1
|
Hollander JM, Goraltchouk A, Liu J, Xu E, Luppino F, McAlindon TE, Zeng L, Seregin A. Single Injection AAV2-FGF18 Gene Therapy Reduces Cartilage Loss and Subchondral Bone Damage in a Mechanically Induced Model of Osteoarthritis. Curr Gene Ther 2024; 24:331-345. [PMID: 38783531 DOI: 10.2174/0115665232275532231213063634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly debilitating, degenerative pathology of cartilaginous joints affecting over 500 million people worldwide. The global economic burden of OA is estimated at $260-519 billion and growing, driven by aging global population and increasing rates of obesity. To date, only the multi-injection chondroanabolic treatment regimen of Fibroblast Growth Factor 18 (FGF18) has demonstrated clinically meaningful disease-modifying efficacy in placebo-controlled human trials. Our work focuses on the development of a novel single injection disease-modifying gene therapy, based on FGF18's chondroanabolic activity. METHODS OA was induced in Sprague-Dawley rats using destabilization of the medial meniscus (DMM) (3 weeks), followed by intra-articular treatment with 3 dose levels of AAV2-FGF18, rh- FGF18 protein, and PBS. Durability, redosability, and biodistribution were measured by quantifying nLuc reporter bioluminescence. Transcriptomic analysis was performed by RNA-seq on cultured human chondrocytes and rat knee joints. Morphological analysis was performed on knee joints stained with Safranin O/Fast Green and anti-PRG antibody. RESULTS Dose-dependent reductions in cartilage defect size were observed in the AAV2-FGF18- treated joints relative to the vehicle control. Total defect width was reduced by up to 76% and cartilage thickness in the thinnest zone was increased by up to 106%. Morphologically, the vehicle- treated joints exhibited pronounced degeneration, ranging from severe cartilage erosion and bone void formation, to subchondral bone remodeling and near-complete subchondral bone collapse. In contrast, AAV2-FGF18-treated joints appeared more anatomically normal, with only regional glycosaminoglycan loss and marginal cartilage erosion. While effective at reducing cartilage lesions, treatment with rhFGF18 injections resulted in significant joint swelling (19% increase in diameter), as well as a decrease in PRG4 staining uniformity and intensity. In contrast to early-timepoint in vitro RNA-seq analysis, which showed a high degree of concordance between protein- and gene therapy-treated chondrocytes, in vivo transcriptomic analysis, revealed few gene expression changes following protein treatment. On the other hand, the gene therapy treatment exhibited a high degree of durability and localization over the study period, upregulating several chondroanabolic genes while downregulating OA- and fibrocartilage-associated markers. CONCLUSION FGF18 gene therapy treatment of OA joints can provide benefits to both cartilage and subchondral bone, with a high degree of localization and durability.
Collapse
Affiliation(s)
- Judith M Hollander
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Alex Goraltchouk
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Ellyn Xu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Francesco Luppino
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Timothy E McAlindon
- Division of Rheumatology, Immunology, and Allergy, Tufts Medical Center, Boston, MA, United States of America
| | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Alexey Seregin
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| |
Collapse
|
2
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
3
|
Liu D, Li X, Zhang L, Hu B, Hu S, Zhang X, Hu J. Small molecule inhibitors of osteoarthritis: Current development and future perspective. Front Physiol 2023; 14:1156913. [PMID: 37089415 PMCID: PMC10119395 DOI: 10.3389/fphys.2023.1156913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Osteoarthritis (OA) is one of the common degenerative joint diseases in clinic. It mainly damages articular cartilage, causing pain, swelling and stiffness around joints, and is the main cause of disability of the elderly. Due to the unclear pathogenesis of osteoarthritis and the poor self-healing ability of articular cartilage, the treatment options for this disease are limited. At present, NSAIDs, Glucocorticoid and Duloxetine are the most commonly used treatment choice for osteoarthritis. Although it is somewhat effective, the adverse reactions are frequent and serious. The development of safer and more effective anti-osteoarthritis drugs is essential and urgent. This review summarizes recent advances in the pharmacological treatment of OA, focusing on small molecule inhibitors targeting cartilage remodeling in osteoarthritis as well as the research idea of reducing adverse effects by optimizing the dosage form of traditional drugs for the treatment of osteoarthritis. It should provide a reference for exploration of new potential treatment options.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingxing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Sang Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Zhang
- Institute of Pathology, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
DePhillipo NN, Hendesi H, Aman ZS, Lind DRG, Smith J, Dodge GR. Preclinical Use of FGF-18 Augmentation for Improving Cartilage Healing Following Surgical Repair: A Systematic Review. Cartilage 2023; 14:59-66. [PMID: 36541606 PMCID: PMC10076894 DOI: 10.1177/19476035221142010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of fibroblast growth factor-18 (FGF-18) augmentation for improving articular cartilage healing following surgical repair in preclinical (in vivo) animal models. DESIGN A systematic review was performed evaluating the efficacy of FGF-18 augmentation with cartilage surgery compared with cartilage surgery without FGF-18 augmentation in living animal models. Eligible intervention groups were FGF-18 treatment in conjunction with orthopedic procedures, including microfracture, osteochondral auto/allograft transplantation, and cellular-based repair. Outcome variables were: International Cartilage Repair Society (ICRS) score, modified O'Driscoll histology score, tissue infill score, qualitative histology, and adverse events. Descriptive statistics were recorded and summarized for each included study. RESULTS In total, 493 studies were identified and 4 studies were included in the final analysis. All studies were randomized controlled trials evaluating in vivo use of recombinant human FGF-18 (rhFGF-18). Animal models included ovine (n = 3) and equine (n = 1), with rhFGF-18 use following microfracture (n = 3) or osteochondral defect repair (n = 1). The rhFGF-18 was delivered via intra-articular injection (n = 2), collagen membrane scaffold (n = 1), or both (n = 1). All studies reported significant, positive improvements in cartilage defect repair with rhFGF-18 compared with controls based on ICRS score (n = 4), modified O'Driscoll score (n = 4), tissue infill (n = 3), and expression of collagen type II (n = 4) (P < 0.05). No adverse events were reported with the intra-articular administration of this growth factor, indicating short-term safety and efficacy of rhFGF-18 in vivo. CONCLUSION This systematic review provides evidence that rhFGF-18 significantly improves cartilage healing at 6 months postoperatively following microfracture or osteochondral defect repair in preclinical randomized controlled trials.
Collapse
Affiliation(s)
- Nicholas N DePhillipo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Mechano-Therapeutics LLC, Philadelphia, PA, USA
| | - Honey Hendesi
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary S Aman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dane R G Lind
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Smith
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - George R Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Mechano-Therapeutics LLC, Philadelphia, PA, USA
| |
Collapse
|
5
|
Oo WM, Hunter DJ. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther Adv Musculoskelet Dis 2022; 14:1759720X221090297. [PMID: 35619876 PMCID: PMC9128067 DOI: 10.1177/1759720x221090297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
In spite of a major public health burden with increasing prevalence, current osteoarthritis (OA) management is largely palliative with an unmet need for effective treatment. Both industry and academic researchers have invested a vast amount of time and financial expense to discover the first diseasing-modifying osteoarthritis drugs (DMOADs), with no regulatory success so far. In this narrative review, we discuss repurposed drugs as well as investigational agents which have progressed into phase II and III clinical trials based on three principal endotypes: bone-driven, synovitis-driven and cartilage-driven. Then, we will briefly describe the recent failures and lessons learned, promising findings from predefined post hoc analyses and insights gained, novel methodologies to enhance future success and steps underway to overcome regulatory hurdles.
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - David J. Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia
| |
Collapse
|
6
|
Li J, Wang X, Ruan G, Zhu Z, Ding C. Sprifermin: a recombinant human fibroblast growth factor 18 for the treatment of knee osteoarthritis. Expert Opin Investig Drugs 2021; 30:923-930. [PMID: 34427483 DOI: 10.1080/13543784.2021.1972970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a serious and incurable disease leading the disability. Surgical treatment is the last but not necessarily the best approach for patients with high risks and costs. However, there are no disease-modifying OA drugs (DMOADs) developed for the disease so far, leaving a huge unmet need for drug treatments. Sprifermin is a recombinant human fibroblast growth factor 18 (rhFGF18) and has been confirmed to have anabolic effects on articular cartilage, which makes it a promising DMOAD. AREAS COVERED The content of this review includes overview of the market, discovery and development, molecular mechanism, preclinical studies, clinical efficacy, safety, and tolerability of sprifermin. It examines the potential of sprifermin as a disease modifying drug for the treatment of knee OA. EXPERT OPINION Sprifermin could be one of the most promising DMOADs, especially for cartilage phenotype. Current studies show good tolerability and no safety concerns. Well-designed phase 3 clinical trials are required to examine its effects on symptoms and cartilage loss in knee OA.
Collapse
Affiliation(s)
- Jia Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Clinical Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|