1
|
Xin L, Liu ZY, Liu CX, Sheng J, Zhou Q, Yuan YW, Yue ZQ, Lu H, Gan JH. KLF10/CBS increases the sensitivity of gastric carcinoma cells to methionine restriction by promoting sulfur transfer pathway. Exp Cell Res 2024; 437:114007. [PMID: 38499142 DOI: 10.1016/j.yexcr.2024.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine β-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhi-Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chen-Xi Liu
- Excellent Ophthalmology Class 221, School of Ophthalmology &optometry, Nanchang University, China
| | - Jie Sheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
2
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
3
|
Peng R, Shang J, Jiang N, Chi-Jen H, Gu Y, Xing B, Hu R, Wu B, Wang D, Xu X, Lu H. Klf10 is involved in extracellular matrix calcification of chondrocytes alleviating chondrocyte senescence. J Transl Med 2024; 22:52. [PMID: 38217021 PMCID: PMC10790269 DOI: 10.1186/s12967-023-04666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/27/2023] [Indexed: 01/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease resulting joint disability and pain. Accumulating evidences suggest that chondrocyte extracellular matrix calcification plays an important role in the development of OA. Here, we showed that Krüppel-like factor 10 (Klf10) was involved in the regulation of chondrocyte extracellular matrix calcification by regulating the expression of Frizzled9. Knockdown of Klf10 attenuated TBHP induced calcification and reduced calcium content in chondrocytes. Restoring extracellular matrix calcification of chondrocytes could aggravate chondrocyte senescence. Destabilization of a medial meniscus (DMM) mouse model of OA, in vivo experiments revealed that knockdown Klf10 improved the calcification of articular cartilage and ameliorated articular cartilage degeneration. These findings suggested that knockdown Klf10 inhibited extracellular matrix calcification-related changes in chondrocytes and alleviated chondrocyte senescence.
Collapse
Affiliation(s)
- Rong Peng
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ning Jiang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, Shandong, China
| | - Hsu Chi-Jen
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yu Gu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Baizhou Xing
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Renan Hu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Dawei Wang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Xianghe Xu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
4
|
Wu J, Xu L, Li C, Wang X, Jiang J. Exploration of key factors in Gingival Crevicular fluids from patients undergoing Periodontally Accelerated Osteogenic Orthodontics (PAOO) using proteome analysis. BMC Oral Health 2023; 23:934. [PMID: 38012627 PMCID: PMC10683118 DOI: 10.1186/s12903-023-03606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The aims of this study are to explore protein changes in gingival crevicular fluid at different time points after PAOO by proteomics method and to select significant bone metabolization-related biomarkers. METHODS This study included 10 adult patients experiencing PAOO. After orthodontic alignment and leveling, the maxillary anterior teeth were treated with PAOO, which is classified as the experimental area. The traditional orthodontic treatment was performed in the mandibular dentition as the control. Gingival crevicular fluid samples were collected at the following time points: the day before the PAOO (T1) and at 1 week, 2 weeks, 1 month, 2 months and 6 months after PAOO (T2, T3, T4, T5 and T6, respectively). The label-free quantitative proteomic assay was used to evaluate the gingival crevicular fluid in PAOO and control areas at time point T1, T2, and T4. Bioinformatics analysis was carried out to categorize proteins based on biological processes, cellular component and molecular function, which is in compliance with gene ontology (GO) standards. The changes of proteins were confirmed by ELISA. RESULTS A total of 134 proteins were selected by keywords (Osteoblast markers, Osteoclast markers, Osteoclastogenesis regulating genes and inflammatory marker). 33 of them were statistically different between groups, and 12 were related to bone metabolism. 5 proteins selected by label-free quantitative proteomics were KLF10, SYT7, APOA1, FBN1 and NOTCH1. KLF10 decreased after PAOO, hitting a trough at T4, and then leveled off. SYT7 increased after PAOO, reaching a peak at T3, and then stabilized until T6. APOA1 ascended to a peak at T4 after PAOO, and then remained stable until T6. The FBN1 rose after PAOO, reaching a peak at T4, and then went down slowly. NOTCH1 ascended rapidly in the first two weeks after PAOO and continued its slow growth trend. CONCLUSION In this study, protein changes in gingival crevicular fluid were detected by proteomics method, and significant bone metabolization-related proteins were selected. It is speculated that APOA1, FBN1, NOTCH1, SYT7 and KLF10 played key roles in regulating bone metabolic balance and in reversible osteopenia after PAOO, which might be involved in the accelerated tooth movement. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry (Clinical trial registration number: ChiCTR-ONRC-13,004,129) (26/04/2013).
Collapse
Affiliation(s)
- Jiaqi Wu
- First Clinical Division, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
| | - Li Xu
- Department of Periodontology, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
| | - Xiujing Wang
- First Clinical Division, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China.
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China.
| |
Collapse
|
5
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
6
|
Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal 2022; 93:110308. [PMID: 35301064 DOI: 10.1016/j.cellsig.2022.110308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle. To understand the importance of the KLF family, we also review genotype-phenotype correlations in different animal models. We also discuss how KLF proteins function through different signaling pathways and display their paramount importance in skeletal development. To highlight their roles in cartilage- or bone-related cells, we also use single-cell RNA sequencing publicly available data on mouse hindlimb. We also challenge our knowledge of how the KLF family is epigenetically regulated-e.g., using DNA methylation, histone modifications, and noncoding RNAs-during chondrocyte and osteocyte development.
Collapse
Affiliation(s)
- Sina Zakeri
- Department of Veterinary Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hesam Aminian
- Department of Biology, Faculty of Sciences, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soheila Sadeghi
- Department of Biology, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Kurdistan, Iran
| | | | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Chen YC, Chen RJ, Peng SY, Yu WCY, Chang VHS. Therapeutic Targeting of Nonalcoholic Fatty Liver Disease by Downregulating SREBP-1C Expression via AMPK-KLF10 Axis. Front Mol Biosci 2021; 8:751938. [PMID: 34869587 PMCID: PMC8633436 DOI: 10.3389/fmolb.2021.751938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 10 (KLF10) is a phospho-regulated transcriptional factor involved in many biological processes including lipogenesis; however, the transcriptional regulation on lipogenesis by KLF10 remains largely unclear. Lipogenesis is important in the development of nonalcoholic fatty liver disease (NAFLD) which was known regulated mainly by AMP-activated protein kinase (AMPK) and sterol regulatory element-binding protein (SREBP-1C). Interesting, our previous study using phosphorylated site prediction suggested a regulation of AMPK on KLF10. Therefore, we aimed to study the protein–protein interactions of AMPK on the regulation of KLF10, and to delineate the mechanisms of phosphorylated KLF10 in the regulation of NAFLD through SREBP-1C. We performed in vitro and in vivo assays that identified AMPK phosphorylates KLF10 at Thr189 and subsequently modulates the steady state level of KLF10. Meanwhile, a chromatin immunoprecipitation–chip assay revealed the novel target genes and signaling cascades of corresponding to phosphorylated KLF10. SREBP-1C was identified as a target gene suppressed by phosphorylated KLF10 through promoter binding. We further performed high-fat-diet-induced NAFLD models using hepatic-specific KLF10 knockout mice and wild-type mice and revealed that KLF10 knockout markedly led to more severe NAFLD than that in wild-type mice. Taken together, our findings revealed for the first time that AMPK activates and stabilizes the KLF10 protein via phosphorylation at Thr189, thereby repressing the expression of SREBP-1C and subsequent lipogenesis pathways along with metabolic disorders. We suggested that the targeted manipulation of liver metabolism, particularly through increased KLF10 expression, is a potential alternative solution for treating NAFLD.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Yuan Peng
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Winston C Y Yu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
8
|
Wu T, Li X, Jia X, Zhu Z, Lu J, Feng H, Shen B, Guo K, Li Y, Wang Q, Gao Z, Yu B, Ba Z, Huang Y, Wu D. Krüppel like factor 10 prevents intervertebral disc degeneration via TGF-β signaling pathway both in vitro and in vivo. J Orthop Translat 2021; 29:19-29. [PMID: 34094855 PMCID: PMC8141503 DOI: 10.1016/j.jot.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background Krüppel like factor 10 (KLF10), which is also known as TGF-β Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. Methods The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. Results We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1β induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-β signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. Conclusions This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-β signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hang Feng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuzhi Li
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
9
|
Zhang P, Katzaroff AJ, Buttitta LA, Ma Y, Jiang H, Nickerson DW, Øvrebø JI, Edgar BA. The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proc Natl Acad Sci U S A 2021; 118:e2015675118. [PMID: 33558234 PMCID: PMC7896318 DOI: 10.1073/pnas.2015675118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Alexia J Katzaroff
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Laura A Buttitta
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Yiqin Ma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Huaqi Jiang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Derek W Nickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jan Inge Øvrebø
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112;
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
10
|
Rolph D, Das H. Transcriptional Regulation of Osteoclastogenesis: The Emerging Role of KLF2. Front Immunol 2020; 11:937. [PMID: 32477372 PMCID: PMC7237574 DOI: 10.3389/fimmu.2020.00937] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of osteoclastic differentiation and its activity is a hallmark of various musculoskeletal disease states. In this review, the complex molecular factors underlying osteoclastic differentiation and function are evaluated. The emerging role of KLF2 in regulation of osteoclastic differentiation is examined, specifically in the context of rheumatoid arthritis in which it has been most extensively studied among the musculoskeletal diseases. The therapies that exist to manage diseases associated with osteoclastogenesis are numerous and diverse. They are varied in their mechanisms of action and in the outcomes they produce. For this review, therapies targeting osteoclasts will be emphasized, though it should be noted that many therapies exist which bolster the action of osteoblasts. A new targeted molecular approach is under investigation for the future potential therapeutic development of rheumatoid arthritis.
Collapse
Affiliation(s)
- Daniela Rolph
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| |
Collapse
|