1
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
2
|
Lemmon EA, Burt KG, Kim SY, Kwok B, Laforest L, Xiao R, Han L, Scanzello CR, Mauck RL, Agnello KA. Interleukin receptor therapeutics attenuate inflammation in canine synovium following cruciate ligament injury. Osteoarthritis Cartilage 2024; 32:1295-1307. [PMID: 39004209 PMCID: PMC11408110 DOI: 10.1016/j.joca.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE In the knee, synovial fibrosis after ligamentous injury is linked to progressive joint pain and stiffness. The objective of this study was to evaluate changes in synovial architecture, mechanical properties, and transcriptional profiles following naturally occurring cruciate ligament injury in canines and to test potential therapeutics that target drivers of synovial inflammation and fibrosis. DESIGN Synovia from canines with spontaneous cruciate ligament tears and from healthy knees were assessed via histology (n = 10/group) and micromechanical testing (n = 5/group) to identify changes in tissue architecture and stiffness. Additional samples (n = 5/group) were subjected to RNA-sequencing to define the transcriptional response to injury. Finally, synovial tissue samples from injured animals (n = 6 (IL1) or n = 8 (IL6)/group) were assessed in vitro for response to therapeutic molecules directed against interleukin (IL) signaling (IL1 or IL6). RESULTS Cruciate injury resulted in increased synovial fibrosis, vascularity, inflammatory cell infiltration, and intimal hyperplasia. Additionally, the stiffness of both the intima and subintima regions were higher in diseased compared to healthy tissue. Differential gene expression analysis showed that diseased synovium had an upregulation of immune response and cell adhesion pathways and a downregulation of Rho protein transduction pathways. In vitro application of small molecule therapeutics targeting IL1 (anakinra) or IL6 (tocilizumab) dampened expression of inflammatory and matrix deposition mediators. CONCLUSION Spontaneous cruciate ligament injury in canines is associated with synovial inflammation and fibrosis in a relevant model for testing emerging intra-articular treatments. Small molecule therapeutics targeting IL pathways may be ideal interventions for delivery to the joint space after injury.
Collapse
Affiliation(s)
- Elisabeth A Lemmon
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Sung Yeon Kim
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Lorielle Laforest
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, United States; Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert L Mauck
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly A Agnello
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Sarkovich S, Issa PP, Longanecker A, Martin D, Redondo K, McTernan P, Simkin J, Marrero L. Minoxidil weakens newly synthesized collagen in fibrotic synoviocytes from osteoarthritis patients. J Exp Orthop 2023; 10:84. [PMID: 37605092 PMCID: PMC10441905 DOI: 10.1186/s40634-023-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
PURPOSE Synovial fibrosis (SFb) formation and turnover attributable to knee osteoarthritis (KOA) can impart painful stiffness and persist following arthroplasty. To supplement joint conditioning aimed at maximizing peri-operative function, we evaluated the antifibrotic effect of Minoxidil (MXD) on formation of pyridinoline (Pyd) cross-links catalyzed by Plod2-encoded lysyl hydroxylase (LH)2b that strengthen newly synthesized type-I collagen (COL1) in fibroblastic synovial cells (FSCs) from KOA patients. MXD was predicted to decrease Pyd without significant alterations to Col1a1 transcription by FSCs stimulated with transforming growth factor (TGF)β1. METHODS Synovium from 10 KOA patients grouped by SFb severity was preserved for picrosirius and LH2b histology or culture. Protein and RNA were purified from fibrotic FSCs after 8 days with or without 0.5 µM MXD and/or 4 ng/mL of TGFβ1. COL1 and Pyd protein concentrations from ELISA and expression of Col1a1, Acta2, and Plod2 genes by qPCR were compared by parametric tests with α = 0.05. RESULTS Histological LH2b expression corresponded to SFb severity. MXD attenuated COL1 output in KOA FSCs but only in the absence of TGFβ1 and consistently decreased Pyd under all conditions with significant downregulation of Plod2 but minimal alterations to Col1a1 and Acta2 transcripts. CONCLUSIONS MXD is an attractive candidate for local antifibrotic pharmacotherapy for SFb by compromising the integrity of newly formed fibrous deposits by FSCs during KOA and following arthroplasty. Targeted antifibrotic supplementation could improve physical therapy and arthroscopic lysis strategies aimed at breaking down joint scarring. However, the effect of MXD on other joint-specific TGFβ1-mediated processes or non-fibrotic components requires further investigation.
Collapse
Affiliation(s)
- Stefan Sarkovich
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, 2021 Perdido St., Center for Advanced Learning and Simulation, 7th floor, New Orleans, LA, 70112, USA
| | - Peter P Issa
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA
| | - Andrew Longanecker
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA
| | - Davis Martin
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA
| | - Kaitlyn Redondo
- Morphology and Imaging Core, Louisiana State University Health Sciences Center, 533 Bolivar St., Clinical Sciences Research Building, 5th floor, New Orleans, LA, 70112, USA
| | - Patrick McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar St., Clinical Sciences Research Building, 4th floor, New Orleans, LA, 70112, USA
| | - Jennifer Simkin
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, 2021 Perdido St., Center for Advanced Learning and Simulation, 7th floor, New Orleans, LA, 70112, USA
| | - Luis Marrero
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, 2021 Perdido St., Center for Advanced Learning and Simulation, 7th floor, New Orleans, LA, 70112, USA.
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA.
- Morphology and Imaging Core, Louisiana State University Health Sciences Center, 533 Bolivar St., Clinical Sciences Research Building, 5th floor, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Gao Q, Li Z, Rhee C, Xiang S, Maruyama M, Huang EE, Yao Z, Bunnell BA, Tuan RS, Lin H, Gold MS, Goodman SB. Macrophages Modulate the Function of MSC- and iPSC-Derived Fibroblasts in the Presence of Polyethylene Particles. Int J Mol Sci 2021; 22:12837. [PMID: 34884641 PMCID: PMC8657553 DOI: 10.3390/ijms222312837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
Fibroblasts in the synovial membrane secrete molecules essential to forming the extracellular matrix (ECM) and supporting joint homeostasis. While evidence suggests that fibroblasts contribute to the response to joint injury, the outcomes appear to be patient-specific and dependent on interactions between resident immune cells, particularly macrophages (Mφs). On the other hand, the response of Mφs to injury depends on their functional phenotype. The goal of these studies was to further explore these issues in an in vitro 3D microtissue model that simulates a pathophysiological disease-specific microenvironment. Two sources of fibroblasts were used to assess patient-specific influences: mesenchymal stem cell (MSC)- and induced pluripotent stem cell (iPSC)-derived fibroblasts. These were co-cultured with either M1 or M2 Mφs, and the cultures were challenged with polyethylene particles coated with lipopolysaccharide (cPE) to model wear debris generated from total joint arthroplasties. Our results indicated that the fibroblast response to cPE was dependent on the source of the fibroblasts and the presence of M1 or M2 Mφs: the fibroblast response as measured by gene expression changes was amplified by the presence of M2 Mφs. These results demonstrate that the immune system modulates the function of fibroblasts; furthermore, different sources of differentiated fibroblasts may lead to divergent results. Overall, our research suggests that M2 Mφs may be a critical target for the clinical treatment of cPE induced fibrosis.
Collapse
Affiliation(s)
- Qi Gao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
| | - Claire Rhee
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
| | - Masahiro Maruyama
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Elijah Ejun Huang
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Zhenyu Yao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Stuart B. Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| |
Collapse
|