1
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025; 25:1139-1153. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
2
|
Crump KB, Kanelis E, Segarra-Queralt M, Pascuet-Fontanet A, Bermudez-Lekerika P, Alminnawi A, Geris L, Alexopoulos LG, Noailly J, Gantenbein B. TNF induces catabolism in human cartilaginous endplate cells in 3D agarose culture under dynamic compression. Sci Rep 2025; 15:15849. [PMID: 40328789 PMCID: PMC12056083 DOI: 10.1038/s41598-025-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is the leading cause of low back pain in young adults, and the cartilaginous endplate (CEP) is likely to play a key role in early IVD degeneration. To elucidate the effects of pro-inflammatory cytokines on the mechanobiology of the CEP, human CEP cells were seeded into 2% agarose, dynamically compressed up to 7%, and stimulated with tumor necrosis factor (TNF). It was hypothesized that dynamic compression would be sufficient to induce anabolism, while stimulation with TNF would induce catabolism. TNF was sufficient to induce a catabolic, time-dependent response in human CEP cells through downregulation of anabolic gene expression and increased secretion of pro-inflammatory proteins associated with herniated discs, bacteria inhibition, and pain. However, 7% strain or scaffold material, agarose, may not lead to full activation of integrins and downregulation of pro-inflammatory pathways, demonstrated in part through the unchanged gene expression of integrin subunits α5 and β1.
Collapse
Affiliation(s)
- Katherine B Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012, Bern, Switzerland
| | - Exarchos Kanelis
- School of Mechanical Engineering, National Technical University of Athens, 15772, Zografou, Greece
- Protavio Ltd, 15341, Agia Paraskevi, Greece
| | | | | | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012, Bern, Switzerland
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, 4000, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000, Leuven, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, 4000, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000, Leuven, Belgium
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, 15772, Zografou, Greece
- Protavio Ltd, 15341, Agia Paraskevi, Greece
| | - Jérôme Noailly
- BCN Medtech, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008, Bern, Switzerland.
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Faculty of Medicine, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
3
|
Li H, Tang Y, Hu S, Ruan X, Zhang J, Shi Y, Qiu L, Yang H, Zhang K, Chen H, Chen K. N6-Methyladenosine-Modified circSMAD4 Prevents Lumbar Instability Induced Cartilage Endplate Ossification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413970. [PMID: 39936497 PMCID: PMC11967797 DOI: 10.1002/advs.202413970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Lumbar instability causes cartilage endplate ossification and intervertebral disc degeneration. In this study, it is determined that circSMAD4, a Yap1-related circRNA, is stably downregulated under abnormal stress. In vitro, circSMAD4 knockdown resulted in Yap1 mRNA degradation, whereas circSMAD4 overexpression increased Yap1 mRNA expression and nuclear translocation. Hence, the stabilization of circSMAD4 is essential for maintaining the homeostasis of endplate cartilage under abnormal stress. Furthermore, transcriptome sequencing and mass spectrometry analysis revealed that METTL14-mediated N6-methyladenosine (m6A) modification can stabilize circSMAD4 expression. Moreover, circSMAD4 is shown to regulate Yap1 mRNA through the m6A reader IGF2BP1. The IGF2BP1 functions to translocate Yap1 mRNA into the nucleus, which protects endplate chondrocytes from degeneration. Finally, local injection of an AAV5-containing circSMAD4 overexpression plasmid successfully rescued LSI-induced cartilage endplate degeneration, which wasn't observed in Yap1 knockout mice. These findings suggest that m6A-modified circSMAD4 can stabilize Yap1 mRNA expression and translocation, thus preventing degeneration of the cartilage endplate under abnormal stress. Hence, circSMAD4 may become a potential therapeutic tool for managing instability-induced intervertebral disc degeneration.
Collapse
Affiliation(s)
- Hanwen Li
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Yingchuang Tang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Sihan Hu
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225000P. R. China
| | - Xingbang Ruan
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Junxin Zhang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Yihan Shi
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Liang Qiu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Huilin Yang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Kai Zhang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| | - Hao Chen
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225000P. R. China
| | - Kangwu Chen
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006P. R. China
| |
Collapse
|
4
|
Li Q, Guo R, Zhao C, Chen X, Wang H, Shen C. End Plate Chondrocyte-Derived Exosomal miR-133a-3p Alleviates Intervertebral Disc Degeneration by Targeting the NF-κB Signaling Pathway through the miR-133a-3p/MAML1 Axis. Mol Pharm 2025; 22:1262-1279. [PMID: 39898539 DOI: 10.1021/acs.molpharmaceut.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Chondrocyte-derived exosomes have shown efficacy in differentiating osteoarthritis-affected cartilage. Intervertebral disc degeneration (IVDD) and osteoarthritis often affect facet joints of the spine and show common epidemiological and pathophysiological characteristics. However, the potential of chondrocyte-derived exosomes for treating IVDD remains unclear. The present study aimed to confirm the effect of end plate chondrocyte-derived exosomes (EPC-Exo) on IVDD and elucidate the underlying mechanism. EPC-Exos were isolated and identified by ultracentrifugation, Western blotting, electron microscopy, and nanoparticle tracking analysis. In the in vitro, EPC-Exo uptake by nucleus pulposus (NP) cells reduced cell death by blocking the nuclear factor-κB (NF-κB) signaling pathway. In the in vivo study, EPC-Exos injected into rat intervertebral discs mitigated lipopolysaccharide-induced IVDD, as revealed by a decreased loss of disc height and improved magnetic resonance imaging findings and histological scores. Bioinformatics and sequencing analyses indicated that EPC-Exos alleviated IVDD through the miR-133a-3p/MAML1 axis. The present study suggests that EPC-Exos reduced IVDD incidence via the miR-133a-3p/MAML1 axis-mediated suppression of NF-κB signaling, which prevented the pyroptosis of NP cells.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xuewu Chen
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Hong Wang
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| |
Collapse
|
5
|
Yang H, Chen X, Chen J, Dong Y, Huang Y, Qin L, Tan J, Yi W. The pathogenesis and targeted therapies of intervertebral disc degeneration induced by cartilage endplate inflammation. Front Cell Dev Biol 2024; 12:1492870. [PMID: 39687521 PMCID: PMC11647014 DOI: 10.3389/fcell.2024.1492870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, where degeneration and death of nucleus pulposus cells within the intervertebral disc (IVD) can be obviously revealed. This degeneration can result in an imbalance in the extracellular matrix due to the loss of proteoglycans and water content, which can further lead to catabolic and anabolic dysfunction of the IVD. Recently, the dysfunction of cartilage endplate (CEP) during aging has drawn large attention due to its essential functions in contributing nutrient exchange and maintaining IVD homeostasis. Furthermore, the inflammation and disturbed homeostasis of CEP not only accelerate the degradation of nucleus pulposus extracellular matrix, but also exacerbate IVDD by causing nucleus pulposus cell death through other pathological factors. Here in this review, we summarized the possible pathological factors and the underlying mechanisms of the CEP inflammation-induced IVDD, including exosomes degeneration, CEP calcification, ferroptosis, mechanical changes, and cell senescence. Besides, changes of miRNAs, pain-related neural reflex arc and pathways associated with CEP inflammation-induced IVDD are also reviewed. In addition, new strategies specifically designed for CEP inflammation-induced IVDD are also discussed in the last section. We hope this paper can not only offer some new insights for advancing novel strategies for treating IVDD, but also serve as a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Hantao Yang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Xuandu Chen
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jun Chen
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Yansong Dong
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Yafang Huang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Lei Qin
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tan
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Weihong Yi
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Ma Y, Yu X, Li W, Guan J, Qiu Z, Xu L, Feng N, Jiang G, Yue X. Animal Models of Internal Endplate Injury-Induced Intervertebral Disc Degeneration: A Systematic Review. J INVEST SURG 2024; 37:2400478. [PMID: 39255967 DOI: 10.1080/08941939.2024.2400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To systematically review relevant animal models of disk degeneration induced through the endplate injury pathway and to provide suitable animal models for exploring the intrinsic mechanisms and treatment of disk degeneration. DESIGN PubMed, Web of Science, Cochrane and other databases were searched for literature related to animal models of disk degeneration induced by the endplate injury pathway from establishment to August 2024, and key contents in the literature were screened and extracted to analyze and evaluate each type of animal model using the literature induction method. RESULTS Fifteen animal experimental studies were finally included in the literature, which can be categorized into direct injury models and indirect injury models, of which direct injury models include transvertebral injury models and transpedicular approach injury models, and indirect injury models include endplate ischemia models and vertebral fracture-induced endplate injury models. The direct injury models have a minimum observation period of 2 months and a maximum of 32 wk. All direct injury models were successful in causing disk degeneration, and the greater the number of interventions, the greater the degree of disk degeneration caused. The observation period for the indirect injury models varied from 4 wk to 70 wk. Of the 9 studies, only one study was unsuccessful in inducing disk degeneration, and this was the first animal study in this research to attempt to intervene on the endplate to cause disk degeneration. CONCLUSION The damage to the direct injury model is more immediate and controllable in extent and can effectively lead to disk degeneration. The indirect injury models do not directly damage the endplate structure, making it easier to observe the physiological and pathological condition of the endplate and associated structures of the disk. None of them can completely simulate the corresponding process of endplate injury-induced disk degeneration in humans, and there is no uniform clinical judgment standard for this type of model. The most appropriate animal model still needs further exploration and discovery.
Collapse
Affiliation(s)
- Yukun Ma
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Li
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jianbin Guan
- Department of Orthopaedic, Xi'an Honghui Hospital, Xi'an, China
| | - Ziye Qiu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Luchun Xu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ningning Feng
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guozheng Jiang
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinliang Yue
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Wang K, Liu X, Huang H, Suo M, Wang J, Liu X, Zhang J, Chen X, Li Z. A new target for treating intervertebral disk degeneration: gut microbes. Front Microbiol 2024; 15:1452774. [PMID: 39678913 PMCID: PMC11638241 DOI: 10.3389/fmicb.2024.1452774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disk degeneration (IDD) is a common clinical spinal disease and one of the main causes of low back pain (LBP). Generally speaking, IDD is considered a natural degenerative process with age. However, with the deepening of research, people have discovered that IDD is not only related to age, but also has many factors that can induce and accelerate its progression. In addition, the pathogenesis of IDD remains unclear, resulting in limited traditional treatment methods that cannot effectively prevent and treat IDD. Conservative treatment may lead to patients' dependence on drugs, and the pain relief effect is not obvious. Similarly, surgical treatment is highly invasive, with a longer recovery time and a higher recurrence rate. With the deepening of exploration, people have discovered that intestinal microorganisms are an important symbiotic microbial community in the human body and are closely related to the occurrence and development of various diseases. Changes in intestinal microorganisms and their metabolites may affect the body's inflammatory response, immune regulation, and metabolic processes, thereby affecting the health of the intervertebral disk. In this context, the gut microbiota has received considerable attention as a potential target for delaying or treating IDD. This article first introduces the impact of gut microbes on common distal organs, and then focuses on three potential mechanisms by which gut microbes and their metabolites influence IDD. Finally, we also summarized the methods of delaying or treating IDD by interfering with intestinal microorganisms and their metabolites. Further understanding of the potential mechanisms between intestinal microorganisms and IDD will help to formulate reasonable IDD treatment strategies to achieve ideal therapeutic effects.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China
| |
Collapse
|
8
|
Ufondu W, Robinson CL, Hussain N, D'Souza RS, Karri J, Emerick T, Orhurhu VJ. Intradiscal Autologous Biologics for the Treatment of Chronic Discogenic Low Back Pain. Curr Pain Headache Rep 2024; 28:1079-1095. [PMID: 39017984 DOI: 10.1007/s11916-024-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW: The purpose of this narrative review is to evaluate the efficacy of the most commonly studied intradiscal biologics used for the treatment and alleviation of chronic intractable discogenic low back pain. Additionally, it explores the therapeutic potential and durability of these novel treatment options. RECENT FINDINGS: Recently published literature highlights the therapeutic potential of intradiscal biologics, such as mesenchymal stem cells, platelet-rich plasma, and alpha-2-macroglobulin, in promoting chondrogenesis within the lumbar intervertebral discs to treat discogenic low back pain. Studies demonstrate significant improvements in pain relief, physical function, and quality of life post-treatment. A comprehensive review of the literature evaluating the efficacy of intradiscal biologics suggests some evidence supporting its efficacy in treating discogenic low back pain. However, more rigorous studies into mechanistic modulation and large-scale randomized trials as well as a more thorough understanding of adverse events will be instrumental for including these therapies into clinical practice paradigms.
Collapse
Affiliation(s)
- Wisdom Ufondu
- Department of Biology, Program in Liberal Medical Education (PLME), Brown University, Providence, RI, USA
| | - Christopher L Robinson
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay Karri
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trent Emerick
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vwaire J Orhurhu
- University of Pittsburgh Medical Center, Susquehanna, Williamsport, PA, USA.
- MVM Health, East Stroudsburg, PA, USA.
| |
Collapse
|
9
|
Ma Z, Liu X, Zhang M, Wu Z, Zhang X, Li S, An J, Luo Z. Research Progress on the Role of Cartilage Endplate in Intervertebral Disc Degeneration. Cell Biochem Funct 2024; 42:e4118. [PMID: 39267363 DOI: 10.1002/cbf.4118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
Low back pain significantly impacts individuals' quality of life, with intervertebral disc degeneration (IDD) being a primary contributor to this condition. Currently, IDD treatment primarily focuses on symptom management and does not achieve a definitive cure. The cartilage endplate (CEP), a crucial nutrient-supplying tissue of the intervertebral disc, plays a pivotal role in disc degeneration. This review examines the mechanisms underlying CEP degeneration, summarizing recent advancements in understanding the structure and function of CEP, the involvement of various signaling pathways, and the roles of cartilage endplate stem cells (CESCs) and exosomes (Exos) in this process. The aim of this review is to provide a comprehensive reference for future research on CEP. Despite progress in understanding the role of CEP in IDD, the mechanisms underlying CEP degeneration remain incompletely elucidated. Future research poses significant challenges, necessitating further investigations to elucidate the complexities of CEP.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuolong Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Fan Y, Zhang W, Huang X, Fan M, Shi C, Zhao L, Pi G, Zhang H, Ni S. Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice. Nat Commun 2024; 15:2939. [PMID: 38580630 PMCID: PMC10997778 DOI: 10.1038/s41467-024-47317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.
Collapse
Affiliation(s)
- Yonggang Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Weixin Zhang
- Zhejiang Chinese Medicine University, Hangzhou, 310053, PR China
| | - Xiusheng Huang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Mingzhe Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Chenhao Shi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Lantian Zhao
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Guofu Pi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Huafeng Zhang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Shuangfei Ni
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China.
| |
Collapse
|
11
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
12
|
Crump KB, Alminnawi A, Bermudez‐Lekerika P, Compte R, Gualdi F, McSweeney T, Muñoz‐Moya E, Nüesch A, Geris L, Dudli S, Karppinen J, Noailly J, Le Maitre C, Gantenbein B. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research. JOR Spine 2023; 6:e1294. [PMID: 38156054 PMCID: PMC10751983 DOI: 10.1002/jsp2.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 12/30/2023] Open
Abstract
The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.
Collapse
Affiliation(s)
- Katherine B. Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Ahmad Alminnawi
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Paola Bermudez‐Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Roger Compte
- Twin Research & Genetic EpidemiologySt. Thomas' Hospital, King's College LondonLondonUK
| | - Francesco Gualdi
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)BarcelonaSpain
| | - Terence McSweeney
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Estefano Muñoz‐Moya
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Andrea Nüesch
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Liesbet Geris
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Stefan Dudli
- Center of Experimental RheumatologyDepartment of Rheumatology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
- Finnish Institute of Occupational HealthOuluFinland
- Rehabilitation Services of South Karelia Social and Health Care DistrictLappeenrantaFinland
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Christine Le Maitre
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
13
|
Zheng Q, Wang CD, Shao S, Wu MF, Dou QB, Wang QW, Sun LY. Intermittent cyclic mechanical compression promotes endplate chondrocytes degeneration by disturbing Nrf2/PINK1 signaling pathway-dependent mitophagy. Hum Cell 2023; 36:1978-1990. [PMID: 37535221 DOI: 10.1007/s13577-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
An abnormal mechanical load is a pivotal inducer of endplate cartilage degeneration, which subsequently promotes intervertebral disc degeneration. Our previous study indicated that intermittent cyclic mechanical compression (ICMC) promotes endplate chondrocyte degeneration, but the mechanism underlying this effect is unclear. In this study, we investigated PTEN-induced kinase 1(PINK1) dependent mitophagy during ICMC-induced endplate chondrocyte degeneration. Furthermore, we determined whether NF-E2-related factor 2 (Nrf2) activation correlated with PINK1-dependent mitophagy regulation and increased oxidation resistance of endplate chondrocytes under ICMC application. First, we generated a mechanical compression-induced endplate chondrocyte degeneration model in vitro and in vivo. ICMC was found to promote endplate chondrocyte extracellular matrix degradation. PINK1-mediated mitophagy was suppressed in the ICMC-stimulated endplate chondrocytes, while increased mitochondrial reactive oxygen species generation suggested that mitophagy is involved in the protective effect of mechanical strain on endplate chondrocytes. Moreover, Nrf2 expression, interaction with Kelch-like ECH-associated protein (Keap1), and nuclear translocation were inhibited by ICMC. Nrf2 overexpression inhibited reactive oxygen species production and reversed ICMC-induced endplate chondrocyte degeneration. Transfection with PINK1 shRNA abolished this effect and partially blocked Nrf2-induced mitophagy. Our findings suggested that ICMC could inhibit the Nrf2/PINK1 signaling pathway to reduce the mitophagy levels which significantly promote oxidative stress and thereby endplate chondrocyte degeneration. Therapeutic regulation of the Nrf2/PINK1 signaling pathway may be an efficient anabolic strategy for inhibiting this process.
Collapse
Affiliation(s)
- Quan Zheng
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Chuan-Dong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Song Shao
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Ming-Fan Wu
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Qiang-Bing Dou
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Qi-Wei Wang
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China.
| | - Liang-Ye Sun
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China.
| |
Collapse
|
14
|
Zhou H, Liu C, Hu F, Shen C, Shen B, He W, Du J. Increased levels of circulating granulocytic myeloid‑derived suppressor cells in lumbar disc herniation. Exp Ther Med 2023; 26:367. [PMID: 37408862 PMCID: PMC10318602 DOI: 10.3892/etm.2023.12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 07/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand when the body undergoes inflammatory diseases and chronic diseases. However, its role in intervertebral disc degeneration remains unclear. The present study aimed to characterize specific subsets of MDSCs as potential indicators of disease progression in patients with lumbar disc herniation (LDH). The Gene Expression Omnibus (GEO) database was used to analyze the changes in granulocyte MDSCs (G-MDSCs). Peripheral blood samples were collected from 40 patients with LDH and 15 healthy controls, and flow cytometry was used to characterize different subsets of MDSCs. All subjects underwent lumbar spine magnetic resonance imaging. Then, t-distributed stochastic neighborhood embedding and FlowSOM were used to analyze the data obtained by CytoFlex. The correlation between circulating MDSCs and the clinicopathological stage of LDH was then further analyzed. The GEO database predicted that G-MDSCs were highly expressed in patients with LDH. The frequency of circulating G-MDSCs increased with Pfirrmann stage III and IV, while the percentage of mononuclear MDSCs (M-MDSCs) only increased. Patient age and sex did not correlate with the frequency of circulating G-MDSCs and M-MDSCs. The results of the computer algorithm analysis were consistent with those of our manual gating. The present study showed that the occurrence of LDH led to changes in the MDSC subpopulation in the circulating peripheral blood of patients, and the frequency of circulating G-MDSCs in patients with clinical stage III and IV LDH increased with the degree of degeneration. The determination of G-MDSCs can be used as an auxiliary examination item for LDH.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chang Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fangfang Hu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chunlin Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei He
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Juan Du
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Comprehensive Central Laboratory, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
15
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
16
|
Mohd Isa IL, Teoh SL, Mohd Nor NH, Mokhtar SA. Discogenic Low Back Pain: Anatomy, Pathophysiology and Treatments of Intervertebral Disc Degeneration. Int J Mol Sci 2022; 24:208. [PMID: 36613651 PMCID: PMC9820240 DOI: 10.3390/ijms24010208] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor for discogenic low back pain (LBP), causing a significant global disability. The IVD consists of an inner core proteoglycan-rich nucleus pulposus (NP) and outer lamellae collagen-rich annulus fibrosus (AF) and is confined by a cartilage end plate (CEP), providing structural support and shock absorption against mechanical loads. Changes to degenerative cascades in the IVD cause dysfunction and instability in the lumbar spine. Various treatments include pharmacological, rehabilitation or surgical interventions that aim to relieve pain; however, these modalities do not halt the pathologic events of disc degeneration or promote tissue regeneration. Loss of stem and progenitor markers, imbalance of the extracellular matrix (ECM), increase of inflammation, sensory hyperinnervation and vascularization, and associated signaling pathways have been identified as the onset and progression of disc degeneration. To better understand the pain originating from IVD, our review focuses on the anatomy of IVD and the pathophysiology of disc degeneration that contribute to the development of discogenic pain. We highlight the key mechanisms and associated signaling pathways underlying disc degeneration causing discogenic back pain, current clinical treatments, clinical perspective and directions of future therapies. Our review comprehensively provides a better understanding of healthy IVD and degenerative events of the IVD associated with discogenic pain, which helps to model painful disc degeneration as a therapeutic platform and to identify signaling pathways as therapeutic targets for the future treatment of discogenic pain.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- SFI Research Centre for Medical Devices, University of Galway, H91W2TY Galway, Ireland
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Xia Y, Yang R, Hou Y, Wang H, Li Y, Zhu J, Fu C. Application of mesenchymal stem cell-derived exosomes from different sources in intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1019437. [PMID: 36277386 PMCID: PMC9585200 DOI: 10.3389/fbioe.2022.1019437] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of lower back pain, leading to psychological and economic burdens to patients. Physical therapy only delays pain in patients but cannot eliminate the cause of IVDD. Surgery is required when the patient cannot tolerate pain or has severe neurological symptoms. Although surgical resection of IVD or decompression of the laminae eliminates the diseased segment, it damages adjacent normal IVD. There is also a risk of re-protrusion after IVD removal. Cell therapy has played a crucial role in the development of regenerative medicine. Cell transplantation promotes regeneration of degenerative tissue. However, owing to the lack of vascular structure in IVD, sufficient nutrients cannot be provided for transplanted mesenchymal stem cells (MSCs). In addition, dead cells release harmful substances that aggravate IVDD. Extracellular vesicles (EVs) have been extensively studied as an emerging therapeutic approach. EVs generated by paracrine MSCs retain the potential of MSCs and serve as carriers to deliver their contents to target cells to regulate target cell activity. Owing to their double-layered membrane structure, EVs have a low immunogenicity and no immune rejection. Therefore, EVs are considered an emerging therapeutic modality in IVDD. However, they are limited by mass production and low loading rates. In this review, the structure of IVD and advantages of EVs are introduced, and the application of MSC-EVs in IVDD is discussed. The current limitations of EVs and future applications are described.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
18
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Mechanically induced histochemical and structural damage in the annulus fibrosus and cartilaginous endplate: a multi-colour immunofluorescence analysis. Cell Tissue Res 2022; 390:59-70. [PMID: 35790585 DOI: 10.1007/s00441-022-03649-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins-collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (- 54.9 and - 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (- 35.6 and - 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (-31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.
Collapse
|
20
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
21
|
Lakstins K, Yeater T, Arnold L, Khan S, Hoyland JA, Purmessur D. Investigating the role of culture conditions on hypertrophic differentiation in human cartilage endplate cells. J Orthop Res 2021; 39:1204-1216. [PMID: 32285966 DOI: 10.1002/jor.24692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Cartilage endplate degeneration/calcification has been linked to the onset and progression of intervertebral disc degeneration and there is a critical need to understand mechanisms, such as hypertrophic differentiation, of cartilage endplate degeneration/calcification to inform treatment strategies for discogenic back pain. In vitro cell culture conditions capable of inducing hypertrophic differentiation are used to study pathophysiological mechanisms in articular chondrocytes, but culture conditions capable of inducing a hypertrophic cartilage endplate cell phenotype have yet to be explored. The goal of this study was to investigate the role of culture conditions capable of inducing hypertrophic differentiation in articular chondrocytes on hypertrophic differentiation in human cartilage endplate cells. Isolated human cartilage endplate cells were cultured as pellets for 21 days at either 5% O2 (physiologic for cartilage) or 20.7% O2 (hyperoxic) and treated with 10% fetal bovine serum or Wnt agonist, two stimuli used to induce hypertrophic differentiation in articular chondrocytes. Cartilage endplate cells did not exhibit a hypertrophic cell morphology in response to fetal bovine serum or Wnt agonist but did display other hallmarks of chondrocyte hypertrophy and degeneration such as hypertrophic gene and protein expression, and a decrease in healthy proteoglycans and an increase in fibrous collagen accumulation. These findings demonstrate that cartilage endplate cells take on a degenerative phenotype in response to hypertrophic stimuli in vitro, but do not undergo classical changes in morphology associated with hypertrophic differentiation regardless of oxygen levels, highlighting potential differences in the response of cartilage endplate cells versus articular chondrocytes to the same stimuli.
Collapse
Affiliation(s)
- Katherine Lakstins
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Taylor Yeater
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lauren Arnold
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Safdar Khan
- Department of Orthopedics, The Ohio State University, Columbus, Ohio
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, School of Biological Sciences, Manchester, UK
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio.,Department of Orthopedics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Lakstins K, Arnold L, Gunsch G, Khan S, Moore S, Purmessur D. Characterization of bovine and canine animal model cartilage endplates and comparison to human cartilage endplate structure, matrix composition, and cell phenotype. JOR Spine 2020; 3:e1116. [PMID: 33392453 PMCID: PMC7770203 DOI: 10.1002/jsp2.1116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
There is a need to further explore mechanisms of cartilage endplate (CEP) degeneration, due to its role in the onset and progression of intervertebral disc degeneration and low back pain. Therefore, the goal of this study was to evaluate structure, matrix composition, and cell phenotype between the human and bovine or canine, both clinically relevant animal models currently used to study the intervertebral disc, CEP. This information may be used in addition to other relevant studies, to help determine optimal animal models for use in studying the role of the CEP in intervertebral disc degeneration and back pain. Endplate structure, matrix composition, cell morphology, and gene expression were evaluated using a picrosirius red/alcian blue and hematoxylin and eosin stain, a dimethylmethylene blue assay, and quantitative reverse transcription polymerase chain reaction. The bovine and canine CEPs were thinner with more rounded cells and thicker bony endplates. The canine CEP contained significantly more sulfated glycosaminoglycans. The bovine CEP demonstrated higher expression of ACAN, COL1, and COL2 and lower expression of T, FBLN1, and collagen X (COLX) compared to the human CEP. The canine CEP had higher COL2 and lower COL1, KRT19, MKX, FBLN1, COLX expression compared to human. These similarities and differences between human and bovine or canine CEP are important to consider when evaluating which animal model is most optimal to use in future studies, interpreting research findings using these animal models and assessing translatability to the human condition.
Collapse
Affiliation(s)
- Katherine Lakstins
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Lauren Arnold
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Gilian Gunsch
- Department of BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Safdar Khan
- Department of OrthopaedicsThe Ohio State UniversityColumbusOhioUSA
| | - Sarah Moore
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopaedicsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|