commissioning, Defence Science and Technology, Porton Down, Salisbury, UK
| | - William Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK
- Departments of Endocrinology and Clinical Biochemistry, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Julie Greeves
- Norwich Medical School, University of East Anglia, Norwich, UK
- Army Health and Performance Research, Army Headquarters, Andover, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| |
Collapse
|
3
|
Stürznickel J, Hinz N, Delsmann MM, Hoenig T, Rolvien T. Impaired Bone Microarchitecture at Distal Radial and Tibial Reference Locations Is Not Related to Injury Site in Athletes With Bone Stress Injury. Am J Sports Med 2022; 50:3381-3389. [PMID: 36053067 PMCID: PMC9527365 DOI: 10.1177/03635465221120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone stress injuries (BSIs) are common sports injuries that occur because of an imbalance between microdamage accumulation and removal through bone remodeling. The underlying bone phenotype has been assumed to be a contributing factor. However, the bone microarchitecture of athletes with BSI is not well characterized, and no study has investigated whether impaired bone microarchitecture is associated with bone composition or anatomic site of injury. PURPOSE/HYPOTHESIS This cross-sectional study characterizes the bone microarchitecture at distal radial and tibial reference locations in athletes with BSI. Based on previous dual-energy X-ray absorptiometry (DXA) findings, the aim was to compare anatomic injury sites, hypothesizing that athletes with BSIs in bones with greater trabecular composition show impaired bone microarchitecture parameters compared with those with BSIs in bones with greater cortical composition. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS Athletes who had presented to our outpatient clinic because of a high-grade BSI (ie, stress fracture) were retrospectively included. Blood and urine samples were collected. Areal bone mineral density (aBMD) was assessed by DXA at the lumbar spine and both hips. Bone microarchitecture was analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and tibia. HR-pQCT parameters were expressed in relation to available sex-, age-, and device-adjusted reference values and compared with a cohort of 53 age- and sex-matched controls. RESULTS In total, 53 athletes had a BSI of the foot (n = 20), tibia/fibula (n = 18), pelvis (n = 9), femur (n = 5), or sternum (n = 1). Based on DXA measurements, a Z-score of -1.0 or lower was found in 32 of 53 (60.4%) of the athletes, of whom 16 of 53 (30.2%) had a Z score -2.0 or lower. While an impairment of cortical area (P = .034 and P = .001) and thickness (P = .029 and P < .001) was detected at the distal radius and tibia in the BSI cohort compared with controls, no differences in BMD or bone microarchitecture were observed between anatomic injury sites. Furthermore, no difference was revealed when BSIs were grouped into cortical- and trabecular-rich sites. CONCLUSION Reduced aBMD and impaired cortical bone microarchitecture were present in a considerable number of athletes with BSI. Neither aBMD nor bone microarchitecture was related to the injury site, highlighting the multifactorial etiology of BSI.
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and
Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Department of Trauma and Orthopaedic
Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Julian Stürznickel, MD,
Department of Osteology and Biomechanics, University Medical Center
Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany (
); or Tim Rolvien, MD, PhD, MBA,
Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery,
University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg,
Germany ()
| | - Nico Hinz
- Department of Trauma and Orthopaedic
Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Department of Trauma Surgery,
Orthopaedics and Sports Traumatology, BG Hospital Hamburg, Hamburg, Germany
| | - Maximilian M. Delsmann
- Department of Osteology and
Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Department of Trauma and Orthopaedic
Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Hoenig
- Department of Trauma and Orthopaedic
Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic
Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Julian Stürznickel, MD,
Department of Osteology and Biomechanics, University Medical Center
Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany (
); or Tim Rolvien, MD, PhD, MBA,
Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery,
University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg,
Germany ()
| |
Collapse
|
4
|
Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, Popp KL, Rolvien T, Tenforde AS, Warden SJ. Bone stress injuries. Nat Rev Dis Primers 2022; 8:26. [PMID: 35484131 DOI: 10.1038/s41572-022-00352-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/11/2023]
Abstract
Bone stress injuries, including stress fractures, are overuse injuries that lead to substantial morbidity in active individuals. These injuries occur when excessive repetitive loads are introduced to a generally normal skeleton. Although the precise mechanisms for bone stress injuries are not completely understood, the prevailing theory is that an imbalance in bone metabolism favours microdamage accumulation over its removal and replacement with new bone via targeted remodelling. Diagnosis is achieved by a combination of patient history and physical examination, with imaging used for confirmation. Management of bone stress injuries is guided by their location and consequent risk of healing complications. Bone stress injuries at low-risk sites typically heal with activity modification followed by progressive loading and return to activity. Additional treatment approaches include non-weight-bearing immobilization, medications or surgery, but these approaches are usually limited to managing bone stress injuries that occur at high-risk sites. A comprehensive strategy that integrates anatomical, biomechanical and biological risk factors has the potential to improve the understanding of these injuries and aid in their prevention and management.
Collapse
Affiliation(s)
- Tim Hoenig
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Belinda R Beck
- School of Health Sciences & Social Work, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,The Bone Clinic, Brisbane, Queensland, Australia
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David B Burr
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam S Tenforde
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.
| | - Stuart J Warden
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA. .,Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN, USA. .,La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
5
|
The Relationship Between Stress Fractures and Bone Turnover Markers Is Unclear in Athletic and Military Populations: A Critically Appraised Topic. INTERNATIONAL JOURNAL OF ATHLETIC THERAPY AND TRAINING 2022. [DOI: 10.1123/ijatt.2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical Scenario: Having an indication of how bone is remodeling in response to training load could help identify athletes and military personnel at increased stress fracture (SFx) risk. Direct assessment of bone remodeling is impractical. Biochemical markers of bone turnover are used as an indirect measure of bone remodeling and have potential to inform prevention and treatment efforts. To date, the relationship between bone turnover markers and SFxs in athletes or military personnel remains unclear. Clinical Question: Are SFxs related to bone turnover markers in athletes and military personnel? Summary of Key Findings: Seven met eligibility criteria. In five studies, an association between SFxs and bone turnover markers existed. Clinical Bottom Line: The evidence supporting a relationship between SFxs and bone turnover markers in athletes and military personnel is mixed. While five of the seven studies reported some type of relationship, no studies prospectively measured bone turnover markers in a group of athletes or military personnel without an SFx or without SFx history and followed them over time to reassess bone turnover markers upon SFx occurrence. Strength of Clinical Recommendation: In accordance with the Strength of Recommendation Taxonomy, Grade C is the most appropriate strength of recommendation rating.
Collapse
|
6
|
Baker BS, Buchanan SR, Black CD, Bemben MG, Bemben DA. Bone, Biomarker, Body Composition, and Performance Responses to 8 Weeks of ROTC Training. J Athl Train 2021; 57:571-580. [PMID: 34279654 DOI: 10.4085/1062-6050-0634.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Military personnel engage in vigorous exercise, often resulting in higher bone mineral density; however, lower leg bone injuries are common in this population. Predictors of change in tibial bone quality and strength need to be characterized in this high-risk population. OBJECTIVE This study aimed to examine the effects of an eight-week military training intervention on total body and site-specific bone density and tibial bone quality, serum biomarkers (parathyroid hormone and sclerostin), body composition, and physical performance. Additionally, we sought to investigate what outcome variables (biomarkers, body composition, physical performance) would be predictive of estimated tibial bone strength in college-aged Reserve Officers' Training Corps (ROTC) members. DESIGN Prospective Cohort Study. SETTING XXX University. Patients of Other Participants: ROTC (n=14 male; n=4 female) were matched for sex, age, and body mass to physically active Controls (n=14 male; n=4 female). ROTC engaged in an eight-week training intervention, while physically active Controls made no changes to their exercise routines. MAIN OUTCOME MEASURES Pre general health questionnaires and pre, mid, and post intervention bone scans (DXA, pQCT), serum blood draws (parathyroid hormone and sclerostin), and physical performance measures (muscle strength and aerobic capacity) were tested. RESULTS ROTC participants exhibited significantly increased hip bone density and content (all p≤0.03) after the eight-week intervention. Sclerostin, not PTH, was a significant positive correlate and predictor in all ROTC models for estimated bone strength at the fracture prone 38% tibial site. Both groups decreased total body and regional fat mass and ROTC increased aerobic capacity (all p≤0.05). CONCLUSIONS All bone, body composition, and performance measures either improved or were maintained in response to ROTC training and sclerostin should be further investigated as a potential early indicator of changes in estimated tibial bone strength in military cohorts.
Collapse
Affiliation(s)
- Breanne S Baker
- Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, Office: 573-882-3038, , Twitter @DrBreeBaker-Also affiliated with the Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Samuel R Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, 78539. -Also affiliated with the Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071, Twitter @ChrisBlack_PhD
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Debra A Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| |
Collapse
|
7
|
O'Leary TJ, Rice HM, Greeves JP. Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training. Curr Osteoporos Rep 2021; 19:308-317. [PMID: 33635518 DOI: 10.1007/s11914-021-00671-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures. RECENT FINDINGS Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise. The contribution of bone trabecular microarchitecture, cortical porosity, and bone material properties in the pathophysiology of stress fractures is less clear, but high-resolution pQCT and new techniques such as impact microindentation may improve our understanding of the role of microarchitecture and material properties in stress fracture prediction. Military studies demonstrate osteogenic outcomes from high impact, repetitive tibial loading during training. Kinetic and kinematic characteristics may influence stress fracture risk, but there is no evidence that interventions to modify biomechanics can reduce the incidence of stress fracture. Strategies to promote adaptive bone formation, in combination with improved techniques to assess bone strength, present exciting opportunities for future research to prevent stress fractures.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Hannah M Rice
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK.
- Division of Surgery and Interventional Science, UCL, London, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
8
|
High Cortico-Trabecular Transitional Zone Porosity and Reduced Trabecular Density in Men and Women with Stress Fractures. J Clin Med 2021; 10:jcm10051123. [PMID: 33800284 PMCID: PMC7962637 DOI: 10.3390/jcm10051123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
To determine whether stress fractures are associated with bone microstructural deterioration we quantified distal radial and the unfractured distal tibia using high resolution peripheral quantitative computed tomography in 26 cases with lower limb stress fractures (15 males, 11 females; mean age 37.1 ± 3.1 years) and 62 age-matched healthy controls (24 males, 38 females; mean age 35.0 ± 1.6 years). Relative to controls, in men, at the distal radius, cases had smaller cortical cross sectional area (CSA) (p = 0.012), higher porosity of the outer transitional zone (OTZ) (p = 0.006), inner transitional zone (ITZ) (p = 0.043) and the compact-appearing cortex (CC) (p = 0.023) while trabecular vBMD was lower (p = 0.002). At the distal tibia, cases also had a smaller cortical CSA (p = 0.008). Cortical porosity was not higher, but trabecular vBMD was lower (p = 0.001). Relative to controls, in women, cases had higher distal radial porosity of the OTZ (p = 0.028), ITZ (p = 0.030) not CC (p = 0.054). Trabecular vBMD was lower (p = 0.041). Distal tibial porosity was higher in the OTZ (p = 0.035), ITZ (p = 0.009), not CC. Stress fractures are associated with compromised cortical and trabecular microstructure.
Collapse
|
9
|
Bilateral Looser zones or pseudofractures in the anteromedial tibia as a component of medial tibial stress syndrome in athletes. Knee Surg Sports Traumatol Arthrosc 2021; 29:1644-1650. [PMID: 32968845 PMCID: PMC8038983 DOI: 10.1007/s00167-020-06290-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/14/2020] [Indexed: 10/31/2022]
Abstract
PURPOSE Medial tibial stress syndrome (MTSS) represents a common diagnosis in individuals exposed to repetitive high-stress loads affecting the lower limb, e.g., high-performance athletes. However, the diagnostic approach and therapeutic regimens are not well established. METHODS Nine patients, diagnosed as MTSS, were analyzed by a comprehensive skeletal analysis including laboratory bone turnover parameters, dual-energy X-Ray absorptiometry (DXA), and high-resolution peripheral quantitative computed tomography (HR-pQCT). RESULTS In 4/9 patients, bilateral pseudofractures were detected in the mid-shaft tibia. These patients had significantly lower levels of 25-hydroxycholecalciferol compared to patients with MTSS but similar levels of bone turnover parameters. Interestingly, the skeletal assessment revealed significantly higher bone mineral density (BMD) Z-scores at the hip (1.3 ± 0.6 vs. - 0.7 ± 0.5, p = 0.013) in patients with pseudofractures and a trend towards higher bone microarchitecture parameters measured by HR-pQCT at the distal tibia. Vitamin D supplementation restored the calcium-homeostasis in all patients. Combined with weight-bearing as tolerated, pseudofractures healed in all patients and return to competition was achieved. CONCLUSION In conclusion, deficient vitamin D levels may lead to pseudofractures due to localized deterioration of mineralization, representing a pivotal component of MTSS in athletes with increased repetitive mechanical loading of the lower limbs. Moreover, the manifestation of pseudofractures is not a consequence of an altered BMD nor microarchitecture but appears in patients with exercise-induced BMD increase in combination with reduced 25-OH-D levels. The screening of MTSS patients for pseudofractures is crucial for the initiation of an appropriate treatment such as vitamin D supplementation to prevent a prolonged course of healing or recurrence. LEVEL OF EVIDENCE III.
Collapse
|
10
|
Troy KL, Davis IS, Tenforde AS. A Narrative Review of Metatarsal Bone Stress Injury in Athletic Populations: Etiology, Biomechanics, and Management. PM R 2020; 13:1281-1290. [PMID: 33155355 DOI: 10.1002/pmrj.12518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/13/2023]
Abstract
Metatarsal bone stress injuries (BSIs) are common in athletic populations. BSIs are overuse injuries that result from an accumulation of microdamage that exceeds bone remodeling. Risk for metatarsal BSI is multifactorial and includes factors related to anatomy, biology, and biomechanics. In this article, anatomic factors including foot type, metatarsal length, bone density, bone geometry, and intrinsic muscle strength, which each influence how the foot responds to load, are discussed. Biologic factors such as low energy availability and impaired bone metabolism influence the quality of the bone. Finally, the influence of biomechanical loads to bone such as peak forces, load rates, and loading cycles are reviewed. General management of metatarsal BSI is discussed, including acute care, rehabilitation, treatment of refractory metatarsal BSI, and evaluation of healing/return to sport. Finally, we identify future research priorities and emerging treatments for metatarsal BSI.
Collapse
Affiliation(s)
- Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Irene S Davis
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.,Spaulding National Running Center, Spaulding Hospital, Cambridge, MA, USA
| | - Adam S Tenforde
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.,Spaulding National Running Center, Spaulding Hospital, Cambridge, MA, USA
| |
Collapse
|