1
|
Paakkari P, Inkinen SI, Mohammadi A, Nieminen MT, Joenathan A, Grinstaff MW, Töyräs J, Mäkelä JTA, Honkanen JTJ. Photon-counting in dual-contrast-enhanced computed tomography: a proof-of-concept quantitative biomechanical assessment of articular cartilage. Sci Rep 2024; 14:29956. [PMID: 39622931 PMCID: PMC11612382 DOI: 10.1038/s41598-024-78237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
This proof-of-concept study explores quantitative imaging of articular cartilage using photon-counting detector computed tomography (PCD-CT) with a dual-contrast agent approach, comparing it to clinical dual-energy CT (DECT). The diffusion of cationic iodinated CA4 + and non-ionic gadolinium-based gadoteridol contrast agents into ex vivo bovine medial tibial plateau cartilage was tracked over 72 h. Continuous maps of the contrast agents' diffusion were created, and correlations with biomechanical indentation parameters (equilibrium and instantaneous moduli, and relaxation time constants) were examined at 28 specific locations. Cartilage at each location was analyzed as full-thickness to ensure a fair comparison, and calibration-based material decomposition was employed for concentration estimation. Both DECT and PCD-CT exhibit strong correlations between CA4 + content and biomechanical parameters, with PCD-CT showing superior significance, especially at later time points. DECT lacks significant correlations with gadoteridol-related parameters, while PCD-CT identifies noteworthy correlations between gadoteridol diffusion and biomechanical parameters. In summary, the experimental PCD-CT setup demonstrates superior accuracy and sensitivity in concentration estimation, suggesting its potential as a more effective tool for quantitatively assessing articular cartilage condition compared to a conventional clinical DECT scanner.
Collapse
Affiliation(s)
- Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Satu I Inkinen
- HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Ali Mohammadi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Chemistry and Medicine, University of California, Davis, CA, USA
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juuso T J Honkanen
- Radiotherapy Department, Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Tuppurainen J, Paakkari P, Jäntti J, Nissinen MT, Fugazzola MC, van Weeren R, Ylisiurua S, Nieminen MT, Kröger H, Snyder BD, Joenathan A, Grinstaff MW, Matikka H, Korhonen RK, Mäkelä JTA. Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study. Ann Biomed Eng 2024; 52:2584-2595. [PMID: 39012563 PMCID: PMC11329549 DOI: 10.1007/s10439-024-03552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024]
Abstract
The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents' intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.
Collapse
Affiliation(s)
- Juuso Tuppurainen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mikko T Nissinen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Maria C Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sampo Ylisiurua
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Brian D Snyder
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, USA
| | - Anisha Joenathan
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, USA
| | - Hanna Matikka
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
3
|
Park DY, Kim SH, Park SH, Jang JS, Yoo JJ, Lee SJ. 3D Bioprinting Strategies for Articular Cartilage Tissue Engineering. Ann Biomed Eng 2024; 52:1883-1893. [PMID: 37204546 DOI: 10.1007/s10439-023-03236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Do Young Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Orthopedic Surgery, Ajou University Hospital, Suwon, Republic of Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sang-Hyug Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Ji Su Jang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
B Wrammerfors ET, Törnquist E, Pierantoni M, Sjögren A, Tengattini A, Kaestner A, Zandt RI', Englund M, Isaksson H. Exploratory neutron tomography of articular cartilage. Osteoarthritis Cartilage 2024; 32:702-712. [PMID: 38447631 DOI: 10.1016/j.joca.2024.02.889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the feasibility of using neutron tomography to gain new knowledge of human articular cartilage degeneration in osteoarthritis (OA). Different sample preparation techniques were evaluated to identify maximum intra-tissue contrast. DESIGN Human articular cartilage samples from 14 deceased donors (18-75 years, 9 males, 5 females) and 4 patients undergoing total knee replacement due to known OA (all female, 61-75 years) were prepared using different techniques: control in saline, treated with heavy water saline, fixed and treated in heavy water saline, and fixed and dehydrated with ethanol. Neutron tomographic imaging (isotropic voxel sizes from 7.5 to 13.5 µm) was performed at two large scale facilities. The 3D images were evaluated for gradients in hydrogen attenuation as well as compared to images from absorption X-ray tomography, magnetic resonance imaging, and histology. RESULTS Cartilage was distinguishable from background and other tissues in neutron tomographs. Intra-tissue contrast was highest in heavy water-treated samples, which showed a clear gradient from the cartilage surface to the bone interface. Increased neutron flux or exposure time improved image quality but did not affect the ability to detect gradients. Samples from older donors showed high variation in gradient profile, especially from donors with known OA. CONCLUSIONS Neutron tomography is a viable technique for specialized studies of cartilage, particularly for quantifying properties relating to the hydrogen density of the tissue matrix or water movement in the tissue.
Collapse
Affiliation(s)
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University (LU), Sweden
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University (LU), Sweden
| | - Amanda Sjögren
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, LU, Sweden
| | | | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut (PSI), Switzerland
| | | | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, LU, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University (LU), Sweden
| |
Collapse
|
5
|
Orava H, Paakkari P, Jäntti J, Honkanen MKM, Honkanen JTJ, Virén T, Joenathan A, Tanska P, Korhonen RK, Grinstaff MW, Töyräs J, Mäkelä JTA. Triple contrast computed tomography reveals site-specific biomechanical differences in the human knee joint-A proof of concept study. J Orthop Res 2024; 42:415-424. [PMID: 37593815 DOI: 10.1002/jor.25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Cartilage and synovial fluid are challenging to observe separately in native computed tomography (CT). We report the use of triple contrast agent (bismuth nanoparticles [BiNPs], CA4+, and gadoteridol) to image and segment cartilage in cadaveric knee joints with a clinical CT scanner. We hypothesize that BiNPs will remain in synovial fluid while the CA4+ and gadoteridol will diffuse into cartilage, allowing (1) segmentation of cartilage, and (2) evaluation of cartilage biomechanical properties based on contrast agent concentrations. To investigate these hypotheses, triple contrast agent was injected into both knee joints of a cadaver (N = 1), imaged with a clinical CT at multiple timepoints during the contrast agent diffusion. Knee joints were extracted, imaged with micro-CT (µCT), and biomechanical properties of the cartilage surface were determined by stress-relaxation mapping. Cartilage was segmented and contrast agent concentrations (CA4+ and gadoteridol) were compared with the biomechanical properties at multiple locations (n = 185). Spearman's correlation between cartilage thickness from clinical CT and reference µCT images verifies successful and reliable segmentation. CA4+ concentration is significantly higher in femoral than in tibial cartilage at 60 min and further timepoints, which corresponds to the higher Young's modulus observed in femoral cartilage. In this pilot study, we show that (1) large BiNPs do not diffuse into cartilage, facilitating straightforward segmentation of human knee joint cartilage in a clinical setting, and (2) CA4+ concentration in cartilage reflects the biomechanical differences between femoral and tibial cartilage. Thus, the triple contrast agent CT shows potential in cartilage morphology and condition estimation in clinical CT.
Collapse
Affiliation(s)
- Heta Orava
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Miitu K M Honkanen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
6
|
Morejon A, Schwartz G, Best TM, Travascio F, Jackson AR. Effect of molecular weight and tissue layer on solute partitioning in the knee meniscus. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100360. [PMID: 37122844 PMCID: PMC10133802 DOI: 10.1016/j.ocarto.2023.100360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Knee meniscus tissue is partly vascularized, meaning that nutrients must be transported through the extracellular matrix of the avascular portion to reach resident cells. Similarly, drugs used as therapeutic agents to treat meniscal pathologies rely on transport through the tissue. The driving force of diffusive transport is the gradient of concentration, which depends on molecular solubility. The meniscus is organized into a core region sandwiched between the tibial and femoral superficial layers. Structural differences exist across meniscal regions; therefore, regional differences in solubility are also hypothesized. Methods Samples from the core, tibial and femoral layers were obtained from 5 medial and 5 lateral porcine menisci. The partition coefficient (K) of fluorescein, 3 kDa and 40 kDa dextrans in the layers of the meniscus was measured using an equilibration experiment. The effect of meniscal compartment, layer, and solute molecular weight on K was analyzed using a three-way ANOVA. Results K ranged from a high of ∼2.9 in fluorescein to a low of ∼0.1 in 40 kDa dextran and was inversely related to the solute molecular weight across all tissue regions. Tissue layer only had a significant effect on partitioning of 40k Dex solute, which was lower in the tibial surface layer relative to the core (p = 0.032). Conclusion This study provides insight into depth-dependent partitioning in the meniscus, indicating the limiting effect of the meniscus superficial layer on solubility increases with solute molecular size. This illustrates how the surface layers could potentially reduce the effectiveness of drug delivery therapies incorporating large molecules (>40 kDa).
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - Gabi Schwartz
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, Coral Gables, FL, USA
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, USA
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, USA
- Corresponding author. College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276, Coral Gables, FL 33146, USA.
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Corresponding author. College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 USA.
| |
Collapse
|
7
|
Honkanen MKM, Mohammadi A, Te Moller NCR, Ebrahimi M, Xu W, Plomp S, Pouran B, Lehto VP, Brommer H, van Weeren PR, Korhonen RK, Töyräs J, Mäkelä JTA. Dual-contrast micro-CT enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Vet J 2023; 55:315-324. [PMID: 35353399 PMCID: PMC10084070 DOI: 10.1111/evj.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Post-traumatic osteoarthritis is a frequent joint disease in the horse. Currently, equine medicine lacks effective methods to diagnose the severity of chondral defects after an injury. OBJECTIVES To investigate the capability of dual-contrast-enhanced computed tomography (dual-CECT) for detection of chondral lesions and evaluation of the severity of articular cartilage degeneration in the equine carpus ex vivo. STUDY DESIGN Pre-clinical experimental study. METHODS In nine Shetland ponies, blunt and sharp grooves were randomly created (in vivo) in the cartilage of radiocarpal and middle carpal joints. The contralateral joint served as control. The ponies were subjected to an 8-week exercise protocol and euthanised 39 weeks after surgery. CECT scanning (ex vivo) of the joints was performed using a micro-CT scanner 1 hour after an intra-articular injection of a dual-contrast agent. The dual-contrast agent consisted of ioxaglate (negatively charged, q = -1) and bismuth nanoparticles (BiNPs, q = 0, diameter ≈ 0.2 µm). CECT results were compared to histological cartilage proteoglycan content maps acquired using digital densitometry. RESULTS BiNPs enabled prolonged visual detection of both groove types as they are too large to diffuse into the cartilage. Furthermore, proportional ioxaglate diffusion inside the tissue allowed differentiation between the lesion and ungrooved articular cartilage (3 mm from the lesion and contralateral joint). The mean ioxaglate partition in the lesion was 19 percentage points higher (P < 0.001) when compared with the contralateral joint. The digital densitometry and the dual-contrast CECT findings showed good subjective visual agreement. MAIN LIMITATIONS Ex vivo study protocol and a low number of investigated joints. CONCLUSIONS The dual-CECT methodology, used in this study for the first time to image whole equine joints, is capable of effective lesion detection and simultaneous evaluation of the condition of the articular cartilage.
Collapse
Affiliation(s)
- Miitu K M Honkanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Behdad Pouran
- Department of Orthopedics, University Medical Center Utrecht, The Netherlands
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Silva MO, Kirkwood N, Mulvaney P, Ellis AV, Stok KS. Evaluation of a lanthanide nanoparticle-based contrast agent for microcomputed tomography of porous channels in subchondral bone. J Orthop Res 2023; 41:447-458. [PMID: 35524421 PMCID: PMC10084061 DOI: 10.1002/jor.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes disability and pain. The osteochondral interface is a gradient tissue region that plays a significant role in maintaining joint health. It has been shown that during OA, increased neoangiogenesis creates porous channels at the osteochondral interface allowing the transport of molecules related to OA. Importantly, the connection between these porous channels and the early stages of OA development is still not fully understood. Microcomputed tomography (microCT) offers the ability to image the porous channels at the osteochondral interface, however, a contrast agent is necessary to delineate the different X-ray attenuations of the tissues. In this study BaYbF5 -SiO2 nanoparticles are synthesized and optimized as a microCT contrast agent to obtain an appropriate contrast attenuation for subsequent segmentation of structures of interest, that is, porous channels, and mouse subchondral bone. For this purpose, BaYbF5 nanoparticles were synthesized and coated with a biocompatible silica shell (SiO2 ). The optimized BaYbF5 -SiO2 27 nm nanoparticles exhibited the highest average microCT attenuation among the biocompatible nanoparticles tested. The BaYbF5 -SiO2 27 nm nanoparticles increased the mean X-ray attenuation of structures of interest, for example, porous channel models and mouse subchondral bone. The BaYbF5 -SiO2 contrast attenuation was steady after diffusion into mouse subchondral bone. In this study, we obtained for the first time, the average microCT attenuation of the BaYbF5 -SiO2 nanoparticles into porous channel models and mouse subchondral bone. In conclusion, BaYbF5 -SiO2 nanoparticles are a potential contrast agent for imaging porous channels at the osteochondral interface using microCT.
Collapse
Affiliation(s)
- Mateus O Silva
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Chan DD, Mashiatulla M, Li J, Ross RD, Pendyala M, Patwa A, Grinstaff MW, Plaas A, Sumner DR. Contrast-enhanced micro-computed tomography of compartment and time-dependent changes in femoral cartilage and subchondral plate in a murine model of osteoarthritis. Anat Rec (Hoboken) 2023; 306:92-109. [PMID: 35751529 PMCID: PMC10084428 DOI: 10.1002/ar.25027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/29/2023]
Abstract
A lack of understanding of the mechanisms underlying osteoarthritis (OA) progression limits the development of effective long-term treatments. Quantitatively tracking spatiotemporal patterns of cartilage and bone degeneration is critical for assessment of more appropriately targeted OA therapies. In this study, we use contrast-enhanced micro-computed tomography (μCT) to establish a timeline of subchondral plate (SCP) and cartilage changes in the murine femur after destabilization of the medial meniscus (DMM). We performed DMM or sham surgery in 10-12-week-old male C57Bl/6J mice. Femora were imaged using μCT after 0, 2, 4, or 8 weeks. Cartilage-optimized scans were performed after immersion in contrast agent CA4+. Bone mineral density distribution (BMDD), cartilage attenuation, SCP, and cartilage thickness and volume were measured, including lateral and medial femoral condyle and patellar groove compartments. As early as 2 weeks post-DMM, cartilage thickness significantly increased and cartilage attenuation, SCP volume, and BMDD mean significantly decreased. Trends in cartilage and SCP metrics within each joint compartment reflected those seen in global measurements, and both BMDD and SCP thickness were consistently greater in the lateral and medial condyles than the patellar groove. Sham surgery also resulted in significant changes to SCP and cartilage metrics, highlighting a potential limitation of using surgical models to study tissue morphology or composition changes during OA progression. Contrast-enhanced μCT analysis is an effective tool to monitor changes in morphology and composition of cartilage, and when combined with bone-optimized μCT, can be used to assess the progression of degenerative changes after joint injury.
Collapse
Affiliation(s)
- Deva D Chan
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Maleeha Mashiatulla
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Jun Li
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Meghana Pendyala
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Amit Patwa
- Department of Biomedical Engineering Department of Chemistry, Boston University, Boston, Massachusetts, USA.,Department of Chemistry, Boston University, Boston, Massachusetts, USA.,Division of Chemistry, Navrachana University, Vadodara, Gujarat, India
| | - Mark W Grinstaff
- Department of Biomedical Engineering Department of Chemistry, Boston University, Boston, Massachusetts, USA.,Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Anna Plaas
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
10
|
Bhattarai A, Lok JGT, Sun H, Vardhanabhuti V. Computed Tomography of Cartilage: An Exploration of Novel Cationic Bismuth Contrast Agent. Ann Biomed Eng 2022; 51:977-986. [PMID: 36446911 DOI: 10.1007/s10439-022-03110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Accurate diagnosis of minor cartilage injuries with delayed contrast-enhanced computed tomography (CECT) is challenging as poor diffusion and toxicity issues limit the usage of common CT contrast agents. Hence, the design of safe contrast agents with physiochemical properties suitable for fast, deep cartilage imaging is imminent. Herein, a novel cationic bismuth contrast agent (Bi-DOTAPXD) based on dodecane tetraacetic acid (DOTA) was synthesized and examined for CECT of cartilage. The complex was designed to improve diagnosis by utilising a net-positive charge for enhanced permeability through cartilage, inherent low-toxicity and high X-ray attenuation of bismuth. Osteochondral plugs (n = 12), excised from visually intact porcine articular cartilage were immersed in Bi-DOTAPXD (8 mg/mL) and Gd-DOTAPXD (10 mg/mL) contrast agents and scanned with a high-resolution microcomputed tomography scanner at multiple time-points. The mean Bi-DOTAPXD and Gd-DOTAPXD partitions at 45-min time-point were 85.7 ± 35.1 and 69.8 ± 30.2%, and the partitions correlated with the histopathological analysis of cartilage proteoglycan (PG) content (r) at 0.657 and 0.632, respectively. The time diffusion constants (τ) for Bi-DOTAPXD and Gd-DOTA were 121 and 159 min, respectively. Diffusion Bi-DOTAPXD and Gd-DOTAPXD reflected inter-sample variation in cartilage PG content. Cationic Bi-DOTAPXD may have the potential as a CT agent for the diagnosis of cartilage.
Collapse
|
11
|
A Cationic Contrast Agent in X-ray Imaging of Articular Cartilage: Pre-Clinical Evaluation of Diffusion and Attenuation Properties. Diagnostics (Basel) 2022; 12:diagnostics12092111. [PMID: 36140512 PMCID: PMC9497730 DOI: 10.3390/diagnostics12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the preliminary assessment of a new cationic contrast agent, the CA4+, via the analysis of spatial distribution in cartilage of ex vivo bovine samples, at micrometer and millimeter scale. Osteochondral plugs (n = 18) extracted from bovine stifle joints (n = 2) were immersed in CA4+ solution up to 26 h. Planar images were acquired at different time points, using a microCT apparatus. The CA4+ distribution in cartilage and saturation time were evaluated. Tibial plates from bovine stifle joints (n = 3) were imaged with CT, before and after 24 h-CA4+ bath immersion, at different concentrations. Afterward, potential CA4+ washout from cartilage was investigated. From microCT acquisitions, the CA4+ distribution differentiated into three distinct layers inside the cartilage, reflecting the spatial distribution of proteoglycans. After 24 h of diffusion, the iodine concentration reached in cartilage was approximately seven times that of the CA4+ bath. The resulting saturation time was 1.9 ± 0.9 h and 2.6 ± 2.9 h for femoral and tibial samples, respectively. Analysis of clinical CT acquisitions confirmed overall contrast enhancement of cartilage after 24 h immersion, observed for each CA4+ concentration. Distinct contrast enhancement was reached in different cartilage regions, depending on tissue’s local features. Incomplete but remarkable washout of cartilage was observed. CA4+ significantly improved cartilage visualization and its qualitative analysis.
Collapse
|
12
|
Hall ME, Wang AS, Gold GE, Levenston ME. Contrast solution properties and scan parameters influence the apparent diffusivity of computed tomography contrast agents in articular cartilage. J R Soc Interface 2022; 19:20220403. [PMID: 35919981 PMCID: PMC9346352 DOI: 10.1098/rsif.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The inability to detect early degenerative changes to the articular cartilage surface that commonly precede bulk osteoarthritic degradation is an obstacle to early disease detection for research or clinical diagnosis. Leveraging a known artefact that blurs tissue boundaries in clinical arthrograms, contrast agent (CA) diffusivity can be derived from computed tomography arthrography (CTa) scans. We combined experimental and computational approaches to study protocol variations that may alter the CTa-derived apparent diffusivity. In experimental studies on bovine cartilage explants, we examined how CA dilution and transport direction (absorption versus desorption) influence the apparent diffusivity of untreated and enzymatically digested cartilage. Using multiphysics simulations, we examined mechanisms underlying experimental observations and the effects of image resolution, scan interval and early scan termination. The apparent diffusivity during absorption decreased with increasing CA concentration by an amount similar to the increase induced by tissue digestion. Models indicated that osmotically-induced fluid efflux strongly contributed to the concentration effect. Simulated changes to spatial resolution, scan spacing and total scan time all influenced the apparent diffusivity, indicating the importance of consistent protocols. With careful control of imaging protocols and interpretations guided by transport models, CTa-derived diffusivity offers promise as a biomarker for early degenerative changes.
Collapse
Affiliation(s)
- Mary E. Hall
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Adam S. Wang
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Bhattarai A, Mäkelä JTA, Pouran B, Kröger H, Weinans H, Grinstaff MW, Töyräs J, Turunen MJ. Effects of human articular cartilage constituents on simultaneous diffusion of cationic and nonionic contrast agents. J Orthop Res 2021; 39:771-779. [PMID: 32767676 PMCID: PMC8048551 DOI: 10.1002/jor.24824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
Contrast-enhanced computed tomography is an emerging diagnostic technique for osteoarthritis. However, the effects of increased water content, as well as decreased collagen and proteoglycan concentrations due to cartilage degeneration, on the diffusion of cationic and nonionic agents, are not fully understood. We hypothesize that for a cationic agent, these variations increase the diffusion rate while decreasing partition, whereas, for a nonionic agent, these changes increase both the rate of diffusion and partition. Thus, we examine the diffusion of cationic and nonionic contrast agents within degraded tissue in time- and depth-dependent manners. Osteochondral plugs (N = 15, d = 8 mm) were extracted from human cadaver knee joints, immersed in a mixture of cationic CA4+ and nonionic gadoteridol contrast agents, and imaged at multiple time-points, using the dual-contrast method. Water content, and collagen and proteoglycan concentrations were determined using lyophilization, infrared spectroscopy, and digital densitometry, respectively. Superficial to mid (0%-60% depth) cartilage CA4+ partitions correlated with water content (R < -0.521, P < .05), whereas in deeper (40%-100%) cartilage, CA4+ correlated only with proteoglycans (R > 0.671, P < .01). Gadoteridol partition correlated inversely with collagen concentration (0%-100%, R < -0.514, P < .05). Cartilage degeneration substantially increased the time for CA4+ compared with healthy tissue (248 ± 171 vs 175 ± 95 minute) to reach the bone-cartilage interface, whereas for gadoteridol the time (111 ± 63 vs 179 ± 163 minute) decreased. The work clarifies the diffusion mechanisms of two different contrast agents and presents depth and time-dependent effects resulting from articular cartilage constituents. The results will inform the development of new contrast agents and optimal timing between agent administration and joint imaging.
Collapse
Affiliation(s)
- Abhisek Bhattarai
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | | | - Behdad Pouran
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Harrie Weinans
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials EngineeringDelft University of Technology (TU Delft)DelftThe Netherlands
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and MedicineBoston UniversityBostonMassachusetts
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Mikael J. Turunen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- SIB LabsUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
14
|
Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9:20. [PMID: 33731688 PMCID: PMC7969608 DOI: 10.1038/s41413-021-00147-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis comprises several joint disorders characterized by articular cartilage degeneration and persistent pain, causing disability and economic burden. The incidence of osteoarthritis is rapidly increasing worldwide due to aging and obesity trends. Basic and clinical research on osteoarthritis has been carried out for decades, but many questions remain unanswered. The exact role of subchondral bone during the initiation and progression osteoarthritis remains unclear. Accumulating evidence shows that subchondral bone lesions, including bone marrow edema and angiogenesis, develop earlier than cartilage degeneration. Clinical interventions targeting subchondral bone have shown therapeutic potential, while others targeting cartilage have yielded disappointing results. Abnormal subchondral bone remodeling, angiogenesis and sensory nerve innervation contribute directly or indirectly to cartilage destruction and pain. This review is about bone-cartilage crosstalk, the subchondral microenvironment and the critical role of both in osteoarthritis progression. It also provides an update on the pathogenesis of and interventions for osteoarthritis and future research targeting subchondral bone.
Collapse
|